Randomized averaging algorithms: when can errors & unreliability just be ignored?

Paolo Frasca & Julien Hendrickx

Lund – LCCC workshop Oct 2014

(Linear) Averaging

Agents have values $x_i(t)$

Averaging iteration:

$$x_i(t+1) = \sum a_{ij}(t)x_j(t)$$

$$\sum_{i=1}^{a_{ij}(t) \ge 0} a_{ij}(t) = 1$$

If average preserving (ex: if $a_{ij} = a_{ji}$) and enough interactions

$$x_i \to \bar{x} = \frac{1}{n} \sum x_i(0)$$

Basis for many decentralized algorithms

Ex: Gossip

Ex: Gossip

Ex: Gossip

Convergence to the average

What if transmissions are asymmetric/uncertain?

Communication requirements for averaging

Simple consensus:

$$x(t+1) = A(t)x(t)$$
 $A(t)$ stochastic

Average preserved if A(t) doubly stochastic. $\mathbf{1}^T A(t) = \mathbf{1}^T$. Needs

- **symmetric / balanced** interactions
- therefore *synchronous* interactions
- Push sum [Kempe et al 03], based on mass preservation
 Directed asynchronous communications OK
 But needs reliability: agents must know
 - if message received,
 - how many agents receive message

Unpredictability and Unreliability

Directed & uncertain communication

- Packet loss
- Broadcasts at random times

Unpredictability and Unreliability

Directed & uncertain communication

- Packet loss
- Broadcasts at random times
- Collisions due to interferences

Unpredictability and Unreliability: 2 approaches

1) Verification and correction mechanisms idea: *errors may create big trouble*

 Ignore issues, assume average behavior and hope for the best

Idea: errors will cancel out

Naïve extension: Asymmetric Gossip

Naïve extension: Asymmetric Gossip

Naïve extension: Asymmetric Gossip

Does not converge to average, but seems close...

Guarantee?

Outline

- Introduction
- Formulation and previous results
 - Formulation
 - Exact approach
 - Convergence-based approach
- Our approach
- Particularization and Applications
- Conclusions

Problem formulation

$$x(t+1) = A(t)x(t)$$

where
$$A(t) \in \Re^{n \times n}_+$$

- Averaging matrices ($A(t)\mathbf{1}=\mathbf{1}$)
- i.i.d. random variables

Any distribution, but events at different times independent

Problem formulation

$$x(t+1) = A(t)x(t)$$

where
$$A(t) \in \Re^{n \times n}_+$$

- ullet Averaging matrices ($A(t)\mathbf{1}=\mathbf{1}$)
- i.i.d. random variables
- ullet preserve average on expectation (${f 1}^T EA(t) = {f 1}^T$)

$$\rightarrow E\bar{x}(t) = \bar{x}(0)$$

Convergence to "consensus" w.p. 1 under conditions

$$x(t) \to \mathbf{1}x_{\infty}$$
 with $Ex_{\infty} = \bar{x}(0)$

Goal: bound *standard asymptotic error* $E\left(x_{\infty}-\bar{x}(0)\right)^{2}$

Examples: nominal network

1. Synchronous symmetric updates,

$$x_i(t+1) = x_i(t) + \sum_j a_{ij}(x_j(t) - x_i(t))$$

but some messages are lost

- 2. Nodes wake up and update at random times
- 3. Nodes wake up, send messages to neighbor(s) at random time

Exact approach

Standard asymptotic error computed exactly using x(0) and V:

$$E(A^T V A) = V \qquad \mathbf{1}^T V \mathbf{1} = 1$$

But, very hard to obtain expression for V

→ Theoretical computation only for specific cases (involved!)

Ex: [Fagnani & Zampieri, SICON 2009]

Fixed averaging algorithm with packet losses

deployed on Cayley graphs of Abelian groups

Exact approach

Standard asymptotic error computed exactly using x(0) and V:

$$E(A^TVA) = V$$
 $\mathbf{1}^TV\mathbf{1} = 1$

But, very hard to obtain expression for V

- → Theoretical computation only for specific cases (involved!)
- → Numerical verification for given system (hard)
 - Numerical issues
 - May need enumeration of all A
 often many (one for each possible combination of updates)

Convergence based approach

$$Var(t)$$
 Individual variance $\operatorname{E} \frac{1}{n} \sum \left(x_i(t) - \bar{x}(t) \right)^2$

err(t) Expected group error $\mathbf{E}(\bar{x}(t) - \bar{x}(0))^2$

Idea
$$\Delta err(t) \leq \frac{K}{n} Var(t)$$

$$Var(t) \sim e^{-\lambda t}$$

$$err(\infty) \le O\left(\frac{K}{n\lambda}\right) Var(0)$$

λ linked to algebraic connectivity of "network"

Convergence based approach

$$err(\infty) \le O\left(\frac{K}{n\lambda}\right) Var(0)$$

λ linked to algebraic connectivity of "network"

Conclusion: keep λ large when n grows \rightarrow expanders, etc.

