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Complex Energy Systems

Power Grids

Power Grids = the
greatest engineering
achievement of
20th century [IEEE]

Require smart
revolution in 21th
century
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Gas Grids

“smart grids” are not limited to power, should
also include other energy grids, e.g. gas grids

gas networks are younger and less mature

gas use is expected to grow

energy grids = electric+gas+heat

Energy Hubs (local)

Energy Interconnections (long distance)

Vision of Future Energy Networks (green field)
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Theme(s) of the talk

Power and Gas Grids = Basic Energy Grids

Fluctuations & perturbances test the grids

Calling for new measures and understanding of reliability

Need to deal with emerging interdependencies

power grids gas grids
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Outline

Power System Reliability: from Instanton to Chance Constrained OPF

Gas System Reliability: from OGF to controlling pressure fluctuations

Fault Induced Delayed Voltage Recovery: a power distribution trouble
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Power System Reliability: from Instanton to Chance Constrained OPF

Instantons = Probabilistic Measure of Uncertainty

Reliability Measure of Power System Under Uncertainty

Stochastic/uncontrollable participants
(e.g. renewables) fluctuate

Just the standard ”N-1”-security gives no
guarantees under uncertainty

Instanton1

Instanton2

Instanton3

Instantons in Power Systems: MC, F. Pan, M. Stepanov (2010); MC, FP, MS, R.
Baldick (2011); S.S. Baghsorkhi, I. Hiskens (2012)

C

N-1 violations

Controllable resources
  - Dispatchable generation
  - DC line/ties, switching
  - Direct load control/Storage

Stochastic resources
  - Wind/PV generation
  - Price-based DR
  - Dist. enery resources

d
d

Control action in C modi�es the 
security boundary in S reducing the 
risk of failure below a threshold level.
 

Instanton directions Security boundary

P(d)=Joint probability distribution 
of forecast errors.  
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Power System Reliability: from Instanton to Chance Constrained OPF

Instantons = Probabilistic Measure of Uncertainty

Reliability Measure of Power System Under Uncertainty

C

N-1 violations

Controllable resources
  - Dispatchable generation
  - DC line/ties, switching
  - Direct load control/Storage

Stochastic resources
  - Wind/PV generation
  - Price-based DR
  - Dist. enery resources

d
d

Control action in C modi�es the 
security boundary in S reducing the 
risk of failure below a threshold level.
 

Instanton directions Security boundary

P(d)=Joint probability distribution 
of forecast errors.  

Step one (distance to failure): compute the instantons to find the total
probability of stochastic failure = Pfail
Step two: if Pfail > threshold re-dispatch controllable resources so that
Pfail < threshold at minimum cost

Step two — can be built in real-time operations

e.g. E. Karangelos, P. Panciatici, L. Wehenkel, Whither probabilistic security
management for real-time operation of power systems?, IREP 2013
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

Chance Constrained Re-dispatch

Or ... instead of Steps one and two one can follow another path ⇒
Incorporate probabilistic security directly into optimization
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

Chance Constrained Re-dispatch

Or ... instead of Steps one and two one can follow another path ⇒
Incorporate probabilistic security directly into optimization

D. Bienstock, MC, S. Harnett (Columbia/LANL) SIAM Review, Aug 2014

R. Bent, DB, MC http://arxiv.org/abs/1306.2972

CC-OPF = make sure that generation is re-dispatched at minimum cost such
that ∀failures : Pfailure < threshold

Related, independent work

E. Sjodin, D. F. Gayme and U. Topcu, Risk-Mitigated Optimal Power Flow for
Wind Powered Grids, ACC 2012.

L. Roald, F. Oldewurtel, T. Krause and G. Andersson, Analytical Reformulation
of Security Constrained Optimal Power Flow with Probabilistic Constraints,
Proceedings of the Grenoble PowerTech, Grenoble, France, June 2013.

M. Vrakopoulou, K. Margellos, J. Lygeros and G. Andersson, A Probabilistic
Framework for Reserve Scheduling and N-1 Security Assessment of Systems with
High Wind Power Penetration, to appear IEEE Transactions on Power Systems.

http://arxiv.org/abs/1306.2972
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

Standard re-dispatch = Optimum Power Flow

Constrained (thermal + generation limits) OPF

min
p,θ

c(p)︸︷︷︸
cost of

generation

∣∣∣∣∣ Bθ = p − d [Power flows]
βij (θi − θj ) ≤ uij , ∀(i , j) [Thermal limits]
Pmin
g ≤ pg ≤ Pmax

g , ∀g [Generation constraints]

p = vector of generations ∈ Rn, d = vector of loads ∈ Rn

B ∈ Rn×n −− bus susceptance matrix

also called tertiary
control; done by SO
every 5-30 min

DC -approximation
[AC-generalizable]

may also account for
“standard” security (list
of contingencies)



Complex Energy Systems

Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

How does OPF handle (renewable) fluctuations?

