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The Nyquist stability criterion is probably the most important theo-
rem in systems and control theory, allowing the stability of a feedback
interconnection to be inferred from properties of its constituents
parts. We here extend it to arbitrarily complex interconnections
(networks) in a scalable and decentralised manner. In particular we
demonstrate that provided a set of subcircuits within the network
each individually satisfy a slightly restricted version of the usual
Nyquist criterion, then the equilibrium point of the network as a
whole is guaranteed to be robustly stable. The condition provides a
sound basis for the design of many large networks, for example elec-
trical power systems and economic networks, and can also be used
to analyse a wide range of physical processes throughout physics and
biology.

Introduction
In this paper we derive tools for the analysis and design of large
dynamic networks. Our approach is to consider the dynam-
ical models of the simplest structural instance of a system,
and investigate the extent to which some established design
procedures remain valid when many such simple systems are
joined together. This is a very natural framework for design-
ing a number of engineering systems, and in this paper we
specifically show how:

1. Stability of an electrical power system with many generat-
ing areas can be deduced from those with two;

2. Convergence of a distributed optimisation algorithm in
many coupled variables can be deduced from those with
two;

and moreover that these guarantees can be maintained when
realistic heterogeneous component models are used (which
may incorporate delays and other higher order dynamics). A
key feature of this modular approach to analysis and design
is that it scales; the building blocks may be freely added or
removed without a↵ecting the design of the existing network.
Additionally the complexity of the approach is determined by
that of the building blocks, thus sidestepping analysis issues
typically caused by network size.
We give our results in the context of network models struc-

tured by linear graphs (as in the electrical networks of Kirch-
ho↵). This is a broad modelling class, covering almost all
models of physical systems through the many well established
network analogues with electrical networks. The simplest in-
stance of a network is then a circuit, and the design conditions
we investigate are the Nyquist stability criterion and Popov
stability criterion. In particular we show that provided the
circuits are interconnected in a particular way, the intuition
a↵orded by these methods to the design of a single circuit can
be carried into the network setting.
This process can be equivalently viewed as a form of dis-

tributed analysis based on a particular decomposition, or tear-
ing apart, of the network model (see fig. 1). As the results
hinge on decomposing the structure of the network we can
avoid placing a range of other common restrictions on the
model class. For example the models for each network com-
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Fig. 1. Sketch of our approach to analysis and design of networks. We facilitate

design by extending the validity of some standard design procedures for simple systems

to also include their interconnection. This process is equivalent to distributed analysis

of the model with respect to a structured decomposition.

ponent can be completely di↵erent and need not be passive,
and we make no assumptions about weak coupling between
the circuits in the decomposition.
We begin the paper by characterising the type of network

models that can be structured as linear graphs. We then show
that the electrical power system and distributed optimisation
models are special instances of this type of model, and can be

Significance

In many networks maintaining performance independent of size
is essential. For example a power system must maintain its op-
erating frequency and voltage as consumers join and leave the
grid. In this paper we consider how to design a network to have
this property. Specifically we show that provided the building
blocks of the network are interconnected in a particular way,
the design for each piece can be maintained as they are joined
together. We use this approach to show how, for example, sta-
bility of an electrical power system with many generating areas
can be deduced from one with two.

Reserved for Publication Footnotes

1Representing the process of interest with an ‘equivalent’ electrical network.
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Fig. 2. Construction of circuits and networks by interconnecting components.

Each edge of the graph represents a component and is associated with a flow and

e↵ort. The topological structure of the graph describes the structure of the physical

laws governing how flows and e↵orts in di↵erent components are related.

constructed from a simple set of circuits. We then give our re-
sults in the form required to verify stability of these examples,
before finally giving the appropriate generalisations to cover
the full model class.

Modelling Physical Systems
There are many ways to describe the structure of dynamical
models of physical systems using graphs, ranging from linear
graphs, to signal flow graphs [1, 2], to bond graphs [3] (for yet
more, see [4] and the references therein). Typically the pur-
pose of the graph is to capture some structural aspect of the
model, which can then be exploited in the analysis and design
of the system.

In this paper we consider models described by linear graphs.
This is largely due to the numerous nice properties these net-
works enjoy, in particular the freedom with which they can
be manipulated and torn apart; the structural property which
we exploit in deriving our results. In addition this modelling
class is su�ciently broad to consider many practical prob-
lems. Electrical networks are particularly amenable to analy-
sis in this framework (where the practice begin in the works
of Kirchho↵ in 1845 and 1847). Additonally, as observed by
Kron, Trent, Firestone, and many others (e.g. [5, 6, 7, 8]),
through the use of so called network analogues

1 these models
can be used to describe almost any physical process (electri-
cal, mechanical, thermodynamic, see e.g. [9] and the references
therein). Such models have also found application outside of
the physical domains, for example in designing distributed op-
timisation algorithms.

