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Optimal power flow (OPF) 

OPF is solved routinely to determine 
n  How much power to generate where 
n  Parameter setting, e.g. taps, VARs 
n  Market operation & pricing 

Non-convex and hard to solve 
n  Huge literature since 1962 
n  Common practice: DC power flow (LP) 
n  Also: Newton-Ralphson, interior point, … 



Outline 

Optimal power flow (OPF) 
n  bus injection model, branch flow model 

3 convex relaxations 
n  SDP, chordal, second-order cone (SOCP) 
n  Relation among them 

Sufficient conditions for exact relaxation 
n  Radial: 3 main conditions 

n  Mesh: phase shifters 
 



min            tr CVV *

subject to   s j   ≤   tr YjVV
*( )  ≤   s j         v j  ≤  |Vj |2  ≤   vj

  

Summary: OPF (bus injection model) 

nonconvex QCQP 



Sij =ViIij
*Vj =Vi − zij Iij

branch	
  flow	
  
model	
  

Sij − zij Iij
2( )

i→ j
∑ − Sjk

j→k
∑ = sj

Summary: OPF (branch flow model) 

min      f x( )
over    x := (S, I,V, s)
s. t.     s j ≤ sj ≤ sj        v j ≤ vj ≤ vj

nonconvex 



details 



Bus injection model 

i j k 
zij = yij

−1

admittance matrix:  

Yij :=

yik
k~i
∑       if  i = j

−yij         if  i ~ j
0            else

#

$

%
%

&

%
%

sj

graph model G: undirected 
 
Y specifies topology of G and 
impedance z on lines 



Bus injection model 

Power flow problem: 
 

Given            find  Y, s( ) V V

In terms of    : V

Yj =  Y *ejej
Tsj =  tr Yj

HVV H( )          for all  j



Branch flow model  

i j k 

sj

zij = yij
−1

graph model G: directed 



Vi −Vj = zij Iij               for all  i→ j

Branch flow model 

power definition 

power balance 

sj

Kirchhoff law 

Sij :  branch power 
Iij :  branch current
Vj :  voltage

Sij =ViIij
*                     for all  i→ j

Sij − zij Iij
2( )

i→ j
∑ + sj = Sjk

j→k
∑    for all j

 
loss 

sending 
end pwr 

sending 
end pwr 



Vi −Vj = zij Iij               for all  i→ j

Branch flow model 

power definition 

power balance 

Kirchhoff law 

Sij =ViIij
*                     for all  i→ j

Sij − zij Iij
2( )

i→ j
∑ + sj = Sjk

j→k
∑    for all j

Power flow problem: 
 

Given            find  z, s( ) (S, I,V ) X



Vi −Vj = zij Iij

Recap 
Branch flow model Bus injection model 

Sij =ViIij
*

Sjk
j→k
∑ = Sij − zij Iij

2( )
i→ j
∑ + sj

sj =  tr YjVV
*( )

X

(S, I,V, s)∈C2(m+n+1)

V

(V, s)∈C2(n+1)

solution  
set 



Equivalence 

X

(S, I,V, s)∈C2(m+n+1)

V

(V, s)∈C2(n+1)

solution  
set 

Theorem: V ≡ X

•  BIM and BFM are equivalent in this sense 
•  Any result in one model is in principle provable in the other, 
•  … but some results are easier to formulate or prove in one  
     than the other 
•  BFM seems to be much more numerically stable (radial networks) 



power flow equation 

OPF: bus injection model 

min              V *CV
over             V, s( )
subject to     s j   ≤   sj  ≤   s j             V j  ≤  |Vj |  ≤   V j

                    sj  =  tr Yj
HVV H( )

gen cost, 
power loss 



power flow equation 

OPF: bus injection model 

min              V *CV
over             V, s( )
subject to     s j   ≤   sj  ≤   s j             V j  ≤  |Vj |  ≤   V j

                    sj  =  tr Yj
HVV H( )

gen cost, 
power loss 



min            tr CVV *

subject to   s j   ≤   tr YjVV
*( )  ≤   s j         v j  ≤  |Vj |2  ≤   vj

  

OPF: bus injection model 

quadratically constrained QP (QCQP) 
nonconvex, NP-hard 



OPF: branch flow model 

min      f x( )
over    x := (S, I,V, s)
s. t.     s j ≤ sj ≤ sj        v j ≤ vj ≤ vj



OPF: branch flow model 

min      f x( )
over    x := (S, I,V, s)
s. t.     s j ≤ sj ≤ sj        v j ≤ vj ≤ vj



Sij =ViIij
*Vj =Vi − zij Iij

branch	
  flow	
  
model	
  

Sij − zij Iij
2( )

i→ j
∑ − Sjk

j→k
∑ = sj

OPF: branch flow model 

min      f x( )
over    x := (S, I,V, s)
s. t.     s j ≤ sj ≤ sj        v j ≤ vj ≤ vj

nonconvexity 



Other features 

Security constraint OPF 
n  Solve for operating points after each single 

contingency (N-1 security) 
n  N sets of variables and constraints, one for 

each contingency 

Unit commitment 
n  Discrete variables 

Stochastic OPF 
n  Chance constraints Pr(bad event) <  

Other constraints 
n  Line flow, line loss, stability limit, …  

ε

… OPF in practice is a lot harder  



Outline 

Optimal power flow (OPF) 
n  bus injection model, branch flow model 

3 convex relaxations 
n  SDP, chordal, second-order cone (SOCP) 
n  Relation among them 

Sufficient conditions for exact relaxation 
n  Radial: 3 main conditions 

n  Mesh: phase shifters 
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  mesh	
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What are semidefinite relaxations of OPF? 

How to check & recover global optimal ? 



details 
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Basic idea 

min            tr CVV *

subject to   s j   ≤   tr YjVV
*( )  ≤   s j         v j  ≤  |Vj |2  ≤   vj

  
V

All complexity due to nonconvexity of V 

V

Relaxations:  
•  design convex supersets of V  
•  minimize cost over convex supersets 



Basic idea 

min            tr CVV *

subject to   s j   ≤   tr YjVV
*( )  ≤   s j         v j  ≤  |Vj |2  ≤   vj

  
V

All complexity due to nonconvexity of V 

Relaxations:  
•  design convex supersets of V  
•  minimize cost over convex supersets 

Exact relaxation: optimal solution of relaxation  
happens to lie in V  (when?) 

V



Basic idea 

min            tr CVV *

subject to   s j   ≤   tr YjVV
*( )  ≤   s j         v j  ≤  |Vj |2  ≤   vj

  
V

Approach 
1.  Three equivalent characterizations of V  
2.  Each suggests a lift and relaxation 

•  What is the relation among different relaxations ? 
•  When will a relaxation be exact ? 



min            tr CVV *

subject to   s j   ≤   tr YjVV
*( )  ≤   s j         v j  ≤  |Vj |2  ≤   vj

  

min            tr CW

subject to   s j ≤ tr YjW( ) ≤ s j         vi ≤Wii ≤ vi
                  W ≥ 0,   rank W =1

Equivalent problem:  

Feasible sets 

convex in W 
except this constraint 

quadratic in V 
linear in W  



Equivalent feasible sets 

W:= W : satisfies linear constraints  { } W ≥ 0 rank-1{ }
idea:  W =VV *

instead of n variables  
solve for n2 vars ! 

V:= V : satisfies quadratic constraints  { }

W+

V

W



Feasible set 

yjk
*

k:k~ j
∑ Vj

2
−VjVk

*( )  :  only Vj
2

 and VjVk
*  

corresponding to edges ( j,k) in G! 

Wjj Wjklinear in                 Wjj,Wjk( )

min            tr CVV *

subject to   s j   ≤   tr YjVV
*( )  ≤   s j         v j  ≤  |Vj |2  ≤   vj

  
V

only n+2m vars ! 



Feasible set 

yjk
*

k:k~ j
∑ Vj

2
−VjVk

*( )  :  only Vj
2

 and VjVk
*  

corresponding to edges ( j,k) in G! 

