Convex Relaxation of OPF

Steven Low

Computing + Math Sciences Electrical Engineering

October 2014 Lund, Sweden

Caltech

 M. Chandy, J. Doyle, M. Farivar, L. Gan, B. Hassibi, Q. Peng, T. Teeraratkul, C. Zhao

Former

 S. Bose (Cornell), L. Chen (Colorado), D. Gayme (JHU), J. Lavaei (Columbia), L. Li (Harvard), U. Topcu (Upenn)

SCE

 A. Auld, J. Castaneda, C. Clark, J. Gooding, M. Montoya, S. Shah, R. Sherick

OPF is solved routinely to determine

- How much power to generate where
- Parameter setting, e.g. taps, VARs
- Market operation & pricing

Non-convex and hard to solve

- Huge literature since 1962
- Common practice: DC power flow (LP)
- Also: Newton-Ralphson, interior point, ...

Optimal power flow (OPF)

- bus injection model, branch flow model
- 3 convex relaxations
 - SDP, chordal, second-order cone (SOCP)
 - Relation among them
- Sufficient conditions for exact relaxation
 - Radial: 3 main conditions
 - Mesh: phase shifters

$$\min \quad \operatorname{tr} CVV^*$$
subject to $\underline{s}_j \leq \operatorname{tr} \left(Y_j VV^* \right) \leq \overline{s}_j \quad \underline{v}_j \leq |V_j|^2 \leq \overline{v}_j$

nonconvex QCQP

$$\begin{array}{ll} \min & f(x) \\ \text{over} & x \coloneqq (S, I, V, s) \\ \text{s. t.} & \underline{s}_j \leq s_j \leq \overline{s}_j \qquad \underline{v}_j \leq v_j \leq \overline{v}_j \end{array}$$

branch flow _ model

$$\sum_{i \to j} \left(S_{ij} - z_{ij} \left| I_{ij} \right|^2 \right) - \sum_{j \to k} S_{jk} = S_j$$
$$V_j = V_i - z_{ij} I_{ij} \qquad S_{ij} = V_i I_{ij}^*$$

nonconvex

details

$$Y_{ij} := \begin{cases} \sum_{k \sim i} y_{ik} & \text{if } i = j \\ -y_{ij} & \text{if } i \sim j \\ 0 & \text{else} \end{cases}$$

graph model G: undirected

Y specifies topology of G and impedance z on lines

In terms of V:

$$S_j = \operatorname{tr}\left(Y_j^H V V^H\right)$$
 for all j $Y_j = Y^* e_j e_j^T$

Power flow problem: Given (Y, s) find V

graph model G: directed

$$V_{i} - V_{j} = z_{ij}I_{ij} \quad \text{for all } i \to j \quad \text{Kirchhoff law}$$

$$S_{ij} = V_{i}I_{ij}^{*} \quad \text{for all } i \to j \quad \text{power definition}$$

$$\sum_{i \to j} \left(S_{ij} - z_{ij} \left|I_{ij}\right|^{2}\right) + s_{j} = \sum_{j \to k} S_{jk} \quad \text{for all } j \quad \text{power balance}$$

Power flow problem: Given (z,s) find (S,I,V)

Bus injection model

$$s_j = \operatorname{tr}\left(Y_j V V^*\right)$$

Branch flow model

$$V_{i} - V_{j} = z_{ij}I_{ij}$$

$$S_{ij} = V_{i}I_{ij}^{*}$$

$$\sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - z_{ij} \left|I_{ij}\right|^{2}\right) + S_{j}$$

<u>Theorem:</u> $\mathbf{V} \equiv \tilde{\mathbf{X}}$

- BIM and BFM are equivalent in this sense
- Any result in one model is in principle provable in the other,
- ... but some results are easier to formulate or prove in one than the other
- BFM seems to be much more numerically stable (radial networks)

min	V^*CV	gen cost, power loss
over	(V,s)	
subject to	$\underline{S}_j \leq S_j \leq \overline{S}_j$	$\underline{V}_{j} \leq V_{j} \leq \overline{V}_{j}$

min V^*CV over (V,s)subject to $\underline{s}_j \leq s_j \leq \overline{s}_j$ \underline{V}_j $s_j = \operatorname{tr}(Y_j^H V V^H)$ gen cost, power loss

$$\underline{V}_j \leq |V_j| \leq \overline{V}_j$$

power flow equation

min
$$\operatorname{tr} CVV^*$$

subject to $\underline{s}_j \leq \operatorname{tr} \left(Y_j VV^* \right) \leq \overline{s}_j \qquad \underline{v}_j \leq |V_j|^2 \leq \overline{v}_j$

quadratically constrained QP (QCQP) nonconvex, NP-hard

min
$$f(x)$$

over $x := (S, I, V, s)$
s.t.

