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History of Schrodinger bridges

Bridges for Markov chains

The Hilbert metric
Bridges for quantum (TPTP) evolutions

Bridges for Gauss-Markov process



Schrodinger 1931/32:
The time reversal of the laws of nature

Kolmogoroft:
The reversibility of the statistical laws of nature

Bernstein 1932
-ortet 1940
Beurling 1960
Jamison 1974/75
Follmer 1988

connections to Nelson’s stochastic mechanics
Zambrini, Wakolbinger, Dal Pra, Pavon, Ticozzi
and others



Hilbert metric:

Hilbert 1895
Birkhoft 1957
3ushell 1973

Sepulchre, Sarlette, Rouchon 2010
Reeb, Kastoryano, Wolf 2011



* Schrodinger 1931/1932: suppose a large number of
Brownian particles observed at two different times to
evolve between two empirical distributions. What is the
most likely intermediate distribution at any point in time!















Given initial and final distribution py(x), pr(x) and transition p(x, y)

Schrodinger hypothesised that

Large deviations
Sample paths
Relative entropy
Stochastic Control



Schrodinger system

discretized time, space, N-particles

Stirling’s approximation

optimized, lagrange multipliers

the most likely joint density and transition probability
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Schrodinger system

Schrodinger: there exists a solution “except possibly for
very nasty po, pr because the question leading to the pair
of equations is so reasonable.”

Existence /uniqueness

Fortet 1940
Résolution d'un system d’equations de M. Schrdinger

Beurling 1960
An automorphism of product measures



Markov chains

{1,..., N} states, v = (xg, 21, ..., 2xr) sample path
I1; stochastic matrices, t € {1,...,T}
P € probability induced by IT's on {1,..., N}

P(CU(),...,CCT) — P(xOJQjT)P(xl?"'aajT—l | ZU(),QZ'T)

Schrodinger question

given po, pr
pr # - - Ilipg

find

Q(xg,...,x7) = Q(xo,x7)Q(x1, ..., 271 | To, TT)
such that

ZxT Q(xo; SUT) = po(xo)

D ao Qo 27) = pr(ar)

and minimizes the relative entropy

ZQIng = Z Q(xo, z7) log P(ajz,x;)_l_z Q(- | xo,zT) log P xgsz)Q(xo,xT)

all To,TT all




Lagrangian

Zon xr logp

L0, LT

A(zo) ~ Cbo
p(xr) ~ ¢r

such that with IT = I1p - -

'Hl




Schrodinger system
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Hilbert metric

S real Banach space

K closed solid cone in S

rysy—ze kK,

M(z,y) = inf{\ | x < Ay}
z,y) = sup{A | Ay =z}

define the Hilbert metric:

dp(x,y) = log <M(x’ y)> -

m(z,y)

7~ N\

m

Examples:
i) positive cone in R”

ii) positive definite Hermitian matrices



d rr-gain bound of positive maps

11 is a positive map:
[T : K\{0} - K\{0}.
Projective diameter

A(TI) := sup{dy(ll(x),1(y)) | =,y € K\{0}}

Contraction ratio, or gain/H-norm

|| = mf{A | dp(I(2z), [I(y)) < Adp(z,y), forall z,y € K\{0}}.



Birkhofi-Bushell theorem

Let II positive, monotone, homogeneous ot degree m,

1.€e.,
r 2y = Mz) 2 1(y),
and
[T(A\z) = A"11(x),
then

][z < m.

For the special case where II is also linear, the (possibly

stronger) bound

|11 = tanh(;A(ID)

also holds.



Solution of the Schrodinger system

Lemma

Let IT >, 0 (element-wise positive) stochastic matrix
po, pr probability vectors

then ||I1}|g < 1.

proof

1) A(IT) = sup{du(Il(z), I1(y)) | z,y € K\{0}}
remains the same if we restrict .,y

to be probability vectors

i) dg(Il(z),I1(y)) < oo Vz,y.

iii) the probability simplex is compact.



Solution of the Schrodinger system

Consider

Go(xo) = 2D 1 | er(zr) =20
il
Yo < LT
where
R T
Dr : po — @o(xo) = Po(0)
<P0(33’0)
. T
Dy : pp — p(ar) = I?T( V)
o7(T7)

are componentwise division of vectors = dy-isometries!