A linear graph, or simply a graph is a collection of vertices
connected by a set of edges. Within this framework each edge
represents a component, and is additionally associated with a
flow variable and an e↵ort variable, which we denote fk and
ek respectively (the index k refers to the edge). In the electri-
cal network setting these variables would be a current and a
voltage. The network model consists of two principal aspects:

Dynamic: The characterisation of the dynamical properties
of the components. This imposes a relationship between
the flow and e↵ort variables for each edge. A simple exam-
ple would be

ek = Rfk, [1]

which describes Ohm’s law for a resistor. Here the pos-
itive constant R (the resistance) defines the appropriate
relationship.

Topological: The physical laws governing how the flow and
e↵ort variables between components are related (also re-
ferred to as kinematic constraints). These have the form of
Kirchho↵’s current and voltage laws, and are captured by
the topological structure of the graph.

Component Models.We consider component models de-
scribed by two classes of relationship: frequency responses
and static nonlinear maps. These descriptions can be used
to capture the behaviour of a very wide range of components,
at least approximately.

The frequency response description is a natural generalisa-
tion of eq. (1). In general, the relationship takes the form

êk = Zk (!) f̂k, [2]

where f̂k, êk are the Fourier transforms of the flow and e↵ort
variable respectively. The function Zk (!) is the frequency re-
sponse, and describes the intuition that if there is a steady
sinusoidal ‘flow’ through such devices, the ‘e↵ort’ will be a si-
nusoid at the same frequency, but perhaps with a di↵erent am-
plitude and phase. In particular, for any frequency !, Zk (!)
is a complex number such that:

1. The magnitude of Zk (!) is equal to the ratio of flow and
e↵ort variable amplitudes.

2. The argument of Zk (!) is equal to the phase shift between
flow and e↵ort variables.

Zk (!) can either be obtained from a mathematical model of
the element (typically a set of ordinary di↵erential equations),
or directly from experiments on the physical device.

A static linear map is simply a relationship of the form

ek = c1fk + c2,

where c1 and c2 are real numbers. In particular, the relation-
ship between through and across variables can be described
by a function with constant slope. A static nonlinear map has
exactly the same form, except the relationship

ek = �k (fk)

does not have to be a straight line. A common example of an
electrical component best described by a static nonlinear map
is a diode.

Physical Laws.The graph describes how the flow and e↵ort
variables associated with each edge are related. In particular:

1. The sum of flow variables into any node is zero (Kirchho↵’s
current law).

2. The sum of e↵ort variables around any circuit is zero
(Kirchho↵’s voltage law).

Analogues are typically drawn by observing the identical struc-
ture of these underlying laws and those in other physical do-
mains. For example in planar mechanical networks Kirchho↵’s
current law is equivalent to D’Allembert’s principle [5]. More
abstractly Kirchho↵’s laws can be interpreted as f and e be-
ing solenoidal (incompressible) and conservative (irrotational)
respectively, and Kirchho↵’s laws the discrete counterparts of
the fundamental identities of vector calculus [10]. Any net-
work for which this is a reasonable assumption about the base
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Fig. 3. By tearing the shaded edge the network can be equivalently viewed as the

parallel interconnection of circuits.
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Each edge of the graph represents a component and is associated with a flow and

e↵ort. The topological structure of the graph describes the structure of the physical

laws governing how flows and e↵orts in di↵erent components are related.

constructed from a simple set of circuits. We then give our re-
sults in the form required to verify stability of these examples,
before finally giving the appropriate generalisations to cover
the full model class.
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There are many ways to describe the structure of dynamical
models of physical systems using graphs, ranging from linear
graphs, to signal flow graphs [1, 2], to bond graphs [3] (for yet
more, see [4] and the references therein). Typically the pur-
pose of the graph is to capture some structural aspect of the
model, which can then be exploited in the analysis and design
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we exploit in deriving our results. In addition this modelling
class is su�ciently broad to consider many practical prob-
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sis in this framework (where the practice begin in the works
of Kirchho↵ in 1845 and 1847). Additonally, as observed by
Kron, Trent, Firestone, and many others (e.g. [5, 6, 7, 8]),
through the use of so called network analogues

1 these models
can be used to describe almost any physical process (electri-
cal, mechanical, thermodynamic, see e.g. [9] and the references
therein). Such models have also found application outside of
the physical domains, for example in designing distributed op-
timisation algorithms.

A linear graph, or simply a graph is a collection of vertices
connected by a set of edges. Within this framework each edge
represents a component, and is additionally associated with a
flow variable and an e↵ort variable, which we denote fk and
ek respectively (the index k refers to the edge). In the electri-
cal network setting these variables would be a current and a
voltage. The network model consists of two principal aspects:

Dynamic: The characterisation of the dynamical properties
of the components. This imposes a relationship between
the flow and e↵ort variables for each edge. A simple exam-
ple would be

ek = Rfk, [1]

which describes Ohm’s law for a resistor. Here the pos-
itive constant R (the resistance) defines the appropriate
relationship.

