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Schrodinger 1931/32: 
The time reversal of the laws of nature 
!
Kolmogoroff: 
The reversibility of the statistical laws of nature 
!
Bernstein 1932 
Fortet 1940 
Beurling 1960 
Jamison 1974/75 
Follmer 1988 
!
connections to Nelson’s stochastic mechanics 
Zambrini, Wakolbinger, Dai Pra, Pavon,Ticozzi 
and others 



Hilbert metric: 
!
Hilbert 1895 
Birkhoff 1957 
Bushell 1973 
!
Sepulchre, Sarlette, Rouchon 2010 
Reeb, Kastoryano, Wolf 2011 
!



• Schrodinger 1931/1932: suppose a large number of 
Brownian particles observed at two different times to 
evolve between two empirical distributions. What is the 
most likely intermediate distribution at any point in time?











Given initial and final distribution p0(x), p

T

(x) and transition p(x, y)
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Schrödinger system

discretized time, space, N-particles

Stirling’s approximation

optimized, lagrange multipliers

the most likely joint density and transition probability

P ?(x
0

, xT ) = �̂(x
0

)p(x
0

, xT )�(xT ) and p?(x
0

, xT ) = p(x
0

, xT )�(x
T

)

�(x
0

)

p
0

(x
0

) = �̂(x
0

)

Z
p(x

0

, xT )�(xT )dxT = �̂(x
0

)

�
0

(x
0

)z }| {
⇧†

0,T �(xT )| {z }
�

T

(x
T

)

pT (xT ) = �(xT )

Z
p(x

0

, xT )�̂(x
0

)dx
0

= �(xT )

ˆ�
T

(x
T

)z }| {
⇧

0,T �̂(x
0

)| {z }
ˆ�
0

(x
0

)

and pt(xt) = �̂t(xt)�(xt) where
�t(xt) := ⇧†

t,T�(xT )

�̂t(xt) := ⇧
0,t�̂(x

0

)

2



Schrödinger system

Schrödinger: there exists a solution “except possibly for

very nasty p

0

, p

T

because the question leading to the pair

of equations is so reasonable.”

Existence/uniqueness

Fortet 1940

Résolution d’un system d’equations de M. Schr

¨

dinger

Beurling 1960

An automorphism of product measures
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Markov chains
{1, . . . , N} states, x = (x

0

, x
1

, . . . , x
T

) sample path

⇧

t

stochastic matrices, t 2 {1, . . . , T}
P 2 probability induced by ⇧’s on {1, . . . , N}T+1

P (x
0

, . . . , x
T

) = P (x
0

, x
T

)P (x
1

, . . . , x
T�1

| x
0

, x
T

)

Schrödinger question
given p

0

, p
T

p
T

6= ⇧

T

· · ·⇧
1

p
0

find

Q(x
0

, . . . , x
T

) = Q(x
0

, x
T

)Q(x
1

, . . . , x
T�1

| x
0

, x
T

)

such thatP
xT

Q(x
0

, x
T

) = p
0

(x
0

)P
x0

Q(x
0

, x
T

) = p
T

(x
T

)

and minimizes the relative entropy

X

all

Q log

Q

P

=

X

x0,xT

Q(x

0

, x

T

) log

Q(x

0

, x

T

)

P (x

0

, x

T

)

+

X

all

Q(· | x

0

, x

T

) log

Q(· | x

0

, x

T

)

P (· | x

0

, x

T

)

Q(x

0

, x

T

)

4



Lagrangian

L(Q) =
X
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Schrödinger system

�̂T = ⇧�̂
0

�
0

= ⇧†�T

p
0

= �
0
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pT = �T � �̂T
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T
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Hilbert metric

S real Banach space

K closed solid cone in S

x � y , y � x 2 K,

M(x, y) := inf {� | x � �y}
m(x, y) := sup{� | �y � x}.

define the Hilbert metric:

dH(x, y) := log

✓
M(x, y)

m(x, y)

◆
.