Wjj Wjklinear in                 Wjj,Wjk( )

only n+2m vars ! 

partial matrix WG  defined on G

WG := [WG ] jj,[WG ] jk,[WG ]kj j, jk ∈G{ }

Kircchoff’s laws depend directly only on WG  
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(a)" (b)" (c)"

Fig. 1: Chordal extensions of G. (a) Graph G and the partial matrix XG. (b) A chordal extension F and
its XF that have 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5). These cliques share two nodes, 2
and 3. The corresponding XF(q1) and XF(q2) are outlined in XF with the overlapping entries shaded in
green. The chordal relaxation based on this F requires 4 decoupling variables u jk. (c) Another chordal
extension F and its XF that have 3 maximal cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

Define the 7⇥7 block-diagonal matrix

X 0 :=


X 0
F(q1) 0

0 XF(q2)

�

Then the chordal relaxation (7) can be written in
the standard form (3) in terms of these 7⇥7 block-
diagonal Hermitian matrices:

min
X 02S7

tr C0
0X 0 (10a)

subj. to tr C0
mX 0  bm, m = 1, . . . ,M(10b)

tr C0
rX

0 = 0, r = 1,2,3,4 (10c)
X 0 ⌫ 0 (10d)

for appropriate choices of C0
m, m = 0, . . . ,M. In the

above problem the constraint X 0 ⌫ 0 is equivalent
to the requirement (9) on its submatrices and C0

r in

(10c) can be chosen to enforce the requirement (8).
Hence the chordal relaxation (7) is indeed an SDP.

Remark 1: There are two conflicting factors in
choosing a good chordal extension. First a chordal
extension F that contains fewer number of max-
imal cliques q generally involves larger cliques,
leading to larger submatrices XF(q); for example
the complete graph F has a single maximal clique
but the corresponding XF(q) = X has n2 entries
and the chordal relaxation (7) offers no computa-
tional advantage over solving (in fact it is exactly)
the original SDP (3). This argues for a chordal
extension F with smaller, though possibly more,
maximal cliques q. Second, however, more maximal
cliques q tends to require more decoupling variables
u jk in order to express the decoupled submatrices

Wc(G) Wc(G) 

c(G) c(G) G 

Example 

W =

W11   W12   W13   W14   W15

W21   W22   W23   W24   W25

W31   W32   W33   W34   W35

W41   W42   W43   W44   W45

W51   W52   W53   W54   W55

!
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#
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SDP solves for W ∈Cn2

n2 variables 

Want to solve for WG
n+2m variables 

WG =

W11   W12   W13     
W21   W22                   W25

W31           W33   W34   
                W43   W44   W45

        W52           W54   W55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&



Feasible sets 

V := V s j ≤ tr YjVV
*( ) ≤ s j,    v j  ≤|Vj |2≤ vj{ }OPF 

W := W s j ≤ tr YjW( ) ≤ s j,  v j ≤Wjj ≤ vj{ }∩ W ≥ 0, rank-1{ }
SDP 

depend only on WG 
depend on all  
entries of W 



Feasible sets 

V := V s j ≤ tr YjVV
*( ) ≤ s j,    v j  ≤|Vj |2≤ vj{ }OPF 

W := W s j ≤ tr YjW( ) ≤ s j,  v j ≤Wjj ≤ vj{ }∩ W ≥ 0, rank-1{ }
SDP 

WG := WG s j ≤ tr YjWG( ) ≤ s j,  v j ≤ [WG ] jj ≤ vj{ }∩ WG ≥ 0, rank-1{ }

WG is equivalent to V when G is chordal  
Not equivalent otherwise  

first idea: 



Equivalent feasible sets  

W:= W : satisfies linear constraints  { } W ≥ 0 rank-1{ }
idea:  W =VV *

Wc(G ):= 
Wjj,Wjk : ( j,k) in c(G) 
satisfy linear constraints  

!
"
#

$
%
&
 Wc(G ) ≥ 0 rank-1{ }

idea:  Wc(G ) = VV *  on c(G)( )
         matrix completion [Grone et al 1984]

idea:  WG = VV *  only on G( )

WG := 
Wjj,Wjk : ( j,k) in G  
satisfy linear constraints  

!
"
#

$
%
&


W ( j,k) ≥ 0 rank-1,
cycle cond on ∠Wjk

!
"
#

$
%
&



Cycle condition 
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connecting distinct vertices.1 A partial matrix WF is a set of
2m+n complex numbers defined on F :

WF := {[WF ] j j, [WF ] jk, [WF ]k j |nodes j and edges ( j,k) of F}

WF can be interpreted as a matrix with entries partially specified
by these complex numbers. If F is a complete graph (in which
there is an edge between every pair of vertices) then WF is a
fully specified n⇥n matrix. A completion W of WF is any fully
specified n⇥n matrix that agrees with WF on graph F , i.e.,

[W ] j j = [WF ] j j, [W ] jk = [WF ] jk for j,( j,k) 2 F

Given an n⇥n matrix W we use WF to denote the submatrix of
W on F, i.e., the partial matrix consisting of the entries of W de-
fined on graph F . If q is a clique (a fully connected subgraph) of
F then let WF(q) denote the fully-specified principal submatrix
of WF defined on q. We extend the definitions of Hermitian,
psd, and rank-1 for matrices to partial matrices, as follows.
A partial matrix WF is Hermitian, denoted by WF = W H

F , if
[WF ] jk = [WF ]Hk j for all ( j,k) 2 F ; it is psd, denoted by WF ⌫ 0,
if WF is Hermitian and the principal submatrices WF(q) are psd
for all cliques q of F ; it is rank-1, denoted by rank WF = 1, if the
principal submatrices WF(q) are rank-1 for all cliques q of F .
We say WF is 2⇥2 psd (rank-1), denoted by WF( j,k)⌫ 0 (rank
WF( j,k) = 1) if, for all edges ( j,k) 2 F , the 2⇥ 2 principal
submatrices

[WF ]( j,k) :=

[WF ] j j [WF ] jk
[WF ]k j [WF ]kk

�

are psd (rank-1). F is a chordal graph if either F has no cycle or
all its minimal cycles (ones without chords) are of length three.
A chordal extension c(F) of F is a chordal graph that contains
F , i.e., c(F) has the same vertex set as F but an edge set that is
a superset of F’s edge set. In that case we call the partial matrix
Wc(F) a chordal extension of the partial matrix WF . Every graph
F has a chordal extension, generally nonunique. In particular a
complete supergraph of F is a trivial chordal extension of F .

For our purposes chordal graphs are important because of
the result [63, Theorem 7] that every psd partial matrix has a
psd completion if and only if the underlying graph is chordal.
When a positive definite completion exists, there is a unique
positive definite completion, in the class of all positive definite
completions, whose determinant is maximal. Theorem 2 below
extends this to rank-1 partial matrices.

B. Feasible sets
We can now characterize the feasible set V of OPF defined

in (6). Recall the undirected connected graph G = (N+,E) that
models a power network. Given a voltage vector V 2 V define
a partial matrix WG :=WG(V ): for j 2 N+ and ( j,k) 2 E,

[WG] j j := |Vj|2 (11a)
[WG] jk := VjV H

k =: [WG]
H
k j (11b)

1In this subsection we abuse notation and use n,m to denote general
integers unrelated to the number of buses or lines in a power network.

Then the constraints (5) and (3) imply that the partial matrix
WG satisfies 2

s j  Â
k:( j,k)2E

yH
jk
�
[WG] j j � [WG] jk

�
 s j, j 2 N+ (12a)

v j  [WG] j j  v j, j 2 N+ (12b)

Following Section III-C these constraints can also be written
in a (partial) matrix form as:

p j  tr F jWG  p j

q j  tr Y jWG  q j

v j  tr JjWG  v j

The converse is not always true: given a partial matrix WG
that satisfies (12) it is not always possible to recover a voltage
vector V in V. Indeed this is possible if and only if WG has
a completion W that is psd rank-1, because in that case W
satisfies (12) since y jk = 0 if ( j,k) 62 E and it can be uniquely
factored as W = VV H with V 2 V. We hence seek conditions
additional to (12) on the partial matrix WG that guarantee that
it has a psd rank-1 completion W from which V 2 V can be
recovered. Our first key result provides such a characterization.