Topological: The physical laws governing how the flow and
e↵ort variables between components are related (also re-
ferred to as kinematic constraints). These have the form of
Kirchho↵’s current and voltage laws, and are captured by
the topological structure of the graph.

Component Models.We consider component models de-
scribed by two classes of relationship: frequency responses
and static nonlinear maps. These descriptions can be used
to capture the behaviour of a very wide range of components,
at least approximately.

The frequency response description is a natural generalisa-
tion of eq. (1). In general, the relationship takes the form
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by a function with constant slope. A static nonlinear map has
exactly the same form, except the relationship
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current law).
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Each edge of the graph represents a component and is associated with a flow and

e↵ort. The topological structure of the graph describes the structure of the physical

laws governing how flows and e↵orts in di↵erent components are related.
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sults in the form required to verify stability of these examples,
before finally giving the appropriate generalisations to cover
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There are many ways to describe the structure of dynamical
models of physical systems using graphs, ranging from linear
graphs, to signal flow graphs [1, 2], to bond graphs [3] (for yet
more, see [4] and the references therein). Typically the pur-
pose of the graph is to capture some structural aspect of the
model, which can then be exploited in the analysis and design
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In this paper we consider models described by linear graphs.
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works enjoy, in particular the freedom with which they can
be manipulated and torn apart; the structural property which
we exploit in deriving our results. In addition this modelling
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therein). Such models have also found application outside of
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represents a component, and is additionally associated with a
flow variable and an e↵ort variable, which we denote fk and
ek respectively (the index k refers to the edge). In the electri-
cal network setting these variables would be a current and a
voltage. The network model consists of two principal aspects:

Dynamic: The characterisation of the dynamical properties
of the components. This imposes a relationship between
the flow and e↵ort variables for each edge. A simple exam-
ple would be

ek = Rfk, [1]

which describes Ohm’s law for a resistor. Here the pos-
itive constant R (the resistance) defines the appropriate
relationship.

Topological: The physical laws governing how the flow and
e↵ort variables between components are related (also re-
ferred to as kinematic constraints). These have the form of
Kirchho↵’s current and voltage laws, and are captured by
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Component Models.We consider component models de-
scribed by two classes of relationship: frequency responses
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to capture the behaviour of a very wide range of components,
at least approximately.
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e↵ort variable amplitudes.

2. The argument of Zk (!) is equal to the phase shift between
flow and e↵ort variables.

Zk (!) can either be obtained from a mathematical model of
the element (typically a set of ordinary di↵erential equations),
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A static linear map is simply a relationship of the form
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ship between through and across variables can be described
by a function with constant slope. A static nonlinear map has
exactly the same form, except the relationship
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does not have to be a straight line. A common example of an
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variables associated with each edge are related. In particular:

1. The sum of flow variables into any node is zero (Kirchho↵’s
current law).

2. The sum of e↵ort variables around any circuit is zero
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where Re {f (!)} and Im {f (!)} give the real and imaginary
part of f (!), and j =

p
�1. Define

P (!) ,
P2

k=1 Re {tkZak (!)}+ j!Im {tkZak (!)}
c

, [9]

The Popov criterion states that the circuit is stable if the
Nyquist plot of P (!) lies to the right of a line through the �1
point. Just as with the Nyquist stability criterion the Popov
plot can be used as a basis for design, indicating how param-
eters in the frequency responses of the lumped elements can
be ‘tuned’ to guarantee robust stability of the circuit.

Scalable Popov Criterion.We extend the Popov criterion to
guarantee stability of the interconnection of circuits through
a scalable Popov plot. This plot is constructed in an analo-
gous manner to the scalable Nyquist plot by drawing ellipses
with foci at the origin and at

P (!) ,
P2

k=1 Re {tkZak (!)}+ j!Im {tkZak (!)}
c

, [10]

and with major axis length

b (!) ,
P2

k=1 |Re {tkZak (!)}+ j!Im {tkZak (!)}|
c

. [11]

The positive constant c gives a lower bound on the slope of
Zb for the given circuit. Provided the scalable Popov plot
for every circuit lies to the right of a single line through the
�1 point, then their interconnection is guaranteed to be sta-
ble. The nonzero focus P (!) is exactly the Popov plot, thus
the scalable Popov plot can be viewed as a slightly enlarged
version.

Consider again the simplest instance of the distributed opti-
misation example consisting of two users connected by a single
route. Additionally assume that the route cost is given by

 (f) =
f

µ (µ� f)
,

where µ > 0. This cost gives the expected service time of an
M/M/1 queue with poisson distributed arrival times and expo-
nentially distributed service times with rates f and µ respec-
tively (in this case the optimisation problem is to determine
how to assign flows to queues to minimise the total expected
waiting time). If this is the case then the slope ofr is greater
than 2

µ3 . Thus provided the Nyquist plot of

P (!) =
µ3

2

✓
j

Ca1
+

j
Ca2

◆

lies to the right of a line through the �1 point, stability (and
hence convergence of the algorithm) is guaranteed through the
Popov criterion. This is trivially satisfied in this case for any
value of the parameters. Further as the scalable Popov plot
just consists of a subset of the imaginary axis any possible
interconnection of such circuits (corresponding to adding ad-
ditional routes) is also guaranteed to be stable.