Examples:

i) positive cone in Rn

ii) positive definite Hermitian matrices
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dH-gain bound of positive maps

⇧ is a positive map:

⇧ : K\{0}! K\{0}.

Projective diameter

�(⇧) := sup{dH(⇧(x), ⇧(y)) | x, y 2 K\{0}}

Contraction ratio, or gain/H-norm

k⇧kH := inf{� | dH(⇧(x), ⇧(y))  �dH(x, y), for all x, y 2 K\{0}}.
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Birkho↵-Bushell theorem

Let ⇧ positive, monotone, homogeneous of degree m,

i.e.,

x � y ) ⇧(x) � ⇧(y),

and

⇧(�x) = �m⇧(x),

then

k⇧kH  m.

For the special case where ⇧ is also linear, the (possibly

stronger) bound

k⇧kH = tanh(
1

4
�(⇧))

also holds.
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Solution of the Schrödinger system

Lemma

Let ⇧ >e 0 (element-wise positive) stochastic matrix

p
0

, pT probability vectors

then k⇧kH < 1.

proof

i) �(⇧) = sup{dH(⇧(x), ⇧(y)) | x, y 2 K\{0}}
remains the same if we restrict x, y

to be probability vectors

ii) dH(⇧(x), ⇧(y)) < 1 8x, y.

iii) the probability simplex is compact.
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Solution of the Schrödinger system

Consider
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next

is strictly contractive in the Hilbert metric.
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Sinkhorn’s theorem

If ⇧ >e 0,

then 9 ai, bj

such that [⇡ijaibj]i,j doubly stochastic.

Cf. p
0

= 1, pT = 1

⇧? = D�
T

⇧D�1

�
0

doubly stochastic

i.e., (⇧?)†1 = 1

but also (⇧?)1 = 1
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Quantum analogues

Density matrices: D = {⇢ � 0 | trace(⇢) = 1}

TPTP: E : D! D : ⇢ �! � =
PnE

i=1

Ei⇢E†
i

with
nEX

i=1

E†
i Ei = I

i.e., E†(I) = I

E is positivity improving: if ⇢ � 0) E(⇢) > 0
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Reference quantum evolution

TPCP maps {Et; 0  t  T � 1}
with Kraus representation

Et : �t 7! �t+1

=
X

i

Et,i�tE
†
t,i, t = 0, 1, . . . , T � 1.

Consider the composition

E
0:T := ET�1

� · · · � E
0

.

initial and a final ⇢
0

and ⇢T

Problem

Find F
0:T = FT�1

� · · · � F
0

such that

F
0:T (⇢

0

) = ⇢T .

and F “close to” E
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“rank-1” corrections

Ft(·) = �t+1

⇣
Et(�

�1

t (·)��†
t )

⌘
�†

t+1

i.e., Ft = �t+1

� Et � ��1

t where

� are rank-1 Kraus maps, n
�

= 1

Corresponds to the commutative case via: �†� = �
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Quantum version of Sinkhorn’s thm

Suppose E
0:T is positivity improving

Then, 9 observables �
0

, �T such that,

for any factorization

�
0

= �†
0

�
0

, and

�T = �†
T�T ,

the map

F(·) := �T

⇣
E

0:T (��1

0

(·)��†
0

)
⌘

�†
T

is a doubly stochastic Kraus map,

in that F(I) = I as well as F†(I) = I .
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Proof

�̂
0

E
0,T�! �̂T
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0

= ��1

0
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T
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The composition map
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⌘
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0
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next

is strictly contractive

the steps are identical

17



General case

Given E†
0:T and ⇢

0

and ⇢T

if 9 �
0

, �T , �̂
0

, �̂T solving
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,

E
0:T (�̂

0

) = �̂T ,
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T .