We say that a partial matrix WG satisfies the cycle condition
if for every cycle c in G

Â
( j,k)2c

\Wjk = 0 mod 2p (13)

When \Wjk represent voltage phase differences across each line
then the cycle condition imposes that they sum to zero (mod 2p)
around any cycle. The next theorem, proved in [58, Theorem
3] and [28], implies that WG has a psd rank-1 completion W if
and only if WG is 2⇥2 psd rank-1 on G and satisfies the cycle
condition (13), if and only if it has a chordal extension Wc(G)

that is psd rank-1. 3

Consider the following conditions on (n+ 1)⇥ (n+ 1) ma-
trices W and partial matrices Wc(G) and WG:

W ⌫ 0, rank W = 1 (14)
Wc(G) ⌫ 0, rank Wc(G) = 1 (15)

WG( j,k)⌫ 0, rank WG( j,k) = 1, ( j,k) 2 E, (16)

Theorem 2: Fix a graph G on n+1 nodes and any chordal
extension c(G) of G. Assuming Wj j > 0,

⇥
Wc(G)

⇤
j j > 0 and

[WG] j j > 0, j 2 N+, we have:
(1) Given an (n+ 1)⇥ (n+ 1) matrix W that satisfies (14),

its submatrix Wc(G) satisfies (15).
(2) Given a partial matrix Wc(G) that satisfies (15), its sub-

matrix WG satisfies (16) and the cycle condition (13).
(3) Given a partial matrix WG that satisfies (16) and the

cycle condition (13), there is a completion W of WG that
satisfies (14).

2The constraint (12a) can also be written compactly in terms of the
admittance matrix Y as in [66]:

s  diag
�
WY H�  s

3The theorem also holds with psd replaced by negative semidefinite.
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in a (partial) matrix form as:

p j  tr F jWG  p j

q j  tr Y jWG  q j

v j  tr JjWG  v j

The converse is not always true: given a partial matrix WG
that satisfies (12) it is not always possible to recover a voltage
vector V in V. Indeed this is possible if and only if WG has
a completion W that is psd rank-1, because in that case W
satisfies (12) since y jk = 0 if ( j,k) 62 E and it can be uniquely
factored as W = VV H with V 2 V. We hence seek conditions
additional to (12) on the partial matrix WG that guarantee that
it has a psd rank-1 completion W from which V 2 V can be
recovered. Our first key result provides such a characterization.

We say that a partial matrix WG satisfies the cycle condition
if for every cycle c in G

Â
( j,k)2c

\Wjk = 0 mod 2p (13)

When \Wjk represent voltage phase differences across each line
then the cycle condition imposes that they sum to zero (mod 2p)
around any cycle. The next theorem, proved in [58, Theorem
3] and [28], implies that WG has a psd rank-1 completion W if
and only if WG is 2⇥2 psd rank-1 on G and satisfies the cycle
condition (13), if and only if it has a chordal extension Wc(G)

that is psd rank-1. 3

Consider the following conditions on (n+ 1)⇥ (n+ 1) ma-
trices W and partial matrices Wc(G) and WG:

W ⌫ 0, rank W = 1 (14)
Wc(G) ⌫ 0, rank Wc(G) = 1 (15)

WG( j,k)⌫ 0, rank WG( j,k) = 1, ( j,k) 2 E, (16)

Theorem 2: Fix a graph G on n+1 nodes and any chordal
extension c(G) of G. Assuming Wj j > 0,

⇥
Wc(G)

⇤
j j > 0 and

[WG] j j > 0, j 2 N+, we have:
(1) Given an (n+ 1)⇥ (n+ 1) matrix W that satisfies (14),

its submatrix Wc(G) satisfies (15).
(2) Given a partial matrix Wc(G) that satisfies (15), its sub-

matrix WG satisfies (16) and the cycle condition (13).
(3) Given a partial matrix WG that satisfies (16) and the

cycle condition (13), there is a completion W of WG that
satisfies (14).

2The constraint (12a) can also be written compactly in terms of the
admittance matrix Y as in [66]:

s  diag
�
WY H�  s

3The theorem also holds with psd replaced by negative semidefinite.

∠ WG[ ] jk
cycle 
cond 

local 

global 
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V W Wc(G ) WG
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Theorem: V ≡W ≡Wc(G ) ≡WG



Equivalent feasible sets 

V W Wc(G ) WG

Theorem: V ≡W ≡Wc(G ) ≡WG

Given                                                  there is 
unique completion                and unique  

WG ∈WG   or  Wc(G ) ∈Wc(G )

W ∈W V ∈ V

Can minimize cost over any of these sets, but … 



Relaxations 

W:= W : satisfies linear constraints  { } W ≥ 0 rank-1{ }
idea:  W =VV *

Wc(G ):= 
Wjj,Wjk : ( j,k) in c(G) 
satisfy linear constraints  

!
"
#

$
%
&
 Wc(G ) ≥ 0 rank-1{ }

idea:  Wc(G ) = VV *  on c(G)( )
         matrix completion [Grone et al 1984]

idea:  WG = VV *  only on G( )

WG := 
Wjj,Wjk : ( j,k) in G  
satisfy linear constraints  

!
"
#

$
%
&


W ( j,k) ≥ 0 rank-1,
cycle cond on ∠Wjk

!
"
#

$
%
&



W+ Wc(G )
+

Relaxations 

WG
+

V W Wc(G ) WG

Theorem 
n  Radial G :  

n  Mesh G :  

V ⊆W+ ≅Wc(G )
+ ≅WG

+

V ⊆W+ ≅Wc(G )
+ ⊆WG

+

Bose, Low, Chandy Allerton 2012 
Bose, Low, Teeraratkul, Hassibi TAC2014 



W+ Wc(G )
+

Relaxations 

WG
+

V W Wc(G ) WG

Theorem 
n  Radial G :  

n  Mesh G :  

V ⊆W+ ≅Wc(G )
+ ≅WG

+

V ⊆W+ ≅Wc(G )
+ ⊆WG

+

For radial networks: always solve SOCP ! 



Convex relaxations 
OPF
min
V

  C(V )   subject to  V ∈ V

10

decomposition. For a partial matrix W ⇤
G 2 W2 we

will provide below an alternative, a much more
direct, construction of V ⇤ 2 V.

D. Convex relaxations
The difficulty with solving (21) is that the fea-

sible sets W1, Wc(G), and W2 are still nonconvex
due to the rank-1 constraints and the cycle condition
(20). Their removal leads to the SDP, chordal, and
SOCP relaxations of OPF respectively.

Relax W1 to a convex subset of Sn:

W+
1 := {W 2 Sn | WG satisfies (19),W ⌫ 0}

(22)
Relax Wc(G) to a convex set of Hermitian partial
matrices:

W+
c(G) := {Wc(G) | WG satisfies (19),Wc(G) ⌫ 0}

(23)
Relax WG to a convex set of Hermitian partial ma-
trices by dropping both the 2⇥2 rank-1 condition
and the cycle condition:

W+
2 := {WG | WG satisfies (19),

WG( j,k)⌫ 0, ( j,k) 2 E}
Define the problems:
OPF-sdp:

min
W

C(WG) subject to W 2W+
1 (24)

OPF-ch:

min
Wc(G)

C(WG) subject to Wc(G) 2W+
c(G) (25)

OPF-socp:

min
WG

C(WG) subject to WG 2W+
2 (26)

Since W1 ✓W+
1 , Wc(G) ✓W+

c(G), W2 ✓W+
2 , OPF-

sdp, OPF-ch, OPF-socp provide lower bounds on
the optimal value of OPF (16) in light of Corollary
4.

We make two comments on these semidefinite
programs. First the condition WG( j,k) ⌫ 0 in the
definition of W+

2 is equivalent to

[WG] j j � 0, [WG]kk � 0, [WG] j j[WG]kk �
��[WG] jk

��2

This is a second-order cone and hence OPF-socp
is indeed an SOCP in the rotated form (5). Second
OPF-ch is a convex chordal relaxation in the stan-
dard form (7). SOCP relaxation for OPF seems to

be first observed in [47] for the bus injection model
and in [48] for the branch flow model. Chordal
relaxation for OPF is first proposed in [29].

For a mapping f : A ! B let f (A) denote the set
{ f (x) | x 2 A}✓ B. For two sets A and B that are
not necessarily in the same space we say that A
is an equivalent subset of B, denoted by A v B, if
there is a mapping f : A ! B such that f (A) ✓ B
and f is a bijection from A to f (A). Clearly A ⌘ B
if and only if A v B and B v A. The feasible set
of OPF (16) is an equivalent subset of the feasible
sets of the relaxations, as the following results from
[44], [45] show.