The true power of our result is to be able to guarantee sta-
bility when the users have more realistic frequency responses
(note the slightly counterintuitive suggestion from the previ-
ous analysis that we may use arbitrarily small capacitances).
Supposing for example that the users obtained delayed and
filtered information about the flow along the route, an appro-
priate frequency response might be

Za (!) =
e�j!Ta

j!Ca (1 + j!�a)
,

Im

Re −1

Ta/βa

βa

Ca

Fig. 9. The left part of the figure shows the scalable Popov plots for the dis-

tributed optimisation example for two di↵erent values of delay and capacitance (but

identical �a). If the capacitance is too small or the delay too large the plot fails to

lie to the right of line through the �1 point. This tradeo↵ is illustrated in the right

part of the figure, with the shaded region showing the parameter values satisfying

the criterion. In the heterogenous case stability is guaranteed by testing each circuit

individually (each is a local test based only on the dynamics of a pair of users areas

and the route connecting them).

where Ta corresponds to the delay and �a a smoothing pa-
rameter. Even in the case when users have identical frequency
responses stability would be di�cult to verify using standard
techniques, yet distributed stability guarantees can be quickly
obtained using our conditions. This is illustrated in fig. 9.
Observe that we now have a tradeo↵ between delay time and

Zb

t1Za1

t2Za2

t3Za3

tnZan

Fig. 10. Structure of a fundamental circuit. Any network representable by a

linear graph may be decomposed into a set of circuits with this structure by tearing

the edges in some spanning tree. Applying the analysis tools from the previous section

to this set of circuits guarantees stability of the (interconnnected) network model.

a

d

b

c
c

d

a

b

t

Fig. 11. Illustration of the structured network decomposition. The elements

shaded in grey form a spanning tree. The fundamental circuits correspond to those

formed by the reintroduction of a single element shaded in white. The network can

be split apart on this basis by tearing the elements in the spanning tree as required.

8At least from the mathematical perspective, see the discussion in [15, chapter 16].
9Though both network models will not be representable as linear graphs unless the graphs are planar
[16]. There is however no di�culty in extending our results to the situation where the structure of
the physical laws is described by a regular matroid (where indeed neither analogy need be graphic),
as opposed to a linear graph (c.f. the generalised electrical networks in [17]).
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Fig. 6. An ellipse in the complex plane with foci at the origin and at x+ y. The

sum of the distances from the foci to any point on the ellipse, termed the major axis

length, is |x| + |y|. The scalable Nyquist plot is constructed by drawing an ellipse

with this structure at every frequency.

Im

Re

Fig. 7. Sketch of the construction of the scalable Nyquist plot. At every fre-

quency an ellipse with major axis length given by eq. (8) is superimposed on the

‘usual’ Nyquist plot (given by eq. (7)).

Scalable Nyquist criterion.While the Nyquist criterion can
guarantee the stability of a single circuit, it does not guaran-
tee stability of the interconnection of multiple circuits, even if
they each individually satisfy the Nyquist criterion. Our main
contribution is showing that if slightly stronger condition is
satisfied, then stability of the interconnection of multiple cir-
cuits is guaranteed.
Just as with the Nyquist criterion, the scalable criterion is

based on a graphical construction which we term the scalable
Nyquist plot. This plot is based on drawing ellipses, so let us
first review the relevant geometry. An ellipse is a curve sur-
rounding two points, termed the foci, such that the sum of the

θ

−k

Im

Re

Area 1

Area 2

Area 3

Area 4 Area 5

Arbitrary Interconnection

of Areas

Fig. 8. The left part of the plot shows the Nyquist plot (black curve) for the

simple power system example, with the scalable Nyquist plot superimposed on top

(grey area). As the scalable plot lies to the right of a line through the �1 point the

scalable condition is satisfied. In fact the condition remains satisfied independent of

the values of the tearing parameters ti, which immediately guarantees stability of the

interconnection of any number of generating areas with homogenous dynamics. In the

heterogenous case stability is guaranteed by testing each circuit individually (each is a

local test based only on the dynamics of a pair of control areas and the transmission

line connecting them).

distances from the foci to any point on the curve is constant.
This distance is termed the major axis length.
Consider again the circuit in fig. 4. To construct the scal-

able Nyquist plot draw an ellipse at every frequency with foci
at the origin and at

L (!) ,
P2

k=1 tkZak (!)