$$\begin{array}{ll} \min & f(x) \\ \text{over} & x \coloneqq (S, I, V, s) \\ \text{s. t.} & \underline{s}_j \leq \underline{s}_j \leq \overline{s}_j & \underline{v}_j \leq \underline{v}_j \leq \overline{v}_j \end{array}$$

$$\begin{array}{ll} \min & f(x) \\ \text{over} & x \coloneqq (S, I, V, s) \\ \text{s. t.} & \underline{s}_j \leq s_j \leq \overline{s}_j \qquad \underline{v}_j \leq v_j \leq \overline{v}_j \end{array}$$

branch flow _____ model

$$\sum_{i \to j} \left(S_{ij} - z_{ij} \left| I_{ij} \right|^2 \right) - \sum_{j \to k} S_{jk} = S_j$$
$$V_j = V_i - z_{ij} I_{ij} \qquad S_{ij} = V_i I_{ij}^*$$

nonconvexity

Security constraint OPF

- Solve for operating points after each single contingency (N-1 security)
- N sets of variables and constraints, one for each contingency
- Unit commitment
 - Discrete variables
- Stochastic OPF
 - Chance constraints $Pr(bad event) < \varepsilon$
- Other constraints
 - Line flow, line loss, stability limit, ...

... OPF in practice is a lot harder

Optimal power flow (OPF)

bus injection model, branch flow model

3 convex relaxations

- SDP, chordal, second-order cone (SOCP)
- Relation among them

Sufficient conditions for exact relaxation

- Radial: 3 main conditions
- Mesh: phase shifters

What are semidefinite relaxations of OPF?

How to check & recover global optimal ?

details

Convex relaxation of OPF

relaxation	model	first proposed	first analyzed
SOCP	BIM	Jabr 2006 TPS	
SDP	BIM	Bai et al 2008 EPES	Lavaei, Low 2012 TPS
Chordal	BIM	Bai, Wei 2011 EPES Jabr 2012 TPS	Molzahn et al 2013 TPS Bose et al 2014 TAC

Low. Convex relaxation of OPF (I, II), IEEE Trans Control of Network Systems, 2014

Convex relaxation of OPF

relaxation	model	first proposed	first analyzed
SOCP	BIM	Jabr 2006 TPS	
SDP	BIM	Bai et al 2008 EPES	Lavaei, Low 2012 TPS
Chordal	BIM	Bai, Wei 2011 EPES Jabr 2012 TPS	Molzahn et al 2013 TPS Bose et al 2014 TAC
SOCP	BFM	Farivar et al 2011 SGC Farivar, Low 2013 TPS	Farivar et al 2011 SGC Farivar, Low 2013 TPS

Low. Convex relaxation of OPF (I, II), IEEE Trans Control of Network Systems, 2014

min $\operatorname{tr} CVV^*$ subject to $\underline{s}_j \leq \operatorname{tr} (Y_j VV^*) \leq \overline{s}_j$ $\underline{v}_j \leq |V_j|^2 \leq \overline{v}_j$ \mathbf{V}

All complexity due to nonconvexity of ${\bf V}$

Relaxations:

- design convex supersets of \boldsymbol{V}
- minimize cost over convex supersets

min $\operatorname{tr} CVV^*$ subject to $\underline{s}_j \leq \operatorname{tr} (Y_j VV^*) \leq \overline{s}_j$ $\underline{v}_j \leq |V_j|^2 \leq \overline{v}_j$ \mathbf{V}

All complexity due to nonconvexity of ${\bf V}$

Relaxations:

- design convex supersets of \boldsymbol{V}
- minimize cost over convex supersets

Exact relaxation: optimal solution of relaxation happens to lie in V (when?)

$$\begin{array}{ll} \min & \operatorname{tr} CVV^* \\ \text{subject to} & \underline{s}_j \leq \operatorname{tr} \left(Y_j VV^* \right) \leq \overline{s}_j & \underline{v}_j \leq |V_j|^2 \leq \overline{v}_j \\ & \mathbf{V} \end{array}$$

Approach

- 1. Three equivalent characterizations of ${\bf V}$
- 2. Each suggests a lift and relaxation
- What is the relation among different relaxations ?
- When will a relaxation be <u>exact</u>?

$$\begin{array}{cccc} \min & \operatorname{tr} CVV^* \\ \text{subject to} & \underline{s}_j \leq \operatorname{tr} \left(Y_j VV^* \right) \leq \overline{s}_j & \underline{v}_j \leq |V_j|^2 \leq \overline{v}_j \\ \end{array}$$

$$\begin{array}{cccc} \text{quadratic in V} \\ \text{linear in W} \\ \text{subject to} & \underline{s}_j \leq \operatorname{tr} \left(Y_j W \right) \leq \overline{s}_j & \underline{v}_i \leq W_{ii} \leq \overline{v}_i \\ W \geq 0, \ \operatorname{rank} W = 1 & \operatorname{convex in W} \\ \end{array}$$

 $\mathbf{V} := \left\{ V : \text{ satisfies quadratic constraints } \right\}$

 \mathbf{W}^{+}

instead of *n* variables solve for n^2 vars !