Theorem 5 ([44], [45]): 1) If G is radial then
VvW+

1 ⌘W+
c(G) ⌘W+

2 .
2) If G has cycles then VvW+

1 ⌘W+
c(G) vW+

2 .
Let C⇤,Csd p,Cch,Csocp be the optimal values of

OPF, OPF-sdp, OPF-ch, OPF-socp respectively.
Theorem 5 and Corollary 4 directly imply

Corollary 6: 1) If G is radial then C⇤ �
Csd p =Cch =Csocp.

2) If G has cycles then C⇤ �Csd p =Cch �Csocp.

We now comment on the computational aspect
of these three relaxations. First the choice of the
chordal extension c(G) of G determines the number
of variables in OPF-ch and hence the required
computation effort, but it does not affect its optimal
value. A good choice of c(G) is nontrivial. In
the worst case OPF-ch can require as much effort
as OPF-sdp, but simulation results on IEEE test
systems in [45] confirm that it can be much more
efficiently solved than OPF-sdp when the network
is large and sparse, as practical systems are. Indeed
the numbers of lines in IEEE test systems (with 14,
30, 57, 118, 300 buses) are less than 1.6 times the
numbers of buses, much less than the squares of
them.

Second though all OPF-sdp, OPF-ch, and OPF-
socp are convex and hence can be solved in poly-
nomial time, SOCP in general requires a much
smaller computational effort than SDP for large
sparse networks. Indeed G is a subgraph of any
chordal extension c(G) which is a subgraph of the
complete graph defined on N, and hence the number
of complex variables (matrix entries) is the smallest
in OPF-socp (|WG|), the largest in OPF-sdp (n2),
with OPF-ch typically in between.

Finally, and most importantly, Corollary 6 sug-

G 



Recap: convex relaxations 

V W Wc(G ) WG

WG
+

SOCP relaxation 
•  coarsest superset 
•  min # variables 
•  fastest 

W+

SDP relaxation 
•  tightest superset 
•  max # variables 
•  slowest  

Wc(G )
+

Chordal relaxation 
•  equivalent superset 
•  much faster for  
     sparse networks 

simple 
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simple 
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simple 
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V W Wc(G ) WG

WG
+

SOCP relaxation 
•  coarsest superset 
•  min # variables 
•  fastest 

W+

SDP relaxation 
•  tightest superset 
•  max # variables 
•  slowest  

Wc(G )
+

Chordal relaxation 
•  equivalent superset 
•  much faster for  
     sparse networks 

simple 
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simple 
construction 

simple 
construction 

radial 

For radial network: always solve SOCP ! 
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(a) (b)

Fig. 4: Projections of feasible regions on p1 � p2 space for 3-bus system in (3).
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P
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h1(F+
2 )

h1(F+
1 )

h1(F1) = h1(F2)

Fig. 5: Zoomed in Pareto fronts of the 3-bus case in p1 � p2 space.

B. IEEE benchmark systems

For IEEE benchmark systems [35], [42], we solve R1, R2 and Rch in MATLAB using CVX

[43] with the solver SeDuMi [44]. The objective values and running times are presented in

Table II. As in Theorem 1, the problems R1 and Rch have the same objective function value,

i.e., r⇤1 = r⇤ch. However, the optimal objective value of R2 is lower, i.e., r⇤2 < r⇤1. For IEEE

benchmark systems, note that R1 and Rch are exact [14]–[16], while R2 is not. As evidenced

by the running times in Table II, Rch is much faster than R1. The chordal extension of the

May 31, 2013 DRAFT
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(a) (b)

graphs are computed in advance for each case using the algorithm in [45]. R2 is faster than both

R1 and Rch, but yields an infeasible solution for most IEEE benchmark systems considered.

TABLE II: Comparing objective values and running times on IEEE systems

Test case Objective value Running times

R1, Rch R2 R1 Rch R2

9 bus 5297.4 5297.4 0.2 0.2 0.2

14 bus 8081.7 8075.3 0.2 0.2 0.2

30 bus 574.5 573.6 0.4 0.3 0.3

39 bus 41889.1 41881.5 0.7 0.3 0.3

57 bus 41738.3 41712.0 1.3 0.5 0.3

118 bus 129668.6 129372.4 6.9 0.7 0.6

300 bus 720031.0 719006.5 109.4 2.9 1.8

2383 bus 1840270 1789500.0 - 1005.6 155.3

VI. CONCLUSION

TBD

(Bose says: I think it’s better to talk about this in the conclusion.) (Steven says: Summary

about specific relaxations: SDP = chordal tighter than SOCP; BFM = BIM, SOCP in BFM =

SOCP in BIM; equivalence of feasible sets. Or summarize these in Conclusion section?)

May 31, 2013 DRAFT

power flow 
solution X 

SDP Y 
SOCP Y 

Real Power Reactive Power 

•  Relaxation is exact if X and Y have same 
Pareto front 

•  SOCP is faster but coarser than SDP 

Bose, Low, Teeraratkul, Hassibi TAC 2014 
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(a set is said to be simply connected if any 2 paths from one point to another can be continuously

transformed, staying within the set).

B. IEEE benchmark systems

For IEEE benchmark systems [38], [39], we solve R1, R2 and Rch in MATLAB using CVX

[55] with the solver SeDuMi [56]. The objective values and running times are presented in Table

II. The problems R1 and Rch have the same optimal objective value, i.e., r⇤1 = r⇤ch, as predicted

by Theorem 1. Moreover an optimum of OPF can be recovered from the optimum of R1 or Rch

that is computed by the algorithm (after some minor modifications to the resistances on some

lines [16]). The optimal objective value of R2 is lower (r⇤2 < r⇤1), indicating that the optimum

of the SOCP relaxation that is computed is not feasible for P1. As Table II shows, Rch is much

faster than R1. The chordal extensions of the graphs are computed a priori for each case [33].

R2 is faster than both R1 and Rch, but yields an infeasible solution for most IEEE benchmark

systems considered.

TABLE II: Optimal objective values and running times on IEEE systems.

Test case Objective values ($/hr) Running times (sec)

R1, Rch R2 R1 Rch R2

9 bus 5297.4 5297.4 0.2 0.2 0.2

14 bus 8081.7 8075.3 0.2 0.2 0.2

30 bus 574.5 573.6 0.4 0.3 0.3

39 bus 41889.1 41881.5 0.7 0.3 0.3

57 bus 41738.3 41712.0 1.3 0.5 0.3

118 bus 129668.6 129372.4 6.9 0.7 0.6

300 bus 720031.0 719006.5 109.4 2.9 1.8

2383 bus 1840270 1789500.0 - 1005.6 155.3

VI. CONCLUSION

In this paper, we have presented various conic relaxations of OPF and their relations in both

the bus-injection model and the branch-flow model. In the bus-injection model the SDP-based

relaxations R1 and Rch are equivalent and are generally tighter than the SOCP-based relaxation

R2. For acyclic power networks however these relaxations are equivalent. The branch flow

July 31, 2013 DRAFT

SDP not  
scalable 

SOCP 
inexact 

SDP SOCP SOCP SDP 
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Vi −Vj = zij Iij

Branch flow model 
SOCP relaxation Branch flow model 

Sjk
j→k
∑ = Sij − zij Iij

2( )
i→ j
∑ + sj

X

(S, I,V, s)∈C2(m+n+1)

Pjk
j→k
∑ = Pij − rij Iij

2( )
i→ j
∑ + pj

Qjk
j→k
∑ = Qij − xij Iij

2( )
i→ j
∑ + qj

ViIij
* = Sij
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Branch flow model 
SOCP relaxation Branch flow model 

ViIij
* = Sij

Sjk
j→k
∑ = Sij − zij Iij

2( )
i→ j
∑ + sj

(S, I,V, s)∈C2(m+n+1)

Sjk
j→k
∑ = Sij − zij ij( )

i→ j
∑ + sj

vi − vj = 2 Re zij
*Sij( )− zij

2
 ij

   vi ij = Sij
2

 ij := Iij
2

vi := Vi
2

(S,,v, s)∈ R3(m+n+1)

X
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(S,,v, s)∈ R3(m+n+1)



Branch flow model 

Sjk
j→k
∑ = Sij − zij ij + sj

vi − vj = 2 Re zij
*Sij( )− zij

2
 ij

    ijvi = Sij
2

Baran	
  and	
  Wu	
  1989	
  
for	
  radial	
  networks	
  

power flow solutions:                        satisfy x := S,,v, s( )

 ij := Iij
2

vi := Vi
2

Advantages 
•  Recursive structure (radial networks) 
•  Variables represent physical quantities 
•  More numerically stable 