Automatic frequency control: primary [seconds] + secondary [AGC, 1-2 minute]

Generator output varies up or down proportionally to aggregate change

Experiment: Bonneville Power Administration data, Northwest US

data on wind fluctuations
at planned farms

with standard OPF, 7
lines exceed limit ≥ 8%
of the time
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

Want to improve the standard OPF

standard automatic control [affine, possibly changing rates]

aware of security (limits)

not too conservative

computationally practicable
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

OPF vs Chance Constrained-OPF

Standard OPF (Dispatch for the mean forecast, not aware of fluctuations)

minp c(p)︸︷︷︸
cost of generation

∣∣∣∣∣∣
Power Flow Eqs.
Generation limits

Power Flow Thermal Limits

Chance Constrained OPF (fluctuations aware dispatch)

minp̄,α E [c(p̄, α)]

∣∣∣∣∣∣
Power Flow Eqs. [for mean forecast]
Chance Constraints for Generation
Chance Constraints for line Flows

Chance Constraints for Line Flows:
∀(i , j) ∈ E : Prob(|fij | > f max

ij ) < εij .
Interpretation: overload is allowed for ε-fraction of “time”.

p̄ - generation re-dispatch for beginning of the period; α -
proportional rates for the period
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

Chance Constrained OPF (fluctuations aware dispatch)

minp̄,α E [c(p̄, α)]

∣∣∣∣∣∣
Power Flow Eqs. [for mean forecast]

Generation satisfies Chance Constraints
Line Power Flows satisfy Chance Constraints

Chance Constraints for Line Flows:
∀(i , j) ∈ E : Prob(|fij | > f max

ij ) < εij

CC-OPF detailed formulation

More Technical Details [it is NOT sampling/MCMC]

Assuming site-independent, Gaussian fluctuations enables explicit
evaluation [formula] of chance constraints for given p̄, α

The resulting (after averaging) problem is a convex (conic)
optimization [details]

Constraint violations are few/sparse. Cutting Plane method
greatly speeds up the optimization [details]
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

Back to motivating example

BPA case

standard OPF: cost 235603, 7 lines unsafe ≥ 8% of the time

CC-OPF: cost 237297, every line safe ≥ 98% of the time

run time = 9.5 seconds (one cutting plane!)
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

Back to motivating example

BPA case

standard OPF: cost 235603, 7 lines unsafe ≥ 8% of the time

CC-OPF: cost 237297, every line safe ≥ 98% of the time

run time = 9.5 seconds (one cutting plane!)

Experiments with CC-OPF

CC-OPF succeeds where standard OPF
fails

Cost of Reliability [CC-OPF saving over
standard OPF]

CC-OPF is not a naive fix. [Changes are
nonlocal]

...
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

Performance of the Method

Performance of cutting-plane method on a number of large cases.

Case Buses Generators Lines Time (s) Iterations Barrier iterations

BPA 2209 176 2866 5.51 2 256
Polish1 2383 327 2896 13.64 13 535
Polish2 2746 388 3514 30.16 25 1431
Polish3 3120 349 3693 25.45 23 508

Rapid convergence on realistic networks

Typical convergence behavior of cutting-plane algorithm on a large instance.

Iteration Max rel. error Objective
1 1.2e-1 7.0933e6
4 1.3e-3 7.0934e6
7 1.9e-3 7.0934e6

10 1.0e-4 7.0964e6
12 8.9e-7 7.0965e6

details
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

Enhancements of CC-OPF

Out of Sample Tests – can handle either of the two cases

True distribution is non-Gaussian, but our Gaussian distribution is close

Parameters of the Gaussian distributions, µi , σ
2
i are mis-estimated

details

Robust (ambigious) CC-OPF

CC-OPF which is robust with respect to parameters of the Gaussian distribution
from a range

Allows convex tractable reformulation

“Non-linear” OPF & sync-CC OPF [R. Bent, D. Bienstock, MC 2013]

Convex AC-OPF (losseless, constant voltage - based on an exercise from Boyd,

Vandenberghe [book] details )

Synchronization constrained CC-OPF (based on MC work with F. Dorfler & F.

Bullo [PNAS, 2013] details )

Voltage constraints — work in progress
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

Summary (CC-OPF) + Extensions:

DC PF + affine control + independent fluctuations ⇒ conic (tractable)
optimization

Specialized cutting-plane algorithm proves effective

Commercial solvers do not

Algorithm efficient even in cases with thousands of buses/lines

Algorithm can be made robust with respect to data errors

Allows to account for synchronization constraints

Path Forward (work in progress)

AC generalizations, convexifications (e.g. FDPF, Energy Function based appr.)

Ramp Constraints

Multi-stage CC-OPF

combined CC-OPF & Unit Commitment
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Power System Reliability: from Instanton to Chance Constrained OPF

Chance Constrained Optimum Power Flows

Consider CC-OPF, or other type of dispatch, responding to
uncertainty/wind

Gas turbines [fast to ramp up/down, relatively clean] are

producers of electricity: follow wind
consumers of gas: inducing/transfering fluctuations/stress to
the gas network

Study interdependencies ...

Start from analysis of gas system under uncertainty (e.g. caused by
the wind-induced correlations)



Complex Energy Systems

Gas System Reliability: from OGF to controlling pressure fluctuations

2 min crash course on the hydro (gas) dynamics

single pipe; not tilted (gravity is ignored); constant temperature

ideal gas, p ∼ ρ – pressure and density are in a linear relation

all fast transients are ignored – gas flow velocity is significantly slower than the
speed of sound, u � cs

turbulence is modeled through turbulent friction; mass flow, φ = uρ, are
averaged across the pipe’s crossection

∂tρ+ ∂x (uρ) = 0︸ ︷︷ ︸
conservation of mass

∂t(ρu) + ∂x (ρu2) + ∂xp = −
ρu|u|
2D

f︸ ︷︷ ︸
conservation of energy


≈⇒

c−2
s ∂tp + ∂xφ = 0︸ ︷︷ ︸

conservation of mass

∂xp
2 +

β

D
φ|φ| = 0︸ ︷︷ ︸

conservation of energy

Approximations ... allowing to resolve flows analytically (lamp description)