W:= {W: satisfies <u>linear</u> constraints } \cap { $W \ge 0$ rank-1} idea: $W = VV^*$

only n+2m vars !

linear in
$$(W_{jj}, W_{jk})$$
 W_{jj} W_{jk}

$$\sum_{k:k\sim j} y_{jk}^* \left(\left| V_j \right|^2 - V_j V_k^* \right) : \text{ only } \left| V_j \right|^2 \text{ and } V_j V_k^*$$

corresponding to edges (j,k) in G!

only n+2m vars !

linear in
$$(W_{jj}, W_{jk})$$
 W_{jj} W_{jk}

$$\sum_{k:k\sim j} y_{jk}^* \left(\left| V_j \right|^2 - V_j V_k^* \right) : \text{ only } \left| V_j \right|^2 \text{ and } V_j V_k^*$$

partial matrix W_G defined on G $W_G := \{ [W_G]_{jj}, [W_G]_{jk}, [W_G]_{kj} | j, jk \in G \}$

Kircchoff's laws depend directly only on W_G

$$W = \begin{bmatrix} W_{11} & W_{12} & W_{13} & W_{14} & W_{15} \\ W_{21} & W_{22} & W_{23} & W_{24} & W_{25} \\ W_{31} & W_{32} & W_{33} & W_{34} & W_{35} \\ W_{41} & W_{42} & W_{43} & W_{44} & W_{45} \\ W_{51} & W_{52} & W_{53} & W_{54} & W_{55} \end{bmatrix}$$

SDP solves for
$$W \in \mathbb{C}^{n^2}$$

 n^2 variables

$$W_{G} = \begin{bmatrix} W_{11} & W_{12} & W_{13} \\ W_{21} & W_{22} & W_{25} \\ W_{31} & W_{33} & W_{34} \\ & & W_{43} & W_{44} & W_{45} \\ & & W_{52} & & W_{54} & W_{55} \end{bmatrix}$$

Want to solve for W_G n+2m variables

OPF
$$\mathbf{V} := \left\{ V \middle| \underline{s}_j \le \operatorname{tr} \left(Y_j V V^* \right) \le \overline{s}_j, \quad \underline{v}_j \quad \le |V_j|^2 \le \overline{v}_j \right\}$$

SDP

$$\mathbf{W} \coloneqq \left\{ W \middle| \underline{s}_{j} \le \operatorname{tr} \left(Y_{j} W \right) \le \overline{s}_{j}, \ \underline{v}_{j} \le W_{jj} \le \overline{v}_{j} \right\} \cap \left\{ W \ge 0, \operatorname{rank-1} \right\}$$
depend on all

depend only on W_G

depend on all entries of W

OPF
$$\mathbf{V} := \left\{ V \middle| \underline{s}_j \le \operatorname{tr} \left(Y_j V V^* \right) \le \overline{s}_j, \quad \underline{v}_j \quad \le |V_j|^2 \le \overline{v}_j \right\}$$

SDP

$$\mathbf{W} := \left\{ W \left| \underline{s}_j \le \operatorname{tr} \left(Y_j W \right) \le \overline{s}_j, \ \underline{v}_j \le W_{jj} \le \overline{v}_j \right\} \cap \left\{ W \ge 0, \operatorname{rank-1} \right\} \right\}$$

first idea:

$$\mathbf{W}_{G} := \left\{ W_{G} \left| \underline{s}_{j} \le \operatorname{tr} \left(Y_{j} W_{G} \right) \le \overline{s}_{j}, \ \underline{v}_{j} \le \left[W_{G} \right]_{jj} \le \overline{v}_{j} \right\} \cap \left\{ W_{G} \ge 0, \operatorname{rank-1} \right\}$$

 W_G is equivalent to V when G is chordal Not equivalent otherwise
Equivalent feasible sets

$$\mathbf{W}_{G} := \begin{cases} W_{jj}, W_{jk} \colon (j,k) \text{ in } G \\ \text{satisfy } \underline{\text{linear constraints}} \end{cases} \bigcap \begin{cases} W(j,k) \ge 0 \text{ rank-1}, \\ \text{cycle cond on } \angle W_{jk} \end{cases}$$
$$\text{idea: } W_{G} = \left(VV^{*} \text{ only on } G\right)$$

$$\mathbf{W}_{c(G)} \coloneqq \begin{cases} W_{jj}, W_{jk} \colon (j,k) \text{ in } c(G) \\ \text{satisfy } \underline{\text{linear constraints}} \\ \text