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when can errors & unreliability just be ignored?
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(Linear) Averaging

Agents have values x;(t)

Averaging iteration:

ai;j(t) >0
t _|_ 1 E a”L] 'CE] Zaij(t) =1
If average preserving (ex: if a; = a;) and enough interactions

Basis for many decentralized algorithms
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Ex: Gossip
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Convergence to the average

What if transmissions are asymmetric/uncertain?
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Communication requirements for averaging

* Simple consensus:

CC(?f + 1) — A(t)gj(t) A(t) stochastic

Average preserved if A(t) doubly stochastic. 1TA(t) = 17, Needs

- symmetric / balanced interactions
- therefore synchronous interactions

 Push sum [Kempe et al 03], based on mass preservation

Directed asynchronous communications OK
But needs reliability: agents must know

- if message received,

- how many agents receive message



Unpredictability and Unreliability

* Directed & uncertain communication

—

Message received?

 Packet loss
* Broadcasts at random times
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Unpredictability and Unreliability

* Directed & uncertain communication

—>
Message received?

 Packet loss
* Broadcasts at random times
e Collisions due to interferences
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Unpredictability and Unreliability:
2 approaches

1) Verification and correction mechanisms
idea: errors may create big trouble

lgnore issues, assume average behaviot

and hope for the best

|dea: errors will cancel out



Naive extension: Asymmetric Gossip
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Naive extension: Asymmetric Gossip
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Naive extension: Asymmetric Gossip
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Does not converge to average, but seems close...

Guarantee?
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Problem formulation
r(t+1) = A(t)z(t)

where A(t) € RL*"

* Averaging matrices ( A(¢)1 = 1)
* i.i.d. random variables

Any distribution, but
events at different times independent



Problem formulation
x(t+ 1) = A(t)x(t)

where A(t) € RL*"

* Averaging matrices ( A(¢)1 = 1)
* i.i.d. random variables
* preserve average on expectation (11 EA(t) = 11)
> FEx(t) = x(0)
Convergence to “consensus” w.p. 1 under conditions
r(t) = 1lrs with Exs = Z(0)

Goal: bound standard asymptotic error E (x., — E(O))2



Examples: nominal network

1. Synchronous symmetric updates,
zi(t+ 1) = z;(t +Zazg x;(t) — xi(t))
but some messages are lost
2. Nodes wake up and update at random times

3. Nodes wake up, send messages to neighbor(s) at random time



Exact approach

Standard asymptotic error computed exactly using x(0) and V:
E(A'VA) =V 1'v1i=1

But, very hard to obtain expression for V

- Theoretical computation only for specific cases (involved!)

Ex: [Fagnani & Zampieri, SICON 2009]
Fixed averaging algorithm with packet losses
deployed on Cayley graphs of Abelian groups



Exact approach

Standard asymptotic error computed exactly using x(0) and V:
E(A'VA) =V 1'v1i=1

But, very hard to obtain expression for V

- Theoretical computation only for specific cases (involved!)
- Numerical verification for given system (hard)

* Numerical issues
* May need enumeration of all A
often many (one for each possible combination of updates)



Convergence based approach

1 2
Vi ' E— (T) — x(t
Var(t) Individual variance - E (zi(t) — (1))

err(t) Expected group error E(Z(t) — Z(0))”

Idea Aerr(t) < —Var(t)

n

Var(t) ~ e M K

re) <0 (5 varty

| t

A linked to algebraic connectivity of “network”
Ex: [Fagnani & Frasca, 2011]



Convergence based approach

Var(t) ~ e M K

r) 20 (5 varty

t

A linked to algebraic connectivity of “network”

Conclusion: keep A large when n grows=>» expanders, etc.

But, expanders not easy to build physically (range constraints, etc.)

and A often not critical in experimental results
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Our approach: conservation

Find y s.t. 67“7“(?5) + % VCL?“(t) non-increasing

*If vy independent of n (or o(n)), “accuracy’ for large n
*Not always the case, exist systems with large errors



How to picky ?

err(t) + % Var(t) non-increasing

yvalidif E(L"11"L) < ~yE(L+L" —L"L)
with L(t) =1 — A(t)

Appears involved, but

* Genericy can be found for large classes of systems
e Results very easy to use
e Often leads to strong bounds
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1. Limited updates

Amax > Z Zaz’j (t) Max total simultaneous updates

T JFL
ai™ < ag(t) Min. self confidence
Imax
Then = .

e <1 (B v

;i

“Accuracy” if self confidence + amount of updates <<. n



Asymmetric gossip
Amax > > Y aii(t) > err(oo) < ! <A2?5> V(0)

i i no\ a;

lteration: At eacht, 1 random node i chooses* j and updates to

xi(t) + q (z;(t) — (1))

A =0 o err(00) < = (L> V(0)

1 —gq

Accuracy for large n. Bound similar to [Fagnani & Zampieri 08]

* With symmetric probabilities



Broadcast gossip

* At each t, a node j wakes up with uniform probability
* j transmits x; to all within listening range (assumed symmetric)

cupdate  z;(t+1) = z;(t) + q(x,;(t) — xi(t))
q € (0,1)