Stationary, balanced regime [standard]

φ = const, p2
in − (p(x))2 = xβφ|φ|/D

Unbalanced, linearized line-pack [non-standard]

φ = φst(x) + δφ(t, x), p = pst(x) + δp(t, x)
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Gas System Reliability: from OGF to controlling pressure fluctuations

Gas Flows. Steady (balanced) Case.

without compressors, αij = 1

Gas Flow Equations: (
∑

i qi = 0, aij = Lijβij/Dij )

∀(i , j) : p2
i − p2

j = aijφ
2
ij

∀i : qi =
∑

j :(i,j)∈E φij −
∑

j :(j,i)∈E φji
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Gas System Reliability: from OGF to controlling pressure fluctuations

Gas Flows. Steady (balanced) Case.

with compressors, αij ≶ 1
Gas Flow Equations: (

∑
i qi = 0, aij = Lijβij/Dij )

∀(i , j) : α2
ij =

p2
j +(1−r)aijφ

2
ij

p2
i −raijφij |φij |

∀i : qi =
∑

j :(i,j)∈E φij −
∑

j :(j,i)∈E φji
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Gas System Reliability: from OGF to controlling pressure fluctuations

Optimal Gas Flow

Minimizing the cost of compression (∼ work applied externally to compress)

min
α,p

∑
(i,j)

cijφij

ηij

(
αm
ij − 1

)+
∣∣∣∣
∀(i , j) : α2

ij =
p2
j +(1−r)aijφ

2
ij

p2
i −raijφ

2
ij

∀i : 0 ≤ p
i
≤ pi ≤ pi

∀(i , j) : αij ≤ αij

0 < m = (γ − 1)/γ < 1, γ- gas heat capacity ratio (thermodynamics)

The problem is convex on trees (many existing gas transmission systems are
trees) ⇐ through GeometricProgramming (log-function transformation)

S. Misra, M. W. Fisher, S. Backhaus, R. Bent, MC, F. Pan, Optimal
compression in natural gas networks: a geometric programming approach, IEEE
TCNS 2014
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Gas System Reliability: from OGF to controlling pressure fluctuations

OGF experiments (Transco pipeline)
Dynamic Programming
of (Wong, Larson ’68)

Geometric Programming
(ours)

Greedy Compression
(current practice)

GP is advantageous over DP

Exact = no-need to discretize.

Faster. Allows distributed (ADMM) implementation.

Convexity is lost in the loopy case. However, an efficient heuristics is available.
[work in progress]

This is only one of many possible OGF formulations. Another
(Norvegian/European) example – maximize throughput.

Major handicap of the formulation (ok for scheduling but) = did not account for
the line pack (dynamics/storage in lines for hours) ⇒
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Gas System Reliability: from OGF to controlling pressure fluctuations

Dynamic Gas Flows (with Line Pack) – Formulation

Steady (balanced) continuous profile  
of gas injection/consumption 

𝑞𝑠𝑠(𝑥) 

q(t, x) = qst(x) + ξ(t, x), ξ(t, x)� qst(x)

qst(x) is the forecasted

consumption/injection of gas

ξ(t, x) actual fluctuating/random profile of

consumption/injection, e.g. fluctuations

due to gas power plants following wind

turbines

One dimensional (1+1) model –
distributed injection/consumption and
compression

mass balance:
c−2
s ∂tp + ∂xφ = −q(t, x)

energy balance:

∂xp + β
2d
φ|φ|
p

= γ(x)p

γ(x) – distributed compression –
assumed known

generalized to an arbitrary graph

S. Backhaus, MC, and V.
Lebedev, PNAS submitted

Describe spatio-temporal fluctuations of actual pressure (unbalanced/line
pack) on the top of the steady/optimized/inhomogeneous forecast
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Gas System Reliability: from OGF to controlling pressure fluctuations

Dynamic Gas Flows (with Line Pack) – Solution

Analytic expressions for the line pack – assuming δp(t)� pst , |δφ| � |φst |

analytical (!!) solution:

δp(t, x) ≈ −Z(x)
c2
s

LY

∫ t
0 dt′

∫ L
0 dx ξ(t′, x)

Z(x) = exp
(∫ x

0 dy βφst (y)|φst (y)|
d p2

st

)
, Y =

∫ L
0 dx Z/L

δp(t, x) is random zero mean Gaussian

line pack jitters = grows “diffusively” with time

the growth rate of the pressure fluctuations, ∼ Z(x), is
non-uniform, depends (only) on the stationary solution

E
[
δp(t, x)2

]
→ c4

s τ t

L2

(
Z(x)
Y

)2 ∫∫ L
0 dx1 dx2E [ξ(t, x1)ξ(t, x2)]

... all of the above is true ...

When either correlation time or correlation scale of ξ(t, x) is sufficiently short,
i.e. τ � T (say minutes vs hours) or l � L (say 10km vs 1000km)

and ξ(t, x) is zero mean and statistically stationary
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Gas System Reliability: from OGF to controlling pressure fluctuations

Spatially Inhomogeneous Line Pack Jitter

E
[
δp(t, x)2

]
→ c4

s τ t

L2

(
Z(x)
Y

)2 ∫∫ L
0 dx1 dx2E [ξ(t, x1)ξ(t, x2)]

Local maxima at the points of flow reversals

0.2 0.4 0.6 0.8 1.0

-6

-4

-2

2

4

0.2 0.4 0.6 0.8 1.