Then, for any factorization

�
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= �†
0

�
0

, and
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T�T ,

the map

F(·) := �T

⇣
E

0:T (��1

0

(·)��†
0

)
⌘

�†
T

is a quantum bridge for (E†
0:T , ⇢

0

, ⇢T ), namely F(I) = I

and F†(⇢
0

) = ⇢T .

18



Conjecture

The quantum Schrödinger system has a solution

for arbitrary ⇢
0

, ⇢T

Snag in the proof:

�! �̂ and �̂! � are not isometries, e.g.,

DT : �̂T 7! �T =

✓
⇢

1/2
T

⇣
⇢
�1/2
T �̂�1⇢

�1/2
T

⌘
1/2

⇢
1/2
T

◆
2

D̂
0

: �
0

7! �̂
0

= (�
0

)1/2⇢(�
0

)1/2

Extensive numerical evidence that

the composition has a fixed point

Software for numerical experimentation

http://www.ece.umn.edu/

~

georgiou/papers/schrodinger_

bridge/
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Pinned bridge

E
0:T positivity improving and two pure states

⇢
0

= v
0

v†
0

and ⇢T = vTv†T

(i.e., v
0

, vT are unit norm vectors), define

�
0

:= E(vTv†T )

�T := vTv†T ,

and

F†(·) := �
1/2
T E†(��1/2

0

(·)��1/2
0

)�1/2
T

(where, clearly, �
1/2
T = �T = vTv†T ). Then, F† is TPTP

and satisfies the marginal conditions

⇢T = F†(⇢
0

).
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Example
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.
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Recap
Hilbert metric ) constructive existence proofs for

i) classical Schrödinger systems

ii) quantum Sinkhorn version (uniform marginals)

iii) general case open

Final topic:

Schrödinger bridges for ”degenerate” classical

linear stochastic systems

⌘ a new type of optimal control problem
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Optimal steering of state-densities
min relative entropy $Girsanov$ minimum energy stochastic control

dx = bdt + dw di↵usion

dx = (b + u)dt + dw controlled di↵usion

min{E{kuk2} | p
0

, pT} ⇠ relative entropy from prior

(dai Pra)

our interest:

inertial particles, cooling of oscillators

dx = vdt

dv = (b + u)dt + dw controlled degenerate di↵usion
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Optimal steering of state-densities

dx(t) = A(t)x(t)dt + B(t)u(t)dt + B(t)dw(t)

Given initial and terminal (target) Gaussian densities

with covariances ⌃
0

, ⌃T .

Find u(t) with t 2 [0, T ] that steers the system

from the initial to the target state density

and minimizes

E{
Z T

0

u(t)0u(t)dt}
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Optimal steering of state-densities

Theorem (Gauss-Markov Schrödinger bridge):

There exists a unique solution to the following

(analogue of the Schrödinger system)

Q(T ), P (0) values for matrices satisfying

⌃�1

0

= Q(0)�1 + P (0)�1

⌃�1

T = Q(T )�1 + P (T )�1

and Q(0), P (T ) obtained via

Q̇(t) = A(t)Q(t) + Q(t)A(t)0 + B(t)B(t)0

Ṗ (t) = A(t)P (t) + P (t)A(t)0 � B(t)B(t)0

with Q(t) invertible over [0, T ].
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The optimal control is u(t) = �B(t)0Q(t)�1x(t)

The controlled degenerate di↵usion is the closest

to the uncontrolled di↵usion in the relative entropy sense.

Q(0) = N(T, 0)1/2S1/2
0

✓
S

0

+
1

2
I �

⇣
S

1/2
0

STS
1/2
0

+
1

4
I

◆
1/2

!�1

S
1/2
0

N(T, 0)1/2

N(T, 0) is the controllability Grammian.
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Then

J̇(t) = Ṙ1(t) + Ṙ1(t)Q�(t)�1R2(t) + R1(t)Q̇�(t)�1R2(t)

+R1(t)Q�(t)�1Ṙ2(t)� Ṙ2(t)

= AJ + JAQ�(t)0.