Zb (!)
, [7]

with major axis length

a (!) ,
P2

k=1 |tkZak (!)|
|Zb (!)|

. [8]

Provided the scalable Nyquist plot for every circuit lies to
the right of a single line through the �1 point, then their in-
terconnection is guaranteed to be stable. Observe that the
nonzero focus is exactly the Nyquist plot for the circuit. Thus
the scalable Nyquist plot can be viewed as a slightly enlarged
Nyquist plot, and all the usual ‘design principles’ continue to
apply. The steps for constructing the scalable Nyquist plot
are illustrated through figs. 6 and 7.
Consider again the simple electrical power system model

consisting of two identical generating areas connected by a
single transmission line. In this case stability of the model
can be checked using the Nyquist stability criterion. Thus
provided the Nyquist plot of

L (!) =

q
1� (P0Xb)

2

Xb

✓
t1 + t2

j!Da � !2Ma

◆

makes no net encirclements of the �1 point, the power system
model is stable. The required Nyquist plot for some typical
parameter values (from [11, chapter 3]) is shown in fig. 8.
Superimposed on this plot is the scalable Nyquist plot. The

scalable Nyquist plot lies to the right of a straight line through
the �1 point. This not only implies that this single circuit is
stable, but also that any interconnection of control areas with
frequency response

Z (!) =
k

j!Da � !2Ma
,

where k is a positive constant is also stable! For the case of the
classical model of electrical power systems this has been know
for many years. However the generality of our approach allows
even the most sophisticated power systems models to by inves-
tigated in the same way. There is for example no di�culty in
considering the standard models used in small signal stability
studies which include voltage dynamics, reactive power flows
and fast acting control systems such as automatic voltage reg-
ulators. It is in fact possible to avoid almost all time scale
separation arguments, and even model each transmission line
as a fully distributed system. This is the subject of ongoing
work, however stability of the benchmark power system model
from [14] which includes detailed generator and load models
can be verified in this way.

Popov stability criterion.The Popov stability criterion can be
used to determine stability of the circuit in fig. 4 where Za1 (!)
and Za2 (!) are described by frequency responses, and Zb by
a static nonlinear map with slope greater than some positive
number c. The Popov criterion is based on a graphical con-
struction termed the Popov plot. The Popov plot of a function
f (!) is similar to the Nyquist plot, however the real part of
f (!) is drawn against the imaginary part multiplied by !.
This is equivalent to drawing the Nyquist plot of

f⇤ (!) = Re {f (!)}+ j!Im {f (!)} ,
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Fig. 6. An ellipse in the complex plane with foci at the origin and at x+ y. The

sum of the distances from the foci to any point on the ellipse, termed the major axis

length, is |x| + |y|. The scalable Nyquist plot is constructed by drawing an ellipse

with this structure at every frequency.

Im

Re

Fig. 7. Sketch of the construction of the scalable Nyquist plot. At every fre-

quency an ellipse with major axis length given by eq. (8) is superimposed on the

‘usual’ Nyquist plot (given by eq. (7)).

Scalable Nyquist criterion.While the Nyquist criterion can
guarantee the stability of a single circuit, it does not guaran-
tee stability of the interconnection of multiple circuits, even if
they each individually satisfy the Nyquist criterion. Our main
contribution is showing that if slightly stronger condition is
satisfied, then stability of the interconnection of multiple cir-
cuits is guaranteed.
Just as with the Nyquist criterion, the scalable criterion is

based on a graphical construction which we term the scalable
Nyquist plot. This plot is based on drawing ellipses, so let us
first review the relevant geometry. An ellipse is a curve sur-
rounding two points, termed the foci, such that the sum of the

θ
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Re
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Area 4 Area 5

Arbitrary Interconnection

of Areas

Fig. 8. The left part of the plot shows the Nyquist plot (black curve) for the

simple power system example, with the scalable Nyquist plot superimposed on top

(grey area). As the scalable plot lies to the right of a line through the �1 point the

scalable condition is satisfied. In fact the condition remains satisfied independent of

the values of the tearing parameters ti, which immediately guarantees stability of the

interconnection of any number of generating areas with homogenous dynamics. In the

heterogenous case stability is guaranteed by testing each circuit individually (each is a

local test based only on the dynamics of a pair of control areas and the transmission

line connecting them).

distances from the foci to any point on the curve is constant.
This distance is termed the major axis length.
Consider again the circuit in fig. 4. To construct the scal-

able Nyquist plot draw an ellipse at every frequency with foci
at the origin and at

L (!) ,
P2

k=1 tkZak (!)