1.05

1.1

1.15

1.2

1.25

1.3 ∼ Z2(x) [controlling the “frozen” part of
the pressure covariance] is shown

qst(x) is shown in inset – distributed
injection/consumption,
qst(0) = qst(L) = 0

γ(x) is chosen to get pst = const

Injection on two sides of the pipe
enhancement and shift of the maximum

0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.

1.05

1.1

1.15

1.2

1.25

uniform consumption

0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.

1.1

1.2

1.3

1.4

inhomogeneous consumption



Complex Energy Systems

Gas System Reliability: from OGF to controlling pressure fluctuations

Re-cap of the OGF & pressure reliability studies

Geometric programming offers an efficient way of solving the
steady/balanced OGF over tree structures

Dynamic and stochastic GF (with line pack) is solved perturbatively.
Shows diffusive, spatially inhomogeneous line pack jitter –
extremal at the points of the flow reversal.

Path Forward

Steady OGF over graphs with loops

Other OGF formulations, e.g. max-throughput

Generalize stochastic-line-pack-GF to discrete models with loops

Extend it to reliability-aware stochastic and non-stationary
optimizations
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Gas System Reliability: from OGF to controlling pressure fluctuations

Fluctuations in power sources (renewable and interdependencies)
lead to more frequent (then in the past) interruptions

In particular voltage faults

Cleared faults do not cause major direct effect on balanced
transmission

However, ...

the faults (in spite of being cleared fast) may be of high risks for
power distribution
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Fault Induced Delayed Voltage Recovery: a power distribution trouble

Recordered Distribution/Transmission Voltage Events

TVA. Blistering Sat of Aug 22, 1987. Cascading Voltage Collapse in West Tennissee. Fault at 115KV
switch. Cleared in 1s. Continued into 161KV and 500KV lines for 10-15s. Resulted in the loss of 700MW in
Memphis. Motor loads stalled and drawn large amount of reactive power even after the fault was cleared.

1988 event in Florida reported in ”Air Conditioner Respond to Transmission Fault” by J. W. Shaffer in 1997
... ”In the last ten years there have been at least eight events in which normally cleared (in 2-3 cycles)
multi-phase events in Southern Florida have caused a significant drop in customer load (200-825MW).”

1990 Egypt ... 1999 metro area Atlanta, Arizona, Southern California ... NERC Planning Committee White
Paper on ”Fault Induced Delayed Voltage Recovery” by Transmission Issues Subcommittee

delays (between cause and the result)

nonlinearity of loads plays a significant role

many inductive motors simultaneously affected

initiated (fault) at the
transmission-to-distribution interface, maturates
within distribution, cascades into transmission

Typical FIDVR Following a 230-kV Transmission

Fault in Southern California
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Fault Induced Delayed Voltage Recovery: a power distribution trouble

Modeling extended FIDVR C.Duclut, S.Backhaus & MC (PRE ’12)

courtesy of D. Kostyrev and B. Lesieutre

Observed in feeders with many induction
motors (air-conditioning)

Uncontrolled depressed voltage can
spread causing a larger outage

Hypothesis (Hiskens, Lesieutre, Chassin,
· · · ): the events are caused by many air
conditioners stalled

Modeling the event is a challenge

Our Contribution - Modeling of FIDVR over extended feeder

Observation (simulations – consistent with measurements): soliton-like
propagation of “stalled” phase/front

Coarse-grained (reduced) PDE modeling of the “extended” FIDVR
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Fault Induced Delayed Voltage Recovery: a power distribution trouble

Individual Motor. Two bus. Hysteresis.

Modeling Individual Motor Popovic, Hiskens, Hill ’98
minimal model of the motor

Inductive Motor 

ground 

P =
sRmv2

R2
m + s2X 2

m

Q =
s2Xmv2

R2
m + s2X 2

m

M
d

dt
ω =

P

ω0
− T0(ω/ω0)α (dynamics)

s = 1− ω/ω0

s is the slip against the base frequency)

v is the voltage at the motor

P,Q are real and reactive power consumed by the motor

T0, α torque constant and scaling coefficient

Rm,Xm resistance and inductance of the motor

Explanation for “lumped” FIDVR

Hysteresis: The motor is trapped in the stalled (low-voltage) state!

First order phase transition. Bifurcation (stability). Spinodal points.
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Fault Induced Delayed Voltage Recovery: a power distribution trouble

Individual Motor. Two bus. Hysteresis.

Modeling Individual Motor Popovic, Hiskens, Hill ’98
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dt
ω =
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− T0(ω/ω0)α (dynamics)

s = 1− ω/ω0

s is the slip against the base frequency)

v is the voltage at the motor

P,Q are real and reactive power consumed by the motor

T0, α torque constant and scaling coefficient

Rm,Xm resistance and inductance of the motor

Explanation for “lumped” FIDVR

Hysteresis: The motor is trapped in the stalled (low-voltage) state!

