Scalable Design Rules for Physical Systems

Richard Pates *, and Glenn Vinnicombe*,

$$
\begin{array}{r}
e_{k}=Z_{k}(s) f_{k} \\
\text { or } e_{k}=\phi_{k}\left(f_{k}\right) \\
e_{k} \\
f_{k}
\end{array}
$$

Component

$\frac{1}{t_{1}}+\frac{1}{t_{2}}=1$

$$
e=t_{2} Z_{k}(s) f
$$

$$
-f=\frac{1}{\left(Z_{a}(s)+Z_{b}(s)\right)} e
$$

\Longrightarrow use Nyquist with $L(s)=\frac{t_{2} Z_{k}(s)}{Z_{a}(s)+Z_{b}(s)}$
(we will be assuming that Z_{k} is open circuit stable and Z_{a}, Z_{b} short circuit stable).

$$
L\left(j \omega_{0}\right)=\frac{t_{3} Z_{1}\left(j \omega_{0}\right)+t_{5} Z_{2}\left(j \omega_{0}\right)}{Z_{b}\left(j \omega_{0}\right)}=x+y
$$

$$
\xrightarrow[y]{\operatorname{Re}}
$$

Network is stable if this and all other curves lies to the right of a globally specified line through -1

Can do Popov too!

So, what's going on?

Return Ratio of form $G A$

$$
G=\left[\begin{array}{cccc}
g_{1} & 0 & \ldots & 0 \\
0 & g_{2} & & \\
\vdots & & \ddots & \\
0 & \ldots & & g_{n}
\end{array}\right], \quad[A]_{i j} \in \Re
$$

If $A=A^{T}>0$ then

$$
\sigma(G A) \in \operatorname{Co}\left\{g_{i}\right\} \rho(A) \quad \text { e.g. } \mathrm{V}(2000)
$$

If $g_{1}=g_{2}=\cdots=g_{n}=g$ then

$$
\sigma(G A)=g \sigma(A) \quad \text { e.g. Fax \& Murray (2001) }
$$

e.g $A=R \operatorname{diag}\left\{l_{i}\right\} R^{T}$ or $A=$ a Laplacian (consensus problems).

Can these be put together?

$$
\begin{aligned}
A G v & =\lambda v \\
G v & =A^{-1} v \\
\Longrightarrow v^{*} G v & =\lambda v^{*} A^{-1} v
\end{aligned}
$$

So $W(G) \cap W\left(A^{-1}\right)=\emptyset \Longrightarrow$ no eigenvalue at λ
(where $W(X)=\left\{\frac{v^{*} X v}{v^{*} v}: v \in \mathbb{C}^{n}, v \neq 0\right\}$)
also

$$
v^{*} G^{*} G v=\lambda^{2} v^{*} A^{-*} A^{-1} v
$$

So $D W(G) \cap D W\left(A^{-1}\right)=\emptyset \Longrightarrow$ no eigenvalue at λ ([Jönsson and Kao 2010, Lestas 2012])
(where $D W(X)=\left\{\Re \frac{v^{*} X v}{v^{*} v}, \Im \frac{v^{*} X v}{v^{*} v}, \frac{v^{*} X^{*} X v}{v^{*} v}: v \in \mathbb{C}^{n}, v \neq 0\right\}$) Also
$D W(G) \cap D W\left(A^{-1}\right)=\emptyset \Longleftrightarrow D W\left(G^{-1}\right) \cap D W(A)=\emptyset$

What about neighbouring dynamics

Could consider $\sqrt{G} A \sqrt{G}$, but strongest results are in the bipartite case:

$$
\begin{aligned}
& \begin{array}{l}
\text { e.g. } G=\operatorname{diag}\left(f_{1}, f_{2}, \ldots, h_{1}, h_{2}, \ldots\right) A=\left[\begin{array}{ll}
0 & R ; R^{T}
\end{array}\right] \text {, } \\
A_{i j} \in\{-1,0,1\} \\
\sigma\left(\operatorname{diag}\left(g_{i}\right) R^{T} \operatorname{diag}\left(h_{i}\right) R\right) \subset \operatorname{Co}\left\{m_{i} h_{i} S\left(n_{j} g_{j}: R_{i j} \neq 0\right)\right\} \\
\text { where } S(X)=\operatorname{Co}(\sqrt{X})^{2} \quad[\mathrm{~V}(2002), \text { Lestas \& } \mathrm{V}(2006)]
\end{array} .
\end{aligned}
$$

A better result is

$$
\sigma\left(\operatorname{diag}\left(g_{i}\right) R^{T} \operatorname{diag}\left(h_{i}\right) R\right) \subset \operatorname{Co}\left\{h_{i} E\left(n_{j} g_{j}: R_{i j} \neq 0\right)\right\}
$$

where $E\left(x_{i}\right)$ is ellipse with foci $0, \sum x_{i}$ and major axis $\sum\left|x_{i}\right|$. [Pates \& V (2012)]
proof :
$\sigma\left(\operatorname{diag}\left(g_{j}\right) R^{T} \operatorname{diag}\left(h_{i}\right) R\right)=\sigma\left(\operatorname{diag}\left(\sqrt{g_{j}}\right) R^{T} \operatorname{diag}\left(h_{i}\right) R \operatorname{diag}\left(\sqrt{g_{j}}\right)\right)$

$$
=\sigma\left(\sum_{i} \operatorname{diag}\left(\sqrt{g_{j}}\right) R_{i}^{T} h_{i} R_{i} \cdot \operatorname{diag}\left(\sqrt{g_{j}}\right)\right)
$$

etc

Open question: Local conditions for eigenvalue locations Richard Pates \& Glenn Vinnicombe

$$
G=\left[\begin{array}{cccc}
g_{1} & 0 & \ldots & 0 \\
0 & g_{2} & & \\
\vdots & & \ddots & \\
0 & \ldots & & g_{n}
\end{array}\right], \quad[A]_{i j} \in\{0,-1,1\}
$$

Identify A with the adjacency matrix of a directed graph, with $g_{i} \in \mathbb{C}$ labelling the nodes and $R_{i j}$ labelling the edges.

What can we say about the $\sigma(G A)$ in terms of local information about the cycles of A (including those of length $2)$?

Each node knows all cycles it participates in, and for each of those cycles $g_{i}, A_{i j}, n_{i}$ along that cycle.

Is it possible, for some region \mathcal{B}, to come up with a yes/no question such that if all nodes say "yes", based on their local information, then $\sigma(G A) \in \mathcal{B}$?

What is the smallest \mathcal{B} (and associated question).

What we know (bipartite \& symmetric)

If

$$
\begin{gathered}
G=\operatorname{diag}\left(f_{1}, f_{2}, \ldots, h_{1}, h_{2}, \ldots\right), A=\left[0 R ; R^{T} 0\right], A_{i j} \in\{0,1\} \\
\sigma(G A)^{2} \subset \operatorname{Co}\left\{f_{i} E\left(n_{j} h_{j}: R_{i j} \neq 0\right)\right\}
\end{gathered}
$$

where $E\left(x_{i}\right)$ is ellipse with foci $0, \sum x_{i}$ and major axis $\sum\left|x_{i}\right|, n_{j}=$ in-degree of node h_{j}.

For \mathcal{B} being the region to the right of a given, line through -1 ,
and question is "does your ellipse lie in \mathcal{B}
If all answer "yes", then $\sigma(G A) \in \mathcal{B}$