The composition

. 11 ~ DT HJr Do A
Yo — 17 — LT > L0 ; (SOO)next

is strictly contractive in the Hilbert metric.



Sinkhorn’s theorem

It I >, 0,
then - a;, bj
such that |m;;a;b,); ; doubly stochastic.

Cfp():]lapT:]]-
" = Dg/)THquO1 doubly stochastic

e, (IMM =1
but also (IT")1 =1



Quantum analogues
Density matrices: © = {p > 0 | trace(p) = 1}
TPTP: &€ : D =9 : p— 0= Z?ﬁlEszj
with

ng

Y ElE =1

i=1
e, ENI) =1

£ is positivity improving: if p >0 = E(p) > 0



Reterence quantum evolution

TPCP maps {&;0 <t <T —1}

with Kraus representation

gt Ot = Ot — ZEL‘,Z'O-L‘E;E@') t:O,l,...7T— L.

Consider the composition
gO:T L= gT—l O--+0 (c;().

initial and a final pg and pr

Problem

Find Fo.r = Fp_10---0 Fy such that
FO:T(PO) — PT-

and F “close to” &



“rank-1" corrections

Fil) = xeer (80O X

e, Fr =P 10& 0 <I>t_1 where

O are rank-1 Kraus maps, ng = 1

Corresponds to the commutative case via: XTX = ¢



(Quantum version of Sinkhorn’s thm

suppose &y.p is positivity improving
Then, 4 observables ¢y, ¢ such that,

for any factorization

Qo = XE)XO» and
OT = XPXT)

the map

15 a doubly stochastic Kraus map,
in that F(I) = I as well as F(I) = 1.



Proot

The composition map

~ E ~ (N1 gl N1 /.
¢ (¢O> starting ﬂ ¢T L ¢T LT) §b0 L (¢O> next

18 strictly contractive

the steps are identical



(zeneral case

Given Eg:T and pg and pr
if 3 ¢o, ¢r, do, Or solving

g(])L:T<¢T) — gbO?

N

gO:T(¢O) — qua
Po = Xodoxs,
pPr = XTQbTXTT-

Then, for any factorization

Qo = X;r)Xo, and

O = X;XT,

the map
F() = xr (0106 (x5 ™)) b

is a quantum bridge for (ES:T, po, pr), namely F(I) =1
and F'(pg) = pr.



Conjecture

The quantum Schrodinger system has a solution

for arbitrary pg, pr

Snag in the proof:

¢ — ¢ and ¢E — ¢ are not isometries, e.g.,

A e o\ 12 2
Dy : ¢p— ¢y = <p1T/ 7 (pTl/ o1 pr 2) ol 2)

Dy = ¢o— do = (¢0)*p(cho) "/

Eixtensive numerical evidence that

the composition has a fixed point

Software for numerical experimentation
http://www.ece.umn.edu/~georgiou/papers/schrodinger_
bridge/



Pinned bridge

Eo.r positivity improving and two pure states

Py = vofug and pr = UTUTT

(i.e., v, v7 are unit norm vectors), define
Op =& (UTU})
¢r = VU7,

and
Fi() =07 Ny (Vo )0y
(where, clearly, / ‘= ¢y = UTUT) Then, F' is TPTP

and satisfies the margmal conditions

pr = F'(po).
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Recap

Hilbert metric = constructive existence proots for
i) classical Schrodinger systems

ii) quantum Sinkhorn version (uniform marginals)

iii) general case open

Final topic:
Schrodinger bridges for " degenerate” classical
linear stochastic systems

= a new type of optimal control problem



Optimal steering of state-densities

Girsanov

min relative entropy « <~ minimum energy stochastic control

dr = bdt + dw diftusion
dx = (b + u)dt + dw controlled diffusion

min{ E{||v||*} | po,pr} ~ relative entropy from prior
(dai Pra)

our 1nterest:

inertial particles, cooling of oscillators

dr = vdt
dv = (b4 u)dt + dw controlled degenerate diffusion



Optimal steering of state-densities
dx(t) = A(t)x(t)dt + B(t)u(t)dt + B(t)dw(t)

Given initial and terminal (target) Gaussian densities

with covariances >, 2.