Zb (!)
, [7]

with major axis length

a (!) ,
P2

k=1 |tkZak (!)|
|Zb (!)|

. [8]

Provided the scalable Nyquist plot for every circuit lies to
the right of a single line through the �1 point, then their in-
terconnection is guaranteed to be stable. Observe that the
nonzero focus is exactly the Nyquist plot for the circuit. Thus
the scalable Nyquist plot can be viewed as a slightly enlarged
Nyquist plot, and all the usual ‘design principles’ continue to
apply. The steps for constructing the scalable Nyquist plot
are illustrated through figs. 6 and 7.
Consider again the simple electrical power system model

consisting of two identical generating areas connected by a
single transmission line. In this case stability of the model
can be checked using the Nyquist stability criterion. Thus
provided the Nyquist plot of

L (!) =

q
1� (P0Xb)

2

Xb

✓
t1 + t2

j!Da � !2Ma

◆

makes no net encirclements of the �1 point, the power system
model is stable. The required Nyquist plot for some typical
parameter values (from [11, chapter 3]) is shown in fig. 8.
Superimposed on this plot is the scalable Nyquist plot. The

scalable Nyquist plot lies to the right of a straight line through
the �1 point. This not only implies that this single circuit is
stable, but also that any interconnection of control areas with
frequency response

Z (!) =
k

j!Da � !2Ma
,

where k is a positive constant is also stable! For the case of the
classical model of electrical power systems this has been know
for many years. However the generality of our approach allows
even the most sophisticated power systems models to by inves-
tigated in the same way. There is for example no di�culty in
considering the standard models used in small signal stability
studies which include voltage dynamics, reactive power flows
and fast acting control systems such as automatic voltage reg-
ulators. It is in fact possible to avoid almost all time scale
separation arguments, and even model each transmission line
as a fully distributed system. This is the subject of ongoing
work, however stability of the benchmark power system model
from [14] which includes detailed generator and load models
can be verified in this way.

Popov stability criterion.The Popov stability criterion can be
used to determine stability of the circuit in fig. 4 where Za1 (!)
and Za2 (!) are described by frequency responses, and Zb by
a static nonlinear map with slope greater than some positive
number c. The Popov criterion is based on a graphical con-
struction termed the Popov plot. The Popov plot of a function
f (!) is similar to the Nyquist plot, however the real part of
f (!) is drawn against the imaginary part multiplied by !.
This is equivalent to drawing the Nyquist plot of

f⇤ (!) = Re {f (!)}+ j!Im {f (!)} ,
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where Re {f (!)} and Im {f (!)} give the real and imaginary
part of f (!), and j =

p
�1. Define

P (!) ,
P2

k=1 Re {tkZak (!)}+ j!Im {tkZak (!)}
c

, [9]

The Popov criterion states that the circuit is stable if the
Nyquist plot of P (!) lies to the right of a line through the �1
point. Just as with the Nyquist stability criterion the Popov
plot can be used as a basis for design, indicating how param-
eters in the frequency responses of the lumped elements can
be ‘tuned’ to guarantee robust stability of the circuit.

Scalable Popov Criterion.We extend the Popov criterion to
guarantee stability of the interconnection of circuits through
a scalable Popov plot. This plot is constructed in an analo-
gous manner to the scalable Nyquist plot by drawing ellipses
with foci at the origin and at

P (!) ,
P2

k=1 Re {tkZak (!)}+ j!Im {tkZak (!)}
c

, [10]

and with major axis length

b (!) ,
P2

k=1 |Re {tkZak (!)}+ j!Im {tkZak (!)}|
c

. [11]

The positive constant c gives a lower bound on the slope of
Zb for the given circuit. Provided the scalable Popov plot
for every circuit lies to the right of a single line through the
�1 point, then their interconnection is guaranteed to be sta-
ble. The nonzero focus P (!) is exactly the Popov plot, thus
the scalable Popov plot can be viewed as a slightly enlarged
version.

Consider again the simplest instance of the distributed opti-
misation example consisting of two users connected by a single
route. Additionally assume that the route cost is given by

 (f) =
f

µ (µ� f)
,

where µ > 0. This cost gives the expected service time of an
M/M/1 queue with poisson distributed arrival times and expo-
nentially distributed service times with rates f and µ respec-
tively (in this case the optimisation problem is to determine
how to assign flows to queues to minimise the total expected
waiting time). If this is the case then the slope ofr is greater
than 2

µ3 . Thus provided the Nyquist plot of

P (!) =
µ3

2

✓
j

Ca1
+

j
Ca2

◆

lies to the right of a line through the �1 point, stability (and
hence convergence of the algorithm) is guaranteed through the
Popov criterion. This is trivially satisfied in this case for any
value of the parameters. Further as the scalable Popov plot
just consists of a subset of the imaginary axis any possible
interconnection of such circuits (corresponding to adding ad-
ditional routes) is also guaranteed to be stable.

The true power of our result is to be able to guarantee sta-
bility when the users have more realistic frequency responses
(note the slightly counterintuitive suggestion from the previ-
ous analysis that we may use arbitrarily small capacitances).
Supposing for example that the users obtained delayed and
filtered information about the flow along the route, an appro-
priate frequency response might be

Za (!) =
e�j!Ta

j!Ca (1 + j!�a)
,

Im

Re −1

Ta/βa

βa

Ca

Fig. 9. The left part of the figure shows the scalable Popov plots for the dis-

tributed optimisation example for two di↵erent values of delay and capacitance (but

identical �a). If the capacitance is too small or the delay too large the plot fails to

lie to the right of line through the �1 point. This tradeo↵ is illustrated in the right

part of the figure, with the shaded region showing the parameter values satisfying

the criterion. In the heterogenous case stability is guaranteed by testing each circuit

individually (each is a local test based only on the dynamics of a pair of users areas

and the route connecting them).