Branch flow model 

C :=  jkv j = S
2

cycle cond on x

!
"
#

$#

%
&
#

'#

X+ :=
x : satisfies linear 
    constraints
!
"
#

$
%
&
∩  jkv j ≥ S

2{ }

Theorem 
                      

X ≡X+∩C

SOC 



Cycle condition 

A relaxed solution     satisfies the cycle 
condition if 
 
 

incidence matrix; 
depends on topology 

∃θ    s.t.    Bθ = β(x)      mod 2π

x

x := (S,,v, s)

β jk (x) :=∠ vj − z jk
HSjk( )



BFM: SOCP relaxation of OPF 

OPF:    min
x∈X

 f x( )

SOCP:    min
x∈X+

 f x( )



W+ Wc(G )
+

Equivalence 

WG
+

V W Wc(G ) WG

Theorem 
WG ≡X   and  WG

+ ≡X+

X+

X
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Outline 

Optimal power flow (OPF) 
n  bus injection model, branch flow model 

3 convex relaxations 
n  SDP, chordal, second-order cone (SOCP) 
n  Relation among them 

Sufficient conditions for exact relaxation 
n  Radial: 2/3 main conditions 

n  Mesh: phase shifters 
 



Exact relaxation 

 
A relaxation is exact if an optimal solution 
of the original OPF can be recovered from 
every optimal solution of the relaxation  
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Definition 
Every optimal matrix 
or partial matrix is  
(2x2) rank-1 

Definition 
Every optimal relaxed 
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Summary of sufficient conds 
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type condition model reference remark
A power injections BIM, BFM [25], [26], [27], [28], [29]

[30], [16], [17]
B voltage magnitudes BFM [31], [32], [33], [34] allows general injection region
C voltage angles BIM [35], [36] makes use of branch power flows

TABLE I: Sufficient conditions for radial (tree) networks.

network condition reference remark
with phase shifters type A, B, C [17, Part II], [37] equivalent to radial networks

direct current type A [17, Part I], [19], [38] assumes nonnegative voltages
type B [39], [40] assumes nonnegative voltages

TABLE II: Sufficient conditions for mesh networks

when the cost function is convex then exactness of the SOCP
relaxation implies uniqueness of the optimal solution for
radial networks. Again the equivalence of BIM and BFM
implies that any of the three types of sufficient conditions
guarantees that, for radial networks, there is a unique optimal
solution and it can be computed by solving an SOCP. Since
the SDP and chordal relaxations are equivalent to the SOCP
relaxation for radial networks [23], [24], these results apply
to all three types of relaxations. Empirical evidences suggest
some of these conditions are likely satisfied in practice. This
is important as most power distribution systems are radial.

These conditions are insufficient for general mesh net-
works because they cannot guarantee that an optimal solution
of a relaxation satisfies the cycle condition discussed in [24].
In Section IV we show that these conditions are however
sufficient for mesh networks that have tunable phase shifters
at strategic locations. They are also sufficient for direct
current (dc) mesh networks where all variables are in the
real rather than complex domain.

Counterexamples are known where SDP relaxation is not
exact, especially for AC mesh networks [41], [42]. We
conclude in Section V with a discussion on three recent
approaches for global optimization of OPF when the semidef-
inite relaxations discussed in this tutorial fail.

All proofs are omitted and can be found in the original
papers or the arXiv version of this tutorial.

II. OPF AND ITS RELAXATIONS

We adopt the notations and definitions from Part I of this
paper. In this section we summarize the OPF problems and
their relaxations developed there; see [24] for details.

We use in this paper a strong sense of “exactness” that
requires that the optimal solution sets of the OPF problem
and its relaxation be equivalent. This implies that an optimal
solution of the nonconvex OPF problem can be recovered
from every optimal solution of its relaxation. This is impor-
tant because it ensures any algorithm that solves an exact

relaxation always produces a globally optimal solution to
the OPF problem. Indeed interior point methods for solving
semidefinite programs tend to produce a solution matrix with
a maximum rank [43], so can miss a rank-1 solution if the
relaxation has non-rank-1 solutions as well. It can be difficult
to recover an optimal solution of OPF from such a non-
rank-1 solution, and our definition of exactness avoids this
complication. It is however more stringent than necessary
under the sufficient conditions of this tutorial; see Section
II-C.

A. Bus injection model
The BIM adopts an undirected graph G 1 and can be

formulated in terms of just the complex voltage vector
V 2 Cn+1. The feasible set is described by the following
constraints:

s j  Â
k:( j,k)2E

yH
jk Vj(V H

j �V H
k )  s j, j 2 N+ (1a)

v j  |Vj|2  v j, j 2 N+ (1b)

where s j,s j,v j,v j, possibly ±•± i•, are given bounds on
power injections and voltage magnitudes. Note that the vector
V includes V0 which is assumed given (v0 = v0 and \V0 = 0�)
unless otherwise specified. The problem of interest is:
OPF:

min
V2Cn+1

C(V ) s.t. V satisfies (1) (2)

For relaxations consider the partial matrix WG defined on
the network graph G that satisfies

s j  Â
k:( j,k)2E

yH
jk
�
[WG] j j � [WG] jk

�
 s j, j 2 N+ (3a)

v j  [WG] j j  v j, j 2 N+ (3b)

1We will use “bus” and “node” interchangeably and “line” and “link”
interchangeably.
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QCQP 

QCQP over tree 
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min          x*Cx
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min          x*Cx

over         x ∈Cn
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Key condition 
i ~ j :   Cij, Ck[ ]ij ,  ∀k( )  lie on half-plane through 0

QCQP C,Ck( )

Theorem 
       SOCP relaxation is exact for  
       QCQP over tree  
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Bose et al 2012 
Sojoudi, Lavaei 2013 
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[Y j] jk = �1
2
(b jk + ig jk)

[Yk] jk = �1
2
(b jk � ig jk)

as well as the angles of �[F j] jk,�[Fk] jk and
�[Y j] jk,�[Yk] jk. These quantities are shown in Figure
1 with their magnitudes normalized to a common value and
explained in the caption of the figure.

Φ j
"# $% jk

Re

Im

− Φ j
#$ %& jk

Φk[ ] jk

− Φk[ ] jk

Ψ j
"# $% jk − Ψ k[ ] jk

Ψ k[ ] jk − Ψ j
#$ %& jk

lower)bounds)
on))pj,qj, pk,qk

α jk

[C0 ] jk

upper)bounds)
on))pj,qj, pk,qk

Fig. 1: Condition A2’ on a line ( j,k) 2 E. The quantities
([F j] jk, [Fk] jk, [Y j] jk, [Yk] jk) on the left-half plane corre-
spond to finite upper bounds on (p j, pk,q j,qk) in (16a)–
(16b); (�[F j] jk,�[Fk] jk,�[Y j] jk,�[Yk] jk) on the right-half
plane correspond to finite lower bounds on (p j, pk,q j,qk).
A2’ is satisfied if there is a line through the origin, specified
by the angle a jk, so that the quantities corresponding to
finite upper or lower bounds on (p j, pk,q j,qk) lie on one
side of the line, possibly on the line itself. The load over-
satisfaction condition in [25], [29] corresponds to the Im-
axis that excludes all quantities on the right-half plane. The
sufficient condition in [28, Theorem 2] corresponds to the
red line in the figure that allows a finite lower bound on the
real power at one end of the line, i.e. p j or pk but not both,
and no finite lower bound on reactive power q j.

Condition A2 applied to OPF (16) takes the following form
(see Figure 1):
A2’: For each link ( j,k) 2 E there is a line in the complex

plane through the origin such that [C0] jk as well as
those ±[Fi] jk and ±[Yi] jk corresponding to finite lower
or upper bounds on (pi,qi), for i = j,k, are all on one
side of the line, possibly on the line itself.

Let Copt and Csocp denote the optimal values of OPF (2) and
OPF-socp (7) respectively.

Corollary 3: Suppose G is a tree and A2’ holds.
1) Copt =Csocp. Moreover an optimal solution V opt of OPF

(2) can be recovered from every optimal solution W socp
G

of OPF-socp (7).
2) If, in addition, A1 holds then OPF-socp (7) is exact.