Since

J(T ) = R1(T ) + R1(T )Q�(T )�1R2(T )�R2(T ) = 0,

it follows that J(t) = 0. This completes the proof of (32). Equation
(33) is equivalent to

�(T, t)R1(t) = �Q�(T, t)R2(t).

Let
K(t) = �(T, t)R1(t)� �Q�(T, t)R2(t),

and then

K̇(t) = ��(T, t)AR1(t) + �(T, t)Ṙ1(t) +

�Q�(T, t)AQ�(t)R2(t)� �Q�(T, t)Ṙ2(t)

= K(t)(A0 �R1(t)
�1BB0).

Since

K(T ) = �(T, T )R1(T )� �Q�(T, T )R2(T ) = 0,

it follows that K(t) = 0 as well for all t. This completes the proof.

V. ILLUSTRATIVE EXAMPLES

We present two examples that illustrate the effect of optimal
probability density steering. The first is based on inertial particles
experiencing random accelerations and the second on an electrical
circuit experiencing Nyquist-Johnson thermal noise from a resistor.

A. Inertial particles

Consider inertial particles experiencing random acceleration
according to the model

dx(t) = v(t)dt

dv(t) = u(t)dt + dw(t)

where u(t) is a control force at our disposal, x(t) represents position
and v(t) represents velocity. We want to squeeze the spread of the
particles from an initial Gaussian distribution with ⌃0 = I at t = 0
to a terminal marginal ⌃ = 1

4I at t = 1. Figure 1 shows sample
paths in the phase space of (x, v) as a function of time using the
optimal stragegy for feedback control as explained earlier. Figure 2
displays the corresponding control action for each trajectory.

We provide two additional situations where the final distribution
is localized in space and in velocity, respectively. The limit may be
thought to approximate singular marginals, in each case, and it is of
interest to compare the two since in one case the stochastic excitation
affects directly the component of interest (velocity) whereas in the
other after integration. Thus, we again take ⌃0 = I while we take
⌃1 to equal to diag(.05, 1) and diag(1, .05), respectively, for the
two cases. Sample paths in phase space under the optimal control law
are shown in Figures 3 and 4, respectively. In all of these phase plots
1,3 and 4, the transparent blue “tube” represents the “3 �” tolerance

Fig. 1: Inertial particles: state trajectories for ⌃1 = 1
4I

Fig. 2: Inertial particles: control inputs for ⌃1 = 1
4I

interval. More specifically, the intersection ellipsoid between the tube
and the slice plane t is the set

ˆ
x v

˜
⌃�1

t

»
x
v

–
 32.

B. Nyquist-Johnson resistor noise

Consider the circuit in Figure 5 that includes a resistor with
a Nyquist-Johnson thermal noise voltage source. A model for the
circuit is

LdiL(t) = vC(t)dt

RCdvC(t) = �vC(t)dt�RiL(t)dt + u(t)dt + dw(t)

with all parameters R = L = C = 1 in compatible units. Without
any active control, i.e., when u(t) ⌘ 0, the RLC circuit is driven by
the thermal noise and reaches a steady state where the covariance
matrix of the state vector (iL, vC)0 is 1

2I . Thus, we begin with
random initial conditions for the state having an initial Gaussian
distribution with ⌃0 = 1

2I at t = 0. Our aim is to specify the
control voltage input u(t) so as to reduce the effect of the thermal

Gauss Markov model for inertial particles



Gauss Markov model for inertial particles



Gauss Markov model 
for Nyquist-Johnson noise driven oscillator
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Gauss Markov model for inertial particles: 
state-cost ~ particles with losses
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Z

RN

Z T

0


1

2
kuk2 + V (x, t)

�
⇢̃(x, t)dtdx, (1)

@⇢̃

@t
+r · ((f + �u)⇢̃) =

1

2

NX

i,j=1

@2 (aij⇢̃)

@xi@xj
, (2)

⇢̃(0, x) = ⇢
0

(x), ⇢̃(T, y) = ⇢T (y). (3)

@'

@t
+ f (x, t) ·r' +

1

2

NX

i,j=1

aij
@2'

@xi@xj
= V ', (4a)

@'̂

@t
+r · (f (x, t)'̂)� 1

2

NX

i,j=1

@2 (aij'̂)

@xi@xj
= �V '̂, (4b)

nonlinearly coupled through their boundary values as

'(x, 0)'̂(x, 0) = ⇢̃
0

(x), '(x, T )'̂(x, T ) = ⇢̃T (x).