First order phase transition. Bifurcation (stability). Spinodal points.
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Fault Induced Delayed Voltage Recovery: a power distribution trouble

Feeder with Many Distributed Motors

Feeder with Many (distributed) Inductive Motors

)(),( zz 

)(zp

)0(v )(Lv

Spatially-continuous version of
Dist.Flow [Baran, Wu (1989)]

∂zρ = −p − r
ρ2 + φ2

v2

∂zφ = −q − x
ρ2 + φ2

v2

v∂zv = −(rρ+ xφ)

p =
srmv2

r2
m + s2x2

m

q =
s2xmv2

r2
m + s2x2

m

µ
d

dt
ω =

p

ω0
− τ0

(
ω

ω0

)α
v(0) = 1, ρ(L) = φ(L) = 0

Reduced model of the “extended” feeder

Easy to analyze dynamics: PDE.
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Fault Induced Delayed Voltage Recovery: a power distribution trouble

Feeder with Many Distributed Motors

Dynamics/Transitions in an Extended Feeder (I)

Example of a Large Fault → feeder is stalled (Movie Large Fault)

(a) (b) (c) (d)

(a) Pre fault

(b) Immediately past fault

(c) Later in the process

(d) The feeder is fully stalled
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Fault Induced Delayed Voltage Recovery: a power distribution trouble

Feeder with Many Distributed Motors

Dynamics/Transitions in an Extended Feeder (II)

Example of a Small Fault → feeder is partially stalled (Movie Small Fault)

(a) (b) (c) (d)

(a) Immediately past fault

(b) Later in the process

(c) Front advances

(d) Stabilized, part. stalled

dynamics of restoration
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Fault Induced Delayed Voltage Recovery: a power distribution trouble

Re-cap of the “extended” FIDVR story

The 1+1 (space+time) continuous model of distribution

Integrating multiple bi-stable individual motors into power flow

Emergence of multiple spatially-extended states/transitions

Conclusions Drawn from Experiments/Numerics concern

Hysteresis

Self-Similar Transients

... to be done ...

Inhomogeneity (disorder), stochasticity (noise): what is the probability that the
feeder with a given level of disorder will recover?

Effects of other devices, e.g. distributed generation and control (PV) ...

Possible cascade – from feeder to feeder (within substation) ... to transmission

What is the least control effort needed to avoid a FIDVR event/cascade

following a given type of fault? ⇐ Voltage control through

tap changers, e.g. incorporating in the framework of “primary voltage

control of active distributed networks” by Christakou, Tomozei, Le

Boudec, Paolone (2014)

inverters [distributed power electronics]
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Chance Constrained OPF

New reliability measure for uncertainty –
the instantons

Efficient and Scalable
Chance-Constrained OPF

Gas Reliability with Line Pack

0.2 0.4 0.6 0.8 1.0

-6

-4

-2

2

4

0.2 0.4 0.6 0.8 1.

1.05

1.1

1.15

1.2

1.25

1.3

Geometric/Signomial Programming for
Optimum Gas Flow

Line-Pack Jitter of Pressure Fluctuations

Distributed Fault Induced Delayed Voltage Recovery

Soliton-like front describing FIDVR

PDE approach ⇒ coarse-grained
estimation
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Take Home High-level message illustrated today on a few examples

New Science of Complex Power/Energy System Engineering

Old approach focused on individual devices, deterministic –
remained valid ... but

New complexities (renewables, fluctuations, interdependencies) need
to be controlled through ...

Better understanding of the multi-scale, probabilistic science
(applied physics/math, operation research, other IT disciplines) ...

To enable better practical control and optimization of tomorrow
grids



Complex Energy Systems

Take Home High-level message illustrated today on a few examples

New Science of Complex Power/Energy System Engineering

Old approach focused on individual devices, deterministic –
remained valid ... but

New complexities (renewables, fluctuations, interdependencies) need
to be controlled through ...

Better understanding of the multi-scale, probabilistic science
(applied physics/math, operation research, other IT disciplines) ...

To enable better practical control and optimization of tomorrow
grids

Thank You!
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Appendix: CC-OPF

DC approximation

DC-approximation

(0) The amplitude of the complex potentials are all fixed to the same number
(unity, after trivial re-scaling): ∀a : ua = 1.

(1) ∀{a, b} : |ϕa − ϕb| � 1 - phase variation between any two neighbors on the
graph is small

(2) ∀{a, b} : rab � xab - resistive (real) part of the impedance is much smaller
than its reactive (imaginary) part. Typical values for the r/x is in the
1/27÷ 1/2 range.

(3) ∀a : pa � qa - the consumed and generated powers are mainly real, i.e.
reactive components of the power are much smaller than their real counterparts

It leads to

Linear relation between powers and phases (at the nodes): B̂ϕ = p

Losses are ignored:
∑

a pa = 0

B - graph Laplacian constructed of line susceptances

DC-OPF
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CC-OPF – details

Frequency Control (quasi-static proxy)

For each generator i , two parameters:

pi = mean output

αi = response parameter

Real-time output of generator i :

pi = pi − αi

∑
j

∆ωj

where ∆ωj = change in output of renewable j (from mean).∑
i

αi = 1

∼ primary + secondary control
Chance Constrained OPF
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Appendix: CC-OPF

CC-OPF – details

Computing line flows

wind power at bus i : µi + wi

DC approximation

Bθ = p − d
+(µ+ w − α

∑
i∈G wi )

θ = B+(p̄ − d + µ) + B+(I − αeT )w

flow is a linear combination of bus power injections:

fij = βij(θi − θj)

Chance Constrained OPF
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Appendix: CC-OPF

CC-OPF – details

Computing line flows

fij = βij

(
(B+

i − B+
j )T (p̄ − d + µ) + (Ai − Aj)

T
w

)
,

A = B+(I − αeT )

Given distribution of wind can calculate moments of line flows:

E fij = βij(B
+
i − B+

j )T (p̄ − d + µ)

var(fij ) := s2
ij ≥ β2

ij

∑
k(Aik − Ajk)2σ2

k

(assuming independence)

and higher moments if necessary

Chance Constrained OPF
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Appendix: CC-OPF