where Ta corresponds to the delay and �a a smoothing pa-
rameter. Even in the case when users have identical frequency
responses stability would be di�cult to verify using standard
techniques, yet distributed stability guarantees can be quickly
obtained using our conditions. This is illustrated in fig. 9.
Observe that we now have a tradeo↵ between delay time and

Zb

t1Za1

t2Za2

t3Za3

tnZan

Fig. 10. Structure of a fundamental circuit. Any network representable by a

linear graph may be decomposed into a set of circuits with this structure by tearing

the edges in some spanning tree. Applying the analysis tools from the previous section

to this set of circuits guarantees stability of the (interconnnected) network model.

a

d

b

c
c

d

a

b

t

Fig. 11. Illustration of the structured network decomposition. The elements

shaded in grey form a spanning tree. The fundamental circuits correspond to those

formed by the reintroduction of a single element shaded in white. The network can

be split apart on this basis by tearing the elements in the spanning tree as required.

8At least from the mathematical perspective, see the discussion in [15, chapter 16].
9Though both network models will not be representable as linear graphs unless the graphs are planar
[16]. There is however no di�culty in extending our results to the situation where the structure of
the physical laws is described by a regular matroid (where indeed neither analogy need be graphic),
as opposed to a linear graph (c.f. the generalised electrical networks in [17]).
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Return Ratio of form GA

So, what’s going on?

G =

2

6664

g1 0 . . . 0
0 g2
...

. . .
0 . . . gn

3

7775
, [A]ij 2 <

If A = AT > 0 then

�(GA) 2 Co{gi}⇢(A) e.g. V (2000)

If g1 = g2 = · · · = gn = g then

�(GA) = g�(A) e.g. Fax & Murray (2001)

e.g A = R diag{li}RT
or A = a Laplacian (consensus

problems).



Can these be put together?

AGv = �v

Gv = A�1v

=) v⇤Gv = �v⇤A�1v

So W (G) \W (A�1) = ; =) no eigenvalue at �

(where W (X) =
n

v⇤Xv
v⇤v : v 2 Cn, v 6= 0

o

)

also

v⇤G⇤Gv = �2v⇤A�⇤A�1v

So DW (G) \ DW (A�1) = ; =) no eigenvalue at �
([Jönsson and Kao 2010, Lestas 2012])

(where DW (X) =
n

< v⇤Xv
v⇤v ,= v⇤Xv

v⇤v , v⇤X⇤Xv
v⇤v : v 2 Cn, v 6= 0

o

)

Also

DW (G) \DW (A�1) = ; () DW (G�1) \DW (A) = ;



What about neighbouring dynamics

Could consider

p
GA

p
G, but strongest results are in

the bipartite case:

e.g. G = diag(f1, f2, . . . , h1, h2, . . .) A = [0 R;RT
0],

Aij 2 {�1, 0, 1}

�
�
diag(gi)R

T
diag(hi)R

�
⇢ Co{mihiS(njgj : Rij 6= 0)}

where S(X) = Co(

p
X)

2 [V (2002), Lestas & V (2006)]



A better result is

�

�
diag(gi)R

T
diag(hi)R

�
⇢ Co{hiE(njgj : Rij 6= 0)}

where E(xi) is ellipse with foci 0,

P
xi and major axisP

|xi|. [Pates & V (2012)]

proof :

etc

�
�
diag(gj)R

T diag(hi)R
�
= �

�
diag(

p
gj)R

T diag(hi)R diag(
p
gj)
�

= �

 
X

i

diag(
p
gj)R

T
i·hiRi· diag(

p
gj)

!



Open question: Local conditions for eigenvalue locations
Richard Pates & Glenn Vinnicombe

G =

2

6664

g1 0 . . . 0
0 g2
...

. . .
0 . . . gn

3

7775
, [A]ij 2 {0,�1, 1}

Identify A with the adjacency matrix of a directed graph,

with gi 2 C labelling the nodes and Rij labelling the edges.

What can we say about the �(GA) in terms of local in-

formation about the cycles of A (including those of length

2)?



Feedback networks with dynamic agents

y2

y3y2

y4

g1

g2

g3g4g5
g6

g7

Each vertex: stable linear dynamical system gi.

yi(·) = gi ◦ui(·)

Input: average of the signals from its neighbours.

ui(t) =
1

Ni

∑

i,k connected

yk(t)

Each node knows all cycles it participates in, and for

each of those cycles gi, Aij , ni along that cycle.

Is it possible, for some region B, to come up with a

yes/no question such that if all nodes say "yes", based on

their local information, then �(GA) 2 B?

What is the smallest B (and associated question).