It is clear from Figure 1 that condition A2’ cannot be satis-
fied if there is a line where both the real and reactive power
injections at both ends are both lower and upper bounded
(8 combinations as shown in the figure). A2’ requires that
some of them be unconstrained even though in practice they
are always bounded. It should be interpreted as requiring
that the optimal solutions obtained by ignoring these bounds
turn out to satisfy these bounds. This is generally different
from solving the optimization with these constraints but
requiring that they be inactive (strictly within these bounds)
at optimality, unless the cost function is strictly convex. The
result proved in [26] also includes constraints on real branch
power flows and line losses. Corollary 3 includes several
sufficient conditions in the literature for exact relaxation as
special cases; see the caption of Figure 1.

Corollary 3 also implies a result first proved in [16], using
a different technique, that SOCP relaxation is exact in BFM
for radial networks when there are no lower bounds on power
injections s j. The argument in [16] is generalized in [17, Part
I] to the case with convex objective functions, shunt elements,
and line limits in terms of upper bounds on ` jk. Assume

A3: The cost function C(x) is convex, strictly increasing
in `, nondecreasing in s = (p,q), and independent of
branch flows S = (P,Q).

A4: For j 2 N+, s j =�•� i•.

Popular cost functions in the literature include active power
loss over the network or active power generations, both of
which satisfy A3. The next result is proved in [16], [17].

Theorem 4: Suppose G̃ is a tree and A3–A4 hold. Then
OPF-socp (13) is exact.

Remark 2: If the cost function C(x) in A3 is only nonde-
creasing, rather than strictly increasing, in `, then A3–A4
still guarantee that all optimal solutions of OPF (10) are
(i.e., can be mapped to) optimal solutions of OPF-socp (13),
but OPF-socp may have an optimal solution that maintains
strict inequalities in (11c) and hence is infeasible for OPF.
Even though OPF-socp is not exact in this case, the proof of
Theorem 4 constructs from it an optimal solution of OPF.

B. Voltage upper bounds

While type A conditions (A2’ and A4 in the last sub-
section) require that some power injection constraints not be
binding, type B conditions require non-binding voltage upper
bounds. They are proved in [31], [32], [33], [34] using BFM.

For radial networks the model originally proposed in [18],
which is (11) with the inequalities in (11c) replaced by
equalities, is exact. This is because the cycle condition (12)
is always satisfied as the reduced incidence matrix B is n⇥n
and invertible for radial networks. Following [34] we adopt
the graph orientation where every link points towards node

Not both lower & upper bounds on real & reactive powers at both ends  
of a line can be finite  
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0. Then (11) for a radial network reduces to:

S jk = Â
i:i! j

(Si j � zi j`i j)+ s j, j 2 N+ (17a)

v j � vk = 2Re
�
zH

jkS jk
�
� |z jk|2` jk, j ! k 2 Ẽ (17b)

v j` jk � |S jk|2, j ! k 2 Ẽ (17c)

where v0 is given and in (17a), k denotes the node on the
unique path from node j to node 0. The boundary condition
is: S jk := 0 when j = 0 in (17a) and Si j = 0, `i j = 0 when j
is a leaf node.3

As before the voltage magnitudes are subject to box
constraints:

v j  v j  v j, j 2 N (18a)

We allow more general constraints on the power injections:
for j 2 N, s j can be in an arbitrary set S j that is bounded
above:

s j 2 S j ✓ {s j 2 C |s j  s j}, j 2 N (18b)

for some given s j, j 2 N.4 Then the SOCP relaxation is
OPF-socp:

min
x

C(x) s.t. (17), (18) (19)

As defined in Section II-C, OPF-socp (19) is exact if every
optimal solution xsocp attains equality in (17c). In that case
an optimal solution of BFM (10) can be uniquely recovered
from xsocp.

We make two comments on the constraint sets S j in (18b).
First S j need not be convex nor even connected for convex
relaxations to be exact. They (only) need to be convex to
be efficiently computable. Second such a general constraint
on s is useful in many applications. It includes the case
where s j are subject to simple box constraints, but also
allows constraints of the form |s j|2  a, |\s j|  f j that is
useful for volt/var control [45], or q j 2 {0,a} for capacitor
configurations.
Geometric insight. To motivate our sufficient condition, we
first explain a simple geometric intuition using a two-bus
network on why relaxing voltage upper bounds guarantees
exact SOCP relaxation. Consider bus 0 and bus 1 connected
by a line with impedance z := r+ ix. Suppose without loss
of generality that v0 = 1 pu. Eliminating S01 = s0 from (17),
the model reduces to (dropping the subscript on `01):

p0 � r` = �p1 (20a)
q0 � x` = �q1 (20b)
p2

0 +q2
0 = ` (20c)

3A node j 2 N is a leaf node if there is no i such that i ! j 2 Ẽ.
4We assume here that s0 is unconstrained, and since V0 := 1\0� pu, the

constraints (18) involve only j in N, not N+.

as well as

v1 � v0 = 2(rp0 + xq0)� |z|2` (21)

Suppose s1 is given (e.g., a constant power load). Then the
variables are (`,v1, p0,q0) and the feasible set consists of
solutions of (20) and (21) subject to additional constraints on
(`,v1, p0,q0). The case without any constraint is instructive

  = p0
2 + q0

2

p0 − r = −p1
q0 − x = −q1

c

p0

q0

high v1

low v1

Fig. 2: Feasible set of OPF for a two-bus network without
any constraint. It consists of the (two) points of intersection
of the line with the convex surface (without the interior), and
hence is nonconvex. SOCP relaxation includes the interior of
the convex surface and enlarges the feasible set to the line
segment joining these two points. If the cost function C is
increasing in ` or (p0,q0) then the optimal point over the
SOCP feasible set (line) is the lower feasible point c, and
hence the relaxation is exact. No constraint on ` or (p0,q0)
will destroy exactness as long as the resulting feasible set
contains c.

and shown in Figure 2. The point c in the figure corresponds
to a power flow solution with a large v1 (normal operation)
whereas the other intersection corresponds to a solution with
a small v1 (fault condition). As explained in the caption,
SOCP relaxation is exact if there is no voltage constraint and
as long as the constraints on (`, p0,q0) does not remove the
high-voltage (normal) power flow solution. Only when the
system is stressed to a point where the high-voltage solution
becomes infeasible will relaxation lose exactness. This agrees
with conventional wisdom that power systems under normal
operations are well behaved.

Consider now the voltage constraint v1  v1  v1. Substi-
tuting (20a)–(20b) into (21) we obtain

v1 = (1+ rp1 + xq1)� |z|2`

translating the constraint on v1 into a box constraint on `:
1
|z|2 (rp1 + xq1 +1� v1)  `  1

|z|2 (rp1 + xq1 +1� v1)

It is therefore clear from Figure 2 that the lower bound v1
(corresponding to an upper bound on `) does not affect the
exactness of SOCP relaxation. The effect of upper bound v1
(corresponding to a lower bound on `) is illustrated in Figure
3. As explained in the caption of the figure SOCP relaxation

when there is no voltage constraint 
•  feasible set : 2 intersection pts 
•  relaxation: line segment 
•  exact relaxation: c is optimal 

v0  given
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where v0 is given and in (17a), k denotes the node on the
unique path from node j to node 0. The boundary condition
is: S jk := 0 when j = 0 in (17a) and Si j = 0, `i j = 0 when j
is a leaf node.3

As before the voltage magnitudes are subject to box
constraints:

v j  v j  v j, j 2 N (18a)

We allow more general constraints on the power injections:
for j 2 N, s j can be in an arbitrary set S j that is bounded
above:

s j 2 S j ✓ {s j 2 C |s j  s j}, j 2 N (18b)

for some given s j, j 2 N.4 Then the SOCP relaxation is
OPF-socp:

min
x

C(x) s.t. (17), (18) (19)

As defined in Section II-C, OPF-socp (19) is exact if every
optimal solution xsocp attains equality in (17c). In that case
an optimal solution of BFM (10) can be uniquely recovered
from xsocp.