CC-OPF – details

Chance constraints to deterministic constraints

chance constraint: P(fij > f max
ij ) < εij and P(fij < −f max

ij ) < εij

from moments of fij , can get conservative approximations using e.g.
Chebyshev’s inequality

for Gaussian wind, can do better, since fij is Gaussian :

|E fij | + var(fij )φ
−1 (1− εij) ≤ f max

ij

Chance Constrained OPF
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CC-OPF – details

Formulation [convex!]:
Choose mean generator outputs and control to minimize expected cost,

with the probability of line overloads kept small.

min
p,α

E[c(p)]

s.t.
∑
i∈G

αi = 1, α ≥ 0

Bδ = α, δn = 0∑
i∈G

pi +
∑
i∈W

µi =
∑
i∈D

di

f ij = βij(θi − θj),
Bθ = p + µ− d , θn = 0

s2
ij ≥ β2

ij

∑
k∈W

σ2
k(B+

ik − B+
jk − δi + δj)

2

|f ij | + sijφ
−1 (1− εij) ≤ f max

ij

Chance Constrained OPF
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Cutting-Plane Method

Cutting-Plane Method

New Solutions still violates conic constraint
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Chance Constrained OPF
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Appendix: CC-OPF

Cutting-Plane Method

Cutting-Plane Method

Separate again
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Chance Constrained OPF
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Appendix: CC-OPF

Cutting-Plane Method

Cutting-Plane Method

We might end up with many linear constraints
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Chance Constrained OPF
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Appendix: CC-OPF

Cutting-Plane Method

Cutting-Plane Method

... which approximate the conic constraint
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Chance Constrained OPF
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Appendix: CC-OPF

Cutting-Plane Method

Polish 2003-2004 winter peak case

2746 buses, 3514 branches, 8 wind sources

5% penetration and σ = .3µ each source

CPLEX: the optimization problem has

36625 variables

38507 constraints, 6242 conic constraints

128538 nonzeros, 87 dense columns

CC-OPF Performance
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Appendix: CC-OPF

Cutting-Plane Method

CPLEX:

total time on 16 threads = 3393 seconds

”optimization status 6”

solution is wildly infeasible

Gurobi:

time: 31.1 seconds

”Numerical trouble encountered”

CC-OPF Performance
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Appendix: CC-OPF

Cutting-Plane Method

Polish 2003-2004 case
CPLEX: “opt status 6”
Gurobi: “numerical trouble”

Example run of cutting-plane algorithm:

Iteration Max rel. error Objective

1 1.2e-1 7.0933e6
4 1.3e-3 7.0934e6
7 1.9e-3 7.0934e6

10 1.0e-4 7.0964e6
12 8.9e-7 7.0965e6

Total running time: 32.9 seconds
CC-OPF Performance
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Appendix: CC-OPF

Cutting-Plane Method

Experiments with CC-OPF (I)

CC-OPF succeeds where standard OPF fails

118-bus case with four wind farms. Standard OPF–Lines
in red exceed their limit 8% or more of the time.
CC-OPF–finds solution with significantly smaller risk of
overload.

Cost of Reliability [CC-OPF saving over standard OPF]

39-bus case under standard solution. Even with a 10%
buffer on the line flow limits (for the average wind), five
lines exceed their limit over 5% of the time with 30%
penetration (right). The penetration must be decreased
to 5% before the lines are relieved, but at great cost
(left). The CC-OPF model is feasible for 30% penetration
at a cost of 264,000. The standard solution at 5%
penetration costs 1,275,020 almost 5 times as much.

BPA Experiment
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Appendix: CC-OPF

Cutting-Plane Method

Experiments with CC-OPF (II)

CC-OPF is not a naive fix.
(Changes are nonlocal.)

39-bus case. Darker shades of
blue indicating generators with
greater change from CC-OPF to
standard OPF.

What is the penetration that
can be tolerated (without
upgrading)?

39-bus case. Three levels of
penetration. Standard OPF is
infeasible for three level of
penetrations. CC-OPF is
infeasible only with the
penetration level > 30 + % .

.1% wind
8% wind 30% wind

BPA Experiment
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Cutting-Plane Method

Experiments with CC-OPF (III)

Which sites to place wind-farms?

30 bus case with three wind farms.
Placement on the right is preferable.

CC-OPF finds the nodes where the entire
network is less susceptible to fluctuations.

10% wind 55% wind

CC-OPF valid configurations may show
significant (allowed!) variability, e.g.
flow reversal.

9-bus case, 25% average penetration -
two significantly different flows.

9.7
16.21

BPA Experiment
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Appendix: CC-OPF

Cutting-Plane Method

Out of Sample Tests

Distribution Max. prob. violation
Normal 0.0227
Laplace 0.0297
logistic 0.0132
Weibull, k = 1.2 0.0457
Weibull, k = 2 0.0355
Weibull, k = 4 0.0216
t location-scale, ν = 2.5 0.0165
Cauchy 0.0276

Maximum probability of overload for
out-of-sample tests. These are a result of
Monte Carlo testing with 10,000 samples on the
BPA case, solved under the Gaussian
assumption and desired maximum chance of
overload at 2.27%.
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BPA case solved with average penetration at
8% and standard deviations set to 30% of
mean. The maximum probability of line
overload desired is 2.27%, which is achieved
with 0 forecast error on the graph. Actual wind
power means are then scaled according to the
x-axis and maximum probability of line overload
is recalculated (blue). The same is then done
for standard deviations (green).