But, expanders not easy to build physically (range constraints, etc.)

and λ often not critical in experimental results

Outline

- Introduction
- Formulation and previous results
- Our approach
- Particularization and Applications
- Conclusion and further works

Our approach: conservation

Find
$$\gamma$$
 s.t. $err(t) + \frac{\gamma}{n} \; Var(t) \;\; {\rm non\text{-}increasing}$

- If γ independent of n (or o(n)), "accuracy" for large n
- Not always the case, exist systems with large errors

How to pick γ ?

$$err(t) + \frac{\gamma}{n} \; Var(t) \; \; {\rm non\text{-}increasing}$$

$$\gamma$$
 valid if $E\left(L^T\mathbf{1}\mathbf{1}^TL\right) \leq \gamma E\left(L+L^T-L^TL\right)$

with
$$L(t) = I - A(t)$$

Appears involved, but

- Generic γ can be found for large classes of systems
- Results very easy to use
- Often leads to strong bounds

Outline

- Introduction
- Formulation and previous results
- Our approach
- Particularization and Applications
 - 1. Limited updates
 - 2. Uncorrelated updates
 - 3. Uncorrelated broadcasts
 - 4. Limited correlations
- Conclusions

1. Limited updates

$$A_{\max} \geq \sum_i \sum_{j \neq i} a_{ij}(t)$$
 Max total simultaneous updates $a_{ii}^{\min} \leq a_{ii}(t)$ Min. self confidence

Then
$$\gamma = \frac{A_{\max}}{a_{ii}^{\min}}$$

$$err(\infty) \le \frac{1}{n} \left(\frac{A_{\max}}{a_{ii}^{\min}}\right) V(0)$$

"Accuracy" if self confidence + amount of updates << n

Asymmetric gossip

$$A_{\max} \ge \sum_{i} \sum_{j \ne i} a_{ij}(t) \rightarrow err(\infty) \le \frac{1}{n} \left(\frac{A_{\max}}{a_{ii}^{\min}}\right) V(0)$$

Iteration: At each t, 1 random node i chooses* j and updates to

$$x_i(t) + q\left(x_j(t) - x_i(t)\right)$$

$$A_{\max} = q$$

$$a_{ii}^{\min} = 1 - q$$
 $err(\infty) \le \frac{1}{n} \left(\frac{q}{1 - q}\right) V(0)$

Accuracy for large n. Bound similar to [Fagnani & Zampieri 08]

Broadcast gossip

- At each t, a node j wakes up with uniform probability
- j transmits x_i to all within listening range (assumed symmetric)
- update $x_i(t+1) = x_i(t) + q(x_j(t) x_i(t))$ $q \in (0,1)$

Broadcast gossip

- At each t, a node j wakes up with uniform probability
- j transmits x_i to all within listening range (assumed symmetric)

• update
$$x_i(t+1) = x_i(t) + q(x_j(t) - x_i(t))$$
 $q \in (0,1)$

Previous results

- Involved, rely on spectral quantities related to network defined by listening ranges
- No general guarantee of accuracy for large n

$$\text{Ex:}\quad err(\infty) \leq O\left(\frac{d_{\max}^2}{\lambda_1 n}\right) V(0) \\ \qquad \qquad \qquad \qquad \qquad \qquad \\ \lambda_1 \underset{\text{eigenvalue laplacian}}{\text{Amax}} \quad \text{Largest degree}$$

Broadcast gossip: our approach

- At each t, a node j wakes up with uniform probability
- j transmits x_j to all within listening range (assumed symmetric)

• update
$$x_i(t+1) = x_i(t) + q(x_j(t) - x_i(t))$$
 $q \in (0,1)$

Limited updates rule:

$$A_{\max} = qd_{\max}$$

$$a_{ii}^{\min} = 1 - q$$
 \rightarrow
 $err(\infty) \le \frac{d_{\max}}{n} \left(\frac{q}{1 - q}\right) V(0)$

- Accuracy for large n if $d_{\max} < o(n)$
- Independent of graph spectrum

2. Independent updates

$$err(\infty) \le \frac{\gamma}{n} Var(0)$$

If nodes make independent decisions about updates and weights

$$a_{ij}, a_{kl}$$
 Uncorrelated if $i \neq k$ Then

$$\gamma = \frac{1 - a_{ii}^{\min}}{a_{ii}^{\min}}$$

lacktriangle Always accurate when $n o \infty$ if a_{ii}^{\min} bounded

Synchronous Asymmetric Gossip

Iteration: Every node i chooses neighbor j_i and updates to

$$x_i(t+1) = (1-q)x_i(t) + qx_{j_i}(t)$$

Probabilities s.t $E(\bar{x}(t)) = \bar{x}(0)$

Synchronous Asymmetric Gossip

Iteration: Every node i chooses neighbor j_i and updates to

$$x_i(t+1) = (1-q)x_i(t) + qx_{j_i}(t)$$

Probabilities s.t $E(\bar{x}(t)) = \bar{x}(0)$

Previous results

- Related to eigenvalues of graph Laplacian
- Accuracy for particular cases

[Fagnani & Zampieri, 2008]