(4c)

27

@⇢

@t
+r · (f (x, t)⇢) + V (x, t)⇢ =

1

2

NX

i,j=1

@2(aij(x, t)⇢)

@xi@xj

aij(x, t) =
X

k

�ik(x, t)�kj(x, t)

dX(t) = f (X(t), t)dt + �(X(t), t)dw(t)

inf
(⇢̃,ũ)
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Schrödinger system

Schrödinger: there exists a solution “except possibly for
very nasty p

0

, pT because the question leading to the pair
of equations is so reasonable.”

Existence/uniqueness
Fortet 1940
Résolution d’un system d’equations de M. Schrd̈inger

Beurling 1960
An automorphism of product measures

3

Let ('(x, t), '̂(x, t)) be nonnegative functions satisfying

(4a)-(4c) for (x, t) 2 (Rn ⇥ [0, T ]). Suppose ' is every-

where positive. Then the pair (⇢̃⇤, u⇤) with

u⇤(x, t) = �0r log '(x, t), (5a)

@⇢̃

@t
+r · ((f + ar log ')⇢̃) =

1

2

NX

i,j=1

@2 (aij⇢̃)

@xi@xj
, (5b)

is a solution of (??).

1 The linear-quadratic case

We now specialize system (4) to the case of linear dy-

namics with constant di↵usion matrix and quadratic loss

function V (x), i.e., we assume that ⇢(x, t) represents the

density function of a linear di↵usion

dX(t) = AX(t)dt+Bu(t)+Bdw(t), with X(0) = ⇠, a.s.

(6)

and ⇠ distributed according to

⇢(x, 0) =
1p

(2⇡)n det(⌃
0

)
exp

✓
�1

2
x0⌃�1

0

x

◆

with ⌃
0

> 0. We also assume a loss/state-cost function

V (x, t) =
1

2
x0S(t)x
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Controllability of Fokker-Planck - Linear-Gaussian

ẋ(t) = Ax(t) + Bu(t), t 2 [0,1) (10)

0 = (A�BK)⇠ + Bu (11)

dx(t) =Ax(t)dt + Bu(t)dt + B
1

dw(t) (12)

with x(0) = x
0

a.s.

⇧̇ = �A0⇧� ⇧A + ⇧BB0⇧ (13a)

Ḣ = �A0H� HA� HBB0H (13b)

+ (⇧ + H) (BB0 �B
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B0
1

) (⇧ + H) .

⌃�1

0

= ⇧(0) + H(0) (13c)

⌃�1

T = ⇧(T ) + H(T ). (13d)

(A�BK)⌃ + ⌃(A0 �K 0B0) + B
1

B0
1

= 0. (14)
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Thm:    (A,B) controllable is sufficient to steer the system 
from any initial Gaussian distribution to a final one at t=T.

Thm:  A Gaussian state-pdf can be “sustained” with 
constant state-feedback iff the state covariance satisfies 
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rank

"
A⌃ + ⌃A0 + B

1

B0
1

B

B 0

#
= rank

"
0 B

B 0

#
. (15)
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equivalently,
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I. INTRODUCTION