Enhancements of CC-OPF
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Convex AC-OPF

Constant voltage, lossless, security constrained OPF:

min
p,θ

c(p)

s.t. ∑
j :ij∈L

βij sin(θi − θj) = pi − di ∀i ∈ B

|βij sin(θi − θj)| ≤ uij for each line ij

Pmin
g ≤ pg ≤ Pmax

g for each generator g

Can one convexify this formulation of OPF?

CC-OPF enhancements
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Appendix: CC-OPF

Convex AC-OPF

PF through Optimization [lossless, constant voltage]

Boyd & Vandenberghe (add. ex. for convex opt. – 2012):

Suppose you solve the convex optimization problem:

min
ρ - line flows

∑
ij∈L

βijΨ(ρij )︸ ︷︷ ︸
reactive losses in lines

, Ψ(ρ) =

∫ ρ

−1
arcsin(y) dy

s.t.
∑
j :ij∈L

βijρij −
∑
j :ji∈L

βijρji = pi − di︸ ︷︷ ︸
network flow conservation

∀i ∈ B (∗)

|ρij | < 1 for each line ij

Then: If θi is the optimal dual for (*), ρij = sin(θi − θj ).

The opt. is dual to the Energy Function opt.

How can we incorporate this methodology into OPF-type problems?

CC-OPF enhancements
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Appendix: CC-OPF

Convex AC-OPF

Theorem: “Exact” AC-OPF [BBC 2013]

Suppose you solve the convex optimization problem:

min
p,ρ,δ≥0

c(p) + D
∑
ij∈L

βijΨ(ρij ) − K
∑
ij∈L

βij log(δij )

s.t. ∑
j :ij∈L

βijρij −
∑
j :ji∈L

βijρji = pi − di ∀i ∈ B (∗∗)

|ρij | + min{1, uij/βij}δij < min{1, uij/βij} for each line ij

Pmin
g ≤ pg ≤ Pmax

g for each generator g

For appropriate positive constants D (small) and K (large). Then if a feasible
solution is found

The optimal ρij are approximate optimal flows [with line flow limits obeyed]

ρij ≈ sin(θi − θj ) θ = optimal duals to (**)

CC-OPF enhancements
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Appendix: CC-OPF

Synchronization-Constraint CC-OPF

AC-OPF [loseless, constant voltage] formulation

min
p,ϑ

c(p)

s.t. ∑
j :ij∈L

βij sin(θi − θj) = pi − di ∀i ∈ B

| sin(θi − θj)| < uij/βij for each line ij

CC-OPF enhancements
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Appendix: CC-OPF

Synchronization-Constraint CC-OPF

Based on Dörfler, Chertkov, Bullo 2013: an approximation

minp,ϑ c(p)

s.t. ∑
j :ij∈L

βij(ϑi − ϑj) = pi − di ∀i ∈ B

|ϑi − ϑj | < min{1, uij/βij} for each line ij

[criterium for existence of solution, assumes strong damping]
Sync in Pics

The ϑ are auxiliary variables only.

Exact on trees, very accurate for almost all realistic cases tested

In experiments, βij(ϑi − ϑj) provides a close approximation to the
lossless (active) AC power flow on each line ij

(But does not provide phase angles)

CC-OPF enhancements
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Synchronization-Constraint CC-OPF

Incorporation into chance-constrained problem:

On any line ij , we replace sin(θi − θj ) with the quantity ϑi − ϑj
So ’sync’ constraint | sin(θi − θj )| ≤ γij becomes |ϑi − ϑj | ≤ γij
But in either case the constraint is stochastic

Results in a (conic) convex optimization

Chance-constrained version: P(|ϑi − ϑj | > γij ) < εij

All (thermal, gen., sync) Chance Constraints accounted

Results in the convex (conic) optimization

Similar to DC CC-OPF – extra sync Chance-constraints added

CC-OPF enhancements
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Appendix: CC-OPF

Synchronization-Constraint CC-OPF

Chance-constrained, thermal and sync-aware (approximate) OPF:
Choose mean generator outputs and control to minimize expected cost,
with the probability of line overloads and phase angle excursions kept

small. (abridged)

min
p,α

E[c(p)]

s.t.
∑
i∈G

αi = 1, α ≥ 0

Bδ = α∑
ij∈L

βij(ϑ̄i − ϑ̄j) = pi + µi − di

P(βij |ϑi − ϑj | > uij) ≤ ε1 for each line ij

P(|ϑi − ϑj | > γij) ≤ ε2 for each line ij

P(pg < Pmin
g or Pmax

g < pg ) ≤ ε3 for each generator g

ε2 � ε3 � ε1
Again: a conic optimization problem

CC-OPF enhancements
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Synchronization-Constraint CC-OPF

Thermal and Sync Aware CC-OPF: Experiments (I)

Competition of sync and thermal risks guides iterations

The case of p̄ij/βij ≤ 1 but ε = 10−4 � εij = 10−2.

1st, 8th, 11th and 13th (final) iteration steps shown.