Synchronous Asymmetric Gossip

Iteration: Every node i chooses neighbor j_i and updates to

$$x_i(t+1) = (1-q)x_i(t) + qx_{j_i}(t)$$

Probabilities s.t $E(\bar{x}(t)) = \bar{x}(0)$

Indep updates:

$$err(\infty) \le \frac{\gamma}{n} Var(0)$$
 $\gamma = \frac{1 - a_{ii}^{\min}}{a_{ii}^{\min}}$

$$a_{ii}^{\min} = 1 - q$$

$$err(\infty) \le \frac{1}{n} \left(\frac{q}{1-q}\right) V(0)$$

For all graphs, independently of spectral quantities

3. Independent broadcasts

$$err(\infty) \le \frac{\gamma}{n} Var(0)$$

• 2. Independent decisions about updates and weights

$$\gamma = \frac{1 - a_{ii}^{\min}}{a_{ii}^{\min}}$$

• 3. Independent broadcast decisions (i.e. columns in A)

$$\gamma = \underbrace{a_{col}^{\max}}_{ii} \text{ of a node}$$

$$a_{col}^{\max} \geq \sum_{i:i \neq j} a_{ij}(t) \qquad \forall j,t$$

Minimal self confidence

4. General correlation rule

$$err(\infty) \le \frac{\gamma}{n} Var(0)$$

If **no** a_{ij} correlated to more than 4C other coefficients

$$\gamma = \frac{C}{a_{ii}^{\min}}$$

(conservative)

At every time:

- Some nodes awake and broadcast their values
- Nodes receiving one value update
- Nodes receiving two or more values do not

Weights and probabilities

s. t.
$$E(\bar{x}(t)) = \bar{x}(0)$$

Challenges:

- Multiple updates
- Multiple correlations

At every time:

- Some nodes awake and broadcast their values
- Nodes receiving one value update
- Nodes receiving two or more values do not

Previous results

- Results on Cayley graphs of Abelian Groups
- Accuracy for certain sparse networks when n grows

[Fagnani & Frasca, 2011]

$$\gamma = \frac{C}{a_{ii}^{\min}}$$

If $no a_{ij}$ correlated to more than 4C other coefficients

How many correlations?

 $a_{12} > 0$ If 1 transmits Unless 3 transmits Which also affects a_{34}

Correlations up to distance 3

$$\rightarrow$$
 $4C \le d_{max}^3$

$$\gamma = \frac{C}{a_{ii}^{\min}}$$

 $\gamma = rac{C}{a_{ii}^{\min}}$ If no a_{ij} correlated to more than 4C other coefficients

Correlations up to distance 3 $4C \leq d_{max}^3$

$$4C \le d_{max}^3$$

$$err(\infty) \le \frac{d_{\max}^3}{n} \frac{1}{a_{ii}^{\min}} V(0)$$

Accuracy for large n if $d_{max} \leq o(n^{1/3})$

Outline

- Introduction
- Formulation and previous results
- Our approach
- Particularization and Applications
- Conclusions

Summary

- $\frac{\gamma}{n}$ group error + individual var. non-increasing*
- γ often easy to compute
- Bound independent of convergence speed and spectral properties; only local properties
- Prove asymptotical accuracy of many schemes
- Equals or outperforms (almost) all previous ad hoc results

* actually
$$\frac{\gamma}{n+\gamma}$$

Summary

$$err(\infty) \leq \frac{\text{Largest "correlated event"}}{\text{Min "self confidence"}} \frac{Var(0)}{n}$$

Ignoring problems and hoping for the best is OK if

- Limited correlations (often OK in multi-agent systems)
- Sufficient self-confidence for agents

Robustness of large class algorithms with respect to important fluctuations

Possible developments

- Expected average not entirely preserved
- Correlation between different times
- More detail
 \(\rightarrow \) Less conservative bounds
- Other algorithms

Thank you for your attention!

References

Paolo Frasca and J.H, *On the mean square error of randomized averaging algorithms*, Automatica 2013 arXiv:1111.4572v1

Paolo Frasca and J.H., *Large network consensus is robust to packet losses and interferences*, Proceedings of ECC 2013, Zurich, July 2013