-————
- -

“ @ s Symmetry = FE(z(t)) = z(0)
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Broadcast gossip

* At each t, a node j wakes up with uniform probability
* j transmits x; to all within listening range (assumed symmetric)

cupdate i (t+ 1) = zi(t) + gl () — 2i(t)) c 01

Previous results

* Involved, rely on spectral quantities related to network defined
by listening ranges

e No general guarantee of accuracy for large n

d2 dmaX Largest degree
ex: err(oo) <O (| =2 | V(0)
)\171 )\ Smallest nonzero

eigenvalue laplacian

[Aysal et al. 2009], [Fagnani & Delvenne 2010], [F. Fagnani and P. Frasca. 2011a,b]



Broadcast gossip: our approach

* At each t, a node j wakes up with uniform probability
* j transmits x; to all within listening range (assumed symmetric)

cupdate  z;(t+1) = x4(¢t) + q(z;(t) — i(?)) g€ (0,1)

Limited updates rule:

Amax — qdmax dmax q
Cl,g-lin _1_ q > GTT(OO) § o (Tq) V(O)

* Accuracy for large nif d,,,.. < o(n)
* Independent of graph spectrum



2. Independent updates

err(oo) < %Var(O)

If nodes make independent decisions about updates and weight:

a;j,ax; Uncorrelatedif ¢ %~ k  Then

min
V= amin
11

= Always accurate when n — oo if a;; = bounded



Synchronous Asymmetric Gossip

Iteration: Every node i chooses neighbor j. and updates to
vi(t+1) = (1— q)zi(t) + gz, (1)

Probabilities s.t F(Z(t)) = (0)



Synchronous Asymmetric Gossip

Iteration: Every node i chooses neighbor j. and updates to
vi(t+1) = (1— q)zi(t) + gz, (1)

Probabilities s.t F(Z(t)) = (0)

Previous results

* Related to eigenvalues of graph Laplacian

e Accuracy for particular cases
[Fagnani & Zampieri, 2008]



Synchronous Asymmetric Gossip

Iteration: Every node i chooses neighbor j. and updates to
vi(t+1) = (1— q)zi(t) + gz, (1)

Probabilities s.t F(Z(t)) = (0)

1 — qin
Indep updates: err(oo) < %Va?"(o) Y= "
min o 1
a; =1—q err(oo) < — <L> V(0)
n\1—gq

For all graphs, independently of spectral quantities



3. Independent broadcasts
err(oo) < ZVCL’I“(O)

n
* 2. Independent decisions about updates and weights
min
= amin

11
* 3. Independent broadcast decisions (i.e. columns in A)

Max importance

@ of a node
Y=o A > Y " ai;(t)
@ RE

Minimal self
confidence



4. General correlation rule

err(oo) < %Va’r(O)

If no a;; correlated to more than 4C other coefficients

C (conservative)

V= min
A



Broadcast with collisions

At every time:

 Some nodes awake and broadcast their values
* Nodes receiving one value update

* Nodes receiving two or more values do not

Weights and probabilities
?7? s.t. E(z(t)) =z(0)

Challenges:
- Multiple updates
- Multiple correlations

36



Broadcast with collisions

At every time:

 Some nodes awake and broadcast their values
* Nodes receiving one value update

* Nodes receiving two or more values do not

Previous results

- Results on Cayley graphs of Abelian Groups

- Accuracy for certain sparse networks when n grows
[Fagnani & Frasca, 2011]



Broadcast with collisions

C If no ai;correlated to more
qmin than 4C other coefficients

How many correlations?

1 2 3 4

O E—— >
ai2 > 0 If 1 transmits Correlations up
Unless 3 transmits to distance 3
Which also affects a34 > 40 < d°

max



Broadcast with collisions

C If no ai;correlated to more
qmin than 4C other coefficients

Correlations up to distance 3 4C < d°

max

Aok 1
err(oo) < —=——=V(0)
noa;

Accuracy for large n if d,j,0r < 0(n1/3)
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Summary

J group error + individual var. non-increasing*

n
~ often easy to compute

Bound independent of convergence speed and
spectral properties; only local properties

Prove asymptotical accuracy of many schemes

Equals or outperforms (almost) all previous ad
hoc results

Y
*actually ——
acuayn+7



Summary

Largest “correlated event” Var(0)

err(oo) <
Min “self confidence” n

lgnoring problems and hoping for the best is OK if

e Limited correlations (often OK in multi-agent systems)
* Sufficient self-confidence for agents

Robustness of large class algorithms with respect to
important fluctuations



Possible developments

Expected average not entirely preserved
Correlation between different times
More detail 2 Less conservative bounds

Other algorithms



Thank you for your attention!

References

Paolo Frasca and J.H, On the mean square error of randomized
averaging algorithms, Automatica 2013 arXiv:1111.4572v1

Paolo Frasca and J.H., Large network consensus is robust to packet
losses and interferences, Proceedings of ECC 2013, Zurich, July 2013

44