Nodes: Loads = black, wind farms = green, regular generators = red

Lines: sync+therm = red, only sync = magenta, only therm = blue, no viol. =
black

Scaling – with actual values or means

CC-OPF enhancements
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Synchronization-Constraint CC-OPF

Thermal and Sync Aware CC-OPF: Experiments (II)

Pattern(s) of Sync Warnings

Qualitative value in studying the warning patterns

Polish case completed in 11 iterations. Sync overload dominated. Red lines = sync.
overloaded with probability ∈ [10−4; 10−2]. Blue lines = weaker overload. Scaling

according to cons/prod and mean flows within the optimal solution.
CC-OPF enhancements
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Synchronization-Constraint CC-OPF

Thermal and Sync Aware CC-OPF: Experiments (III)

Sensitivity of the optimal solution to risk awareness

9 cutting plane iterations, both
sync and thermal conditions
violated [less uniform]

21 cutting plane iterations, only
sync conditions violated

two slightly different
config. of loads

results distinctly different
[cost and distr. of gen.]

red – regulated
generation

green – renewables
[mean]

CC-OPF enhancements
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Synchronization-Constraint CC-OPF

Sync in Pics

from F. Dörfler, M. Chertkov,
and F. Bullo, PNAS 2013

Sync-constrained OPF
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Appendix: Distribution Power Flows

DistFlow

Dist(ributed) Flow Representation [Baran, Wu ’89]

graph-linear Element k = 1, · · · ,N of the distribution feeder

k = 0, · · · ,N, v0 = 1

Pn+1 = Qn+1 = 0

Pk+1 − Pk = pk − rk
P2
k +Q2

k

v2
k

Qk+1 − Qk = qk − xk
P2
k +Q2

k

v2
k

v2
k+1 − v2

k =

−2(rkPk + xkQk )− (r2
k + x2

k )
P2
k +Q2

k

v2
k

nonlinear AC over a line

generalizable to a tree

Pk ,Qk real and reactive powers flowing through the segment k

pk , qk , vk powers injected/consumed and voltage at the bus k
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Appendix: Distribution Power Flows

1d feeder. Static.

Continuum (one dimensional) static power flows

)(),( zz 

)(zp

)0(v )(Lv

ODE with mixed boundary conditions
v(0) = 1, ρ(L) = φ(L) = 0

From Algebraic Eqs. on a (linear) Graph to Power Flow ODEs
0 = p + β∂r

(
v2
∂rθ
)

+ gv
(
∂

2
r v − v (∂rθ)2

)
︸ ︷︷ ︸

balance of real power

, 0 = q + βv
(
∂

2
r v − v (∂rθ)2

)
− g∂r

(
v2
∂rθ
)

︸ ︷︷ ︸
balance of reactive power

ρ = −βv2
∂rθ − gv∂r v︸ ︷︷ ︸

real power density flowing through the segment

, φ = −βv∂r v + gv2
∂rθ︸ ︷︷ ︸

reactive power density flowing though the segment

0 = p︸︷︷︸
real consumption

−

real transport︷︸︸︷
∂rρ − r

ρ2 + φ2

v2︸ ︷︷ ︸
real dissipation

, 0 = q︸︷︷︸
reactive consumption

−

reactive transport︷︸︸︷
∂rφ − x

ρ2 + φ2

v2︸ ︷︷ ︸
reactive dissipation
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Dynamics/Transitions in Distributed Feeder (Aux)

Dynamics/Transitions in Distributed Feeder (III)

Example of a Short Fault (↓, ↑ to full recovery) (Movie Recovery)

(a) (b) (c)

(a) Pre fault

(b) Past voltage drop at the header. Leads to a fully stalled phase.

(c) Fault is cleared. Front of recovery is advancing towards the tail.

Fault Dynamics
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Appendix: Distribution Power Flows

Dynamics/Transitions in Distributed Feeder (Aux)

Dynamics/Transitions in Distributed Feeder (IV)

From Stalled to Normal (Movie Recovery)

(a) (b) (c) (d)

(e) (f) (g) (h)

Of interest: “Soliton”-like shape; voltage profile is (almost) frozen

Fault Dynamics
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Appendix: Distribution Power Flows

FIDVR – questions & challenges

What can one do at the distribution level to mitigate FIDVR?

Monitor/learn/model distributed motor parameters

Control voltage at the head of the line (rise it when needed)

Distributed reactive control

Why should System Operator worry about FIDVR?

Simple restoration of the transmission network may not drive the circuits back
to a running state.

A transmission fault ⇒ correlated dynamical response in multiple distribution
feeders ⇒ individual circuits stalled. Specific to each circuit, there is an energy
barrier to the transition back to a running state.

Once a spatially-correlated stalled state exists, the state of the transmission grid
has now fundamentally changed.

What can the system operator do about FIDVR and related?

Consider FIDVR as yet another (and much less analyzed !!) transient stability
issue/contingency

Attempt to predict (monitoring short voltage faults within the transmission) ...
and pull it back to normal without relying (or with minimal reliance) on the
distribution level protection and response
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Unusual Effect(s) of Distributed Generation

Feeder with Distributed Generation D. Wang, K. Turitsyn, MC (2012)

 ?   )(),( zz 
)0(v )(Lv

)(zp

Smart Grid Scenario: Significant
Penetration of Photo-Voltaic Systems

Many Consumers feed back to the
system

(Normally) voltage raises down the
feeder and feeder exports,
ρ(0), η(0) < 0

And what if a fault occurs?
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Unusual Effect(s) of Distributed Generation

Effect of Distributed Generation
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The effect is DISTRIBUTED!
not seen in the two-node model

PV systems inject both p and q

New regulations will require
ride-through-low-voltage
capability

If the distributed generation is
too large, multiple low-voltage
states will appear

Prediction of a potential trouble:
after a fault the system may be
trapped in the low-voltage state
(similar to FIDVR)

The only (normal) way to get
out of the trouble is to
disconnect the PVs
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