A4,2



What we know (bipartite & symmetric)
If

G = diag(f1, f2, . . . , h1, h2, . . .), A = [0R;R

T
0], Aij 2 {0, 1}

� (GA)

2 ⇢ Co{fiE(njhj : Rij 6= 0)}

where E(xi) is ellipse with foci 0,

P
xi and major axisP

|xi|, nj = in-degree of node hj .

For B being the region to the right of a given line

through �1,
and question is "does your ellipse lie in B.

If all answer "yes", then �(GA) 2 B
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Fig. 6. An ellipse in the complex plane with foci at the origin and at x+ y. The

sum of the distances from the foci to any point on the ellipse, termed the major axis

length, is |x| + |y|. The scalable Nyquist plot is constructed by drawing an ellipse

with this structure at every frequency.

Im

Re

Fig. 7. Sketch of the construction of the scalable Nyquist plot. At every fre-

quency an ellipse with major axis length given by eq. (8) is superimposed on the

‘usual’ Nyquist plot (given by eq. (7)).

Scalable Nyquist criterion.While the Nyquist criterion can
guarantee the stability of a single circuit, it does not guaran-
tee stability of the interconnection of multiple circuits, even if
they each individually satisfy the Nyquist criterion. Our main
contribution is showing that if slightly stronger condition is
satisfied, then stability of the interconnection of multiple cir-
cuits is guaranteed.
Just as with the Nyquist criterion, the scalable criterion is

based on a graphical construction which we term the scalable
Nyquist plot. This plot is based on drawing ellipses, so let us
first review the relevant geometry. An ellipse is a curve sur-
rounding two points, termed the foci, such that the sum of the

θ

−k

Im

Re

Area 1

Area 2

Area 3

Area 4 Area 5

Arbitrary Interconnection

of Areas

Fig. 8. The left part of the plot shows the Nyquist plot (black curve) for the

simple power system example, with the scalable Nyquist plot superimposed on top

(grey area). As the scalable plot lies to the right of a line through the �1 point the

scalable condition is satisfied. In fact the condition remains satisfied independent of

the values of the tearing parameters ti, which immediately guarantees stability of the

interconnection of any number of generating areas with homogenous dynamics. In the

heterogenous case stability is guaranteed by testing each circuit individually (each is a

local test based only on the dynamics of a pair of control areas and the transmission

line connecting them).

distances from the foci to any point on the curve is constant.
This distance is termed the major axis length.
Consider again the circuit in fig. 4. To construct the scal-

able Nyquist plot draw an ellipse at every frequency with foci
at the origin and at

L (!) ,
P2

k=1 tkZak (!)

Zb (!)
, [7]

with major axis length

a (!) ,
P2

k=1 |tkZak (!)|
|Zb (!)|

. [8]

Provided the scalable Nyquist plot for every circuit lies to
the right of a single line through the �1 point, then their in-
terconnection is guaranteed to be stable. Observe that the
nonzero focus is exactly the Nyquist plot for the circuit. Thus
the scalable Nyquist plot can be viewed as a slightly enlarged
Nyquist plot, and all the usual ‘design principles’ continue to
apply. The steps for constructing the scalable Nyquist plot
are illustrated through figs. 6 and 7.
Consider again the simple electrical power system model

consisting of two identical generating areas connected by a
single transmission line. In this case stability of the model
can be checked using the Nyquist stability criterion. Thus
provided the Nyquist plot of

L (!) =

q
1� (P0Xb)

2

Xb

✓
t1 + t2

j!Da � !2Ma

◆

makes no net encirclements of the �1 point, the power system
model is stable. The required Nyquist plot for some typical
parameter values (from [11, chapter 3]) is shown in fig. 8.
Superimposed on this plot is the scalable Nyquist plot. The

scalable Nyquist plot lies to the right of a straight line through
the �1 point. This not only implies that this single circuit is
stable, but also that any interconnection of control areas with
frequency response

Z (!) =
k

j!Da � !2Ma
,

where k is a positive constant is also stable! For the case of the
classical model of electrical power systems this has been know
for many years. However the generality of our approach allows
even the most sophisticated power systems models to by inves-
tigated in the same way. There is for example no di�culty in
considering the standard models used in small signal stability
studies which include voltage dynamics, reactive power flows
and fast acting control systems such as automatic voltage reg-
ulators. It is in fact possible to avoid almost all time scale
separation arguments, and even model each transmission line
as a fully distributed system. This is the subject of ongoing
work, however stability of the benchmark power system model
from [14] which includes detailed generator and load models
can be verified in this way.

Popov stability criterion.The Popov stability criterion can be
used to determine stability of the circuit in fig. 4 where Za1 (!)
and Za2 (!) are described by frequency responses, and Zb by
a static nonlinear map with slope greater than some positive
number c. The Popov criterion is based on a graphical con-
struction termed the Popov plot. The Popov plot of a function
f (!) is similar to the Nyquist plot, however the real part of
f (!) is drawn against the imaginary part multiplied by !.
This is equivalent to drawing the Nyquist plot of

f⇤ (!) = Re {f (!)}+ j!Im {f (!)} ,
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