Consider a linear system

ẋ(t) = Ax(t) + Bu(t), t 2 [0,1) (1)

with A 2 Rn⇥n, B 2 Rn⇥m, x(t) 2 Rn and u(t) 2 Rm, and the problem to steer (1) from the origin

to a given point x(T ) = ⇠ 2 Rn. This of course is possible for any arbitrary ⇠ 2 Rn iff the system is

controllable, i.e., the rank of [B, AB, . . . , An�1B] is n, that is, when (A, B) is a controllable pair. In this

case it is well known that the steering can be effected in a variety of ways, including “minimum-energy”

control, over any prespecified interval [0, T ]. On the other hand, the problem to achieve and maintain a

fixed value ⇠ for the state vector in a stable manner is not always possible. For this to be the case for a

given ⇠, using feedback and feedforward control, the equation

0 = (A�BK)⇠ + Bu (2)

must have a solution (u, K) for a constant value for the input u and a suitable value of K so that A�BK

is Hurwitz (i.e., the feedback system be asymptotically stable). It is easy to see that this reduces simply

to the requirement that ⇠ satisfies the equation

0 = A⇠ + Bv

for some v; if there is such a v, we can always choose a suitable K so that A � BK is Hurwitz and

then, from v and K, we can compute the constant value u. Conversely, from u and K we can obtain

v = u�K⇠.

In the present paper, we discuss an analogous and quite similar dichotomy between our ability to

assign the state-covariance of a linear stochastically driven system by steering the system over an interval

[0, T ], and our ability to assign the state-covariance of the ensuing stationary state process through constant

state-feedback. It will be shown that the state-covariance can be assigned at the end of an interval through

suitable feedback control if and only if the system is controllable. On the other hand, a positive semidefinite

matrix is an admissible stationary state-covariance attained through constant feedback if and only if it

satisfies a certain Lyapunov-like algebraic equation. Interestingly, the algebraic equation that specifies

which matrices are admissible stationary state-covariances through constant feedback is the same equation

that characterizes stationary state-covariances attained through colored stationary input noise in open loop.
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Compare with conditions for:                             
i) steering the system to a given state - controllability 
ii) steering within the positive cone? 
iii) maintaining the state at a given value
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Schrödinger system

�̂T = ⇧�̂
0

�
0

= ⇧†�T

p
0

= �
0

� �̂
0

pT = �T � �̂T

if there is a solution

⇧? = D�
T

⇧D�1

�
0

[Q(x
0

, xT )]x
0

,x
T

= D�
T

⇧D
ˆ�
0

6



Fast “cooling” + stationary control

& for dw anywhere



Open problem

Density matrices: e.g.

D = {⇢ � 0 | symmetric ⇢ 2 Rn⇥n with trace(⇢) = 1}

Ei with i = 1, . . . , nE and
PnE

i=1

E†
i Ei = I

(typically nE ⇠ n2

for “positivity-improving”: ⇢ � 0) E(⇢) > 0)

TPTP: E : D! D : ⇢ �! � =
PnE

i=1

Ei⇢E†
i

Data: ⇢
0

, ⇢T , E .

Problem: Prove that the iteration:

E : �̂
0

7! �̂T = E(�̂
0

)

DT : �̂T 7! �T =

✓
⇢

1/2
T

⇣
⇢
�1/2
T �̂�1⇢

�1/2
T

⌘
1/2

⇢
1/2
T

◆
2

E† : �T 7! �
0

= E†(�T )

D̂
0

: �
0

7! �̂
0

= (�
0

)1/2⇢(�
0

)1/2

has an attractive fixed point.
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Conjecture

The quantum Schrödinger system has a solution

for arbitrary ⇢
0

, ⇢T

Snag in the proof:

�! �̂ and �̂! � are not isometries, e.g.,

DT : �̂T 7! �T =

✓
⇢

1/2
T

⇣
⇢
�1/2
T �̂�1⇢

�1/2
T

⌘
1/2

⇢
1/2
T

◆
2

D̂
0

: �
0

7! �̂
0

= (�
0

)1/2⇢(�
0

)1/2

Extensive numerical evidence that

the composition has a fixed point

Software for numerical experimentation

http://www.ece.umn.edu/

~

georgiou/papers/schrodinger_bridge/
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