We make two comments on the constraint sets S j in (18b).
First S j need not be convex nor even connected for convex
relaxations to be exact. They (only) need to be convex to
be efficiently computable. Second such a general constraint
on s is useful in many applications. It includes the case
where s j are subject to simple box constraints, but also
allows constraints of the form |s j|2  a, |\s j|  f j that is
useful for volt/var control [45], or q j 2 {0,a} for capacitor
configurations.
Geometric insight. To motivate our sufficient condition, we
first explain a simple geometric intuition using a two-bus
network on why relaxing voltage upper bounds guarantees
exact SOCP relaxation. Consider bus 0 and bus 1 connected
by a line with impedance z := r+ ix. Suppose without loss
of generality that v0 = 1 pu. Eliminating S01 = s0 from (17),
the model reduces to (dropping the subscript on `01):

p0 � r` = �p1 (20a)
q0 � x` = �q1 (20b)
p2

0 +q2
0 = ` (20c)

3A node j 2 N is a leaf node if there is no i such that i ! j 2 Ẽ.
4We assume here that s0 is unconstrained, and since V0 := 1\0� pu, the

constraints (18) involve only j in N, not N+.

as well as

v1 � v0 = 2(rp0 + xq0)� |z|2` (21)

Suppose s1 is given (e.g., a constant power load). Then the
variables are (`,v1, p0,q0) and the feasible set consists of
solutions of (20) and (21) subject to additional constraints on
(`,v1, p0,q0). The case without any constraint is instructive
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Fig. 2: Feasible set of OPF for a two-bus network without
any constraint. It consists of the (two) points of intersection
of the line with the convex surface (without the interior), and
hence is nonconvex. SOCP relaxation includes the interior of
the convex surface and enlarges the feasible set to the line
segment joining these two points. If the cost function C is
increasing in ` or (p0,q0) then the optimal point over the
SOCP feasible set (line) is the lower feasible point c, and
hence the relaxation is exact. No constraint on ` or (p0,q0)
will destroy exactness as long as the resulting feasible set
contains c.

and shown in Figure 2. The point c in the figure corresponds
to a power flow solution with a large v1 (normal operation)
whereas the other intersection corresponds to a solution with
a small v1 (fault condition). As explained in the caption,
SOCP relaxation is exact if there is no voltage constraint and
as long as the constraints on (`, p0,q0) does not remove the
high-voltage (normal) power flow solution. Only when the
system is stressed to a point where the high-voltage solution
becomes infeasible will relaxation lose exactness. This agrees
with conventional wisdom that power systems under normal
operations are well behaved.

Consider now the voltage constraint v1  v1  v1. Substi-
tuting (20a)–(20b) into (21) we obtain

v1 = (1+ rp1 + xq1)� |z|2`

translating the constraint on v1 into a box constraint on `:
1
|z|2 (rp1 + xq1 +1� v1)  `  1

|z|2 (rp1 + xq1 +1� v1)

It is therefore clear from Figure 2 that the lower bound v1
(corresponding to an upper bound on `) does not affect the
exactness of SOCP relaxation. The effect of upper bound v1
(corresponding to a lower bound on `) is illustrated in Figure
3. As explained in the caption of the figure SOCP relaxation
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is exact if the upper bound v1 does not exclude the high-
voltage power flow solution c and is not exact otherwise.



p0

q0

c

(a) Voltage constraint not binding

op2mal)solu2on)of)SOCP))
(infeasible)for)OPF))



p0

q0

c

(b) Voltage constraint binding

Fig. 3: Impact of voltage upper bound v1 on exactness. (a)
When v1 (corresponding to a lower bound on `) is not
binding, the power flow solution c is in the feasible set
of SOCP and hence the relaxation is exact. (b) When v1
excludes c from the feasible set of SOCP, the optimal solution
is infeasible for OPF and the relaxation is not exact.

To state the sufficient condition for a general radial net-
work, recall from [24, Section VI] the linear approximation
of BFM for radial networks obtained by setting ` jk = 0 in
(17): for each s

Slin
jk (s) = Â

i2T j

si (22a)

vlin
j (s) = v0 +2 Â

(i,k)2P j

Re
⇣

zH
ikSlin

ik (s)
⌘

(22b)

where T j denotes the subtree at node j, including j, and
P j denotes the set of links on the unique path from j to 0.
The key property we will use is, from [24, Lemma 13 and
Remark 9]:

S jk  Slin
jk (s) and v j  vlin

j (s) (23)

Define the 2⇥2 matrix function

A jk(S jk,v j) := I � 2
v j

z jk
�
S jk

�T (24)

where z jk := [r jk x jk]T is the line impedance and S jk :=
[Pjk Q jk]T is the branch power flows, both taken as 2-
dimensional real vectors so that z jk

�
S jk

�T is a 2⇥2 matrix
with rank less or equal to 1. The matrices A jk(S jk,v j)
describe how changes in the real and reactive power flows
propagate towards the root node 0. Specifically, as the proof
of the theorem in [34] shows, A jk is the Jacobian of how
infinitesimal changes in the complex power on branch j ! k
affect the complex power on branch k ! l where l is the
node on the unique path from node k to node 0. Evaluate the

Jacobian matrix A jk(S jk,v j) at the boundary values:

A jk := A jk

✓h
Slin

jk (s)
i+
, v j

◆

:= I � 2
v j

z jk

✓h
Slin

jk (s)
i+◆T

(25)

Here
�
[a]+

�T is the row vector [[a1]+ [a2]+] where [a j]+ :=
max{0,a j}.

For a radial network, for j 6= 0, every link j ! k identifies
a unique node k and therefore, to simplify notation, we refer
to a link interchangeably by ( j,k) or j and use A j, A j, z j
etc. in place of A jk, A jk, z jk etc. respectively when there is
no danger of confusion.

Assume
B1: The cost function is C(x) := Ân

j=0 Cj (Res j) with C0
strictly increasing. There is no constraint on s0.

B2: The set S j of injections satisfies vlin
j (s)  v j, j 2 N,

where vlin
j (s) is given by (22).

B3: For each leaf node j 2 N let the unique path from
j to 0 have k links and be denoted by P j :=
((ik, ik�1), . . . ,(i1, i0)) with ik = j and i0 = 0. Then
Ait · · ·Ait0

zit0+1
> 0 for all 1  t  t 0 < k.

The following result is proved in [34].
Theorem 5: Suppose G̃ is a tree and B1–B3 hold. Then

OPF-socp (19) is exact.

We now comment on the conditions B1–B3. B1 requires
that the cost functions Cj depend only on the injections s j.
For instance, if Cj (Res j) = p j, then the cost is total active
power loss over the network. It also requires that C0 be
strictly increasing but makes no assumption on Cj, j > 0.
Common cost functions such as line loss or generation cost
usually satisfy B1. If C0 is only nondecreasing, rather than
strictly increasing, in p0 then B1–B3 still guarantee that all
optimal solutions of OPF (10) are (effectively) optimal for
OPF-socp (19), but OPF-socp may not be exact, i.e., it may
have an optimal solution that maintains strict inequalities in
(17c). In this case the proof of Theorem 5 can be used to
recursively construct from it another optimal solution that
attains equalities in (17c).

B2 is affine in the injections s := (p,q). It enforces the
upper bounds on voltage magnitudes because of (23).

B3 is a technical assumption and has a simple interpreta-
tion: the branch power flow S jk on all branches should move
in the same direction. Specifically, given a marginal change
in the complex power on line j ! k, the 2⇥ 2 matrix A jk
is (a lower bound on) the Jacobian and describes the effect
of this marginal change on the complex power on the line
immediately upstream from line j ! k. The product of Ai
in B3 propagates this effect upstream towards the root node
0. B3 requires that a small change, positive or negative, in
the power flow on a line affects all upstream branch power
flows in the same direction. This condition tends to hold with

voltage lower bound (upper bound on l) does not affect relaxation 

v0  given
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Fig. 3: Impact of voltage upper bound v1 on exactness. (a)
When v1 (corresponding to a lower bound on `) is not
binding, the power flow solution c is in the feasible set
of SOCP and hence the relaxation is exact. (b) When v1
excludes c from the feasible set of SOCP, the optimal solution
is infeasible for OPF and the relaxation is not exact.

where T j denotes the subtree at node j, including j, and
P j denotes the set of links on the unique path from j to 0.
The key property we will use is, from [25, Lemma 13 and
Remark 9]:

S jk  Slin
jk (s) and v j  vlin

j (s) (23)

Define the 2⇥2 matrix function

A jk(S jk,v j) := I � 2
v j

z jk
�
S jk

�T (24)

where z jk := [r jk x jk]T is the line impedance and S jk :=
[Pjk Q jk]T is the branch power flows, both taken as 2-
dimensional real vectors so that z jk

�
S jk

�T is a 2⇥2 matrix
with rank less or equal to 1. The matrices A jk(S jk,v j) de-
scribe how changes in branch power flows propagate towards
the root node 0; see comments below. Evaluate the Jacobian
matrix A jk(S jk,v j) at the boundary values:

A jk := A jk

✓h
Slin

jk (s)
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, v j

◆

:= I � 2
v j

z jk

✓h
Slin

jk (s)
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(25)

Here
�
[a]+

�T is the row vector [[a1]+ [a2]+] with [a j]+ :=
max{0,a j}.

For a radial network, for j 6= 0, every link j ! k identifies
a unique node k and therefore, to simplify notation, we refer
to a link interchangeably by ( j,k) or j and use A j, A j, z j
etc. in place of A jk, A jk, z jk etc. respectively. Assume

B1: The cost function is C(x) := Ân
j=0 Cj (Res j) with C0

strictly increasing. There is no constraint on s0.
B2: The set S j of injections satisfies vlin

j (s)  v j, j 2 N,
where vlin

j (s) is given by (22).
B3: For each leaf node j 2 N let the unique path from

j to 0 have k links and be denoted by P j :=
((ik, ik�1), . . . ,(i1, i0)) with ik = j and i0 = 0. Then
Ait · · ·Ait0

zit0+1
> 0 for all 1  t  t 0 < k.

The following result is proved in [35].
Theorem 5: Suppose G̃ is a tree and B1–B3 hold. Then

OPF-socp (19) is exact.

We now comment on the conditions B1–B3. B1 requires
that the cost functions Cj depend only on the injections s j.
For instance, if Cj (Res j) = p j, then the cost is total active
power loss over the network. It also requires that C0 be
strictly increasing but makes no assumption on Cj, j > 0.
Common cost functions such as line loss or generation cost
usually satisfy B1. If C0 is only nondecreasing, rather than
strictly increasing, in p0 then B1–B3 still guarantee that all
optimal solutions of OPF (10) are (effectively) optimal for
OPF-socp (19), but OPF-socp may not be exact, i.e., it may
have an optimal solution that maintains strict inequalities in
(17c). In this case the proof of Theorem 5 can construct from
it another optimal solution that attains equalities in (17c).

B2 is affine in the injections s := (p,q). It enforces the
upper bounds on voltage magnitudes because of (23).

B3 has a simple interpretation: the power flows S jk on
all branches should move in the same direction. Specifically,
given a marginal change in the complex power on line j ! k,
the 2⇥2 matrix A jk is (a lower bound on) the Jacobian and
describes the effect of this marginal change on the complex
power on the line immediately upstream from line j ! k. The
product of Ai in B3 propagates this effect upstream towards
the root. B3 requires that a small change, positive or negative,
in the power flow on a line affects all upstream branch powers
in the same direction. This seems to hold with a significant
margin in practice; see [35] for examples from real systems.

Theorem 5 unifies and generalizes some earlier results in
[32], [33], [34]. The sufficient conditions in these papers have
the following simple and practical interpretation: OPF-socp
is exact provided either

• there are no reverse power flows in the network, or
• if the r/x ratios on all lines are equal, or
• if the r/x ratios increase in the downstream direction

from the substation (node 0) to the leaves then there are
no reverse real power flows, or

• if the r/x ratios decrease in the downstream direction
then there are no reverse reactive power flows.

The exactness of SOCP relaxation does not require con-
vexity, i.e., the cost C(x) = Ân

j=0 Cj(Res j) need not be a
convex function and the injection regions S j need not be
convex sets. Convexity allows polynomial-time computation.
Moreover when it is convex the exactness of SOCP relaxation
also implies the uniqueness of the optimal solution, as the
following result from [35] shows.

Theorem 6: Suppose G̃ is a tree. Suppose the costs Cj,
j = 0, . . . ,n, are convex functions and the injection regions
S j, j = 1, . . . ,n, are convex sets. If the relaxation OPF-socp
(19) is exact then its optimal solution is unique.

Consider the model of [18] for radial networks, which is
(17) with the inequalities in (17c) replaced by equalities. Let
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Fig. 3: Impact of voltage upper bound v1 on exactness. (a)
When v1 (corresponding to a lower bound on `) is not
binding, the power flow solution c is in the feasible set
of SOCP and hence the relaxation is exact. (b) When v1
excludes c from the feasible set of SOCP, the optimal solution
is infeasible for OPF and the relaxation is not exact.
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S jk  Slin
jk (s) and v j  vlin

j (s) (23)
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A jk(S jk,v j) := I � 2
v j

z jk
�
S jk

�T (24)

where z jk := [r jk x jk]T is the line impedance and S jk :=
[Pjk Q jk]T is the branch power flows, both taken as 2-
dimensional real vectors so that z jk

�
S jk

�T is a 2⇥2 matrix
with rank less or equal to 1. The matrices A jk(S jk,v j) de-
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A jk := A jk

✓h
Slin

jk (s)
i+
, v j

◆

:= I � 2
v j

z jk

✓h
Slin

jk (s)
i+◆T

(25)

Here
�
[a]+

�T is the row vector [[a1]+ [a2]+] with [a j]+ :=
max{0,a j}.
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to a link interchangeably by ( j,k) or j and use A j, A j, z j
etc. in place of A jk, A jk, z jk etc. respectively. Assume

B1: The cost function is C(x) := Ân
j=0 Cj (Res j) with C0

strictly increasing. There is no constraint on s0.
B2: The set S j of injections satisfies vlin

j (s)  v j, j 2 N,
where vlin

j (s) is given by (22).
B3: For each leaf node j 2 N let the unique path from

j to 0 have k links and be denoted by P j :=
((ik, ik�1), . . . ,(i1, i0)) with ik = j and i0 = 0. Then
Ait · · ·Ait0
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> 0 for all 1  t  t 0 < k.

The following result is proved in [35].
Theorem 5: Suppose G̃ is a tree and B1–B3 hold. Then

OPF-socp (19) is exact.

We now comment on the conditions B1–B3. B1 requires
that the cost functions Cj depend only on the injections s j.
For instance, if Cj (Res j) = p j, then the cost is total active
power loss over the network. It also requires that C0 be
strictly increasing but makes no assumption on Cj, j > 0.
Common cost functions such as line loss or generation cost
usually satisfy B1. If C0 is only nondecreasing, rather than
strictly increasing, in p0 then B1–B3 still guarantee that all
optimal solutions of OPF (10) are (effectively) optimal for
OPF-socp (19), but OPF-socp may not be exact, i.e., it may
have an optimal solution that maintains strict inequalities in
(17c). In this case the proof of Theorem 5 can construct from
it another optimal solution that attains equalities in (17c).

B2 is affine in the injections s := (p,q). It enforces the
upper bounds on voltage magnitudes because of (23).

B3 has a simple interpretation: the power flows S jk on
all branches should move in the same direction. Specifically,
given a marginal change in the complex power on line j ! k,
the 2⇥2 matrix A jk is (a lower bound on) the Jacobian and
describes the effect of this marginal change on the complex
power on the line immediately upstream from line j ! k. The
product of Ai in B3 propagates this effect upstream towards
the root. B3 requires that a small change, positive or negative,
in the power flow on a line affects all upstream branch powers
in the same direction. This seems to hold with a significant
margin in practice; see [35] for examples from real systems.

Theorem 5 unifies and generalizes some earlier results in
[32], [33], [34]. The sufficient conditions in these papers have
the following simple and practical interpretation: OPF-socp
is exact provided either

• there are no reverse power flows in the network, or
• if the r/x ratios on all lines are equal, or
• if the r/x ratios increase in the downstream direction

from the substation (node 0) to the leaves then there are
no reverse real power flows, or

• if the r/x ratios decrease in the downstream direction
then there are no reverse reactive power flows.

The exactness of SOCP relaxation does not require con-
vexity, i.e., the cost C(x) = Ân

j=0 Cj(Res j) need not be a
convex function and the injection regions S j need not be
convex sets. Convexity allows polynomial-time computation.
Moreover when it is convex the exactness of SOCP relaxation
also implies the uniqueness of the optimal solution, as the
following result from [35] shows.

Theorem 6: Suppose G̃ is a tree. Suppose the costs Cj,
j = 0, . . . ,n, are convex functions and the injection regions
S j, j = 1, . . . ,n, are convex sets. If the relaxation OPF-socp
(19) is exact then its optimal solution is unique.

Consider the model of [18] for radial networks, which is
(17) with the inequalities in (17c) replaced by equalities. Let