Find w(t) with t € |0, T that steers the system
from the initial to the target state density

B / (t)dt)

and minimizes



Optimal steering of state-densities

rnm

['heorem (Gauss-Markov Schrodinger bridge):

-

I'here exists a unique solution to the following

(analogue of the Schrodinger system)

( ), P(0) values for matrices satisfying
= Q(0)~" + P(0)~
ZT1 =Q(T) " +P(1)"
and Q(0), P(T ) obtained via
Q(t) = ADQ() + QARY + BBl
P(t)=A(t)P(t)+ P(t)A(t) — B(t)B(t)
with Q(t) invertible over |0, T.




The optimal control is u(t) = —B(t)Q(t) *x(t)

1

I'he controlled degenerate diffusion is the closest

to the uncontrolled diffusion in the relative entropy sense.

1
Q(0) = N(T,0)/28} <50+§1_ (5425751

o\ 12 -1
+Z[> ) SY2N(T,0)'/2

N(T,0) is the controllability Grammian.



Gauss Markov model for inertial particles

dr(t) = o(t)dt
dv(t) = u(t)dt+ dw(t)
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Gauss Markov model for inertial particles

Velocity v
o N a

U
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Gauss Markov model
for Nyquist-dohnson noise driven oscillator

15
Ldic(t) =  wve(t)dt o
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Gauss Markov model for inertial particles:
state-cost ~ particles with losses

dX(t) = F(X(t),t)dt + o(X (1), t)dw(t)

mf /RN/ [ Jul|? + V(z, t)} oz, t)dtdx,

E‘l‘v ((f‘|‘O'U>IO) 2 Z afl’)@@l'j 9 az-j(x,t)

5(0,2) = po(x), A(T,y) = pr(y)




Schrodinger system

D | o 0%
E"‘f(ajat) 'V90+§Z;awaxi8x] — VQO,
agb . 1 al 62 (CLZ']'@) R

u'(z,t) = o'Viegp(z,1),

P v ((f +aVioge)p) = + 3 L lewh)




Controllability of Fokker-Planck - Linear-Gaussian

dx(t) =Ax(t)dt + Bu(t)dt + Bidw(t)

with 2(0) = ¢ a.s.

Thm: (A,B) controllable is sufficient to steer the system
from any initial Gaussian distribution to a final one at t=T.

Thm: A Gaussian state- pdf can be “sustained” with
constant state-feedback iff the state covariance satisties

(A— BK)X+X(A — K'B)+ BB, =0

AS + A + BB, B
B

0 B
B 0

= rank

equivalently, rank



Compare with conditions for:

) steering the system to a given state - controllability
1) steering within the positive cone”

1) maintaining the state at a given value

#(t) = Az(t) + Bu(t)

0= (A— BK)¢+ Bu



Schrodinger system

1 = —ATl—TTA+TIBB'T
H = —AH-HA—-HBB'H
+(I1+H) (BB — B,B}) (Il + H)
[T(0) + H(0)
[1(T") + H(T").

I
I



Fast “cooling” + stationary control

Velocity »
o

= & for dw anywhere



Open problem

Density matrices: e.g.
D ={p>0]| symmetric p € R"*" with trace(p) = 1}

E;withi=1,...,ncand S/ ETE; = I

(typically ng ~ n?

for “positivity-improving”: p > 0= E(p) > 0)
TPTP: € : D =D : p— 0 =31 EpE

Data: pg, pr, £.

Problem: Prove that the iteration:

E : do— op = E(dy)
) e N 1)/2 2
Dy : ¢p — or = (;;;/ ? (pTl/ o=t 2) oy 2)

EV L br o ¢ = ENor)
Dy 1 ¢o > do = (¢0)"*p(¢o)"?

has an attractive fixed point.

Software for numerical experimentation

http://www.ece.umn.edu/~georgiou/papers/schrodinger_bridge/



Thank you for your attention



http://arxiv.org/abs/1405.6650
Positive contraction mappings for classical and quantum Schrodinger systems

http://arxiv.org/abs/1407.3421
Stochastic bridges of linear systems

http://arxiv.org/abs/1410.1605
Optimal steering of inertial particles diffusing anisotropically with losses

arxiv.org/abs/1408.2222
Optimal steering of a linear stochastic system to a final probability distribution

arxiv.org/abs/1410.3447
Optimal steering of a linear stochastic system to a final probability distribution, Part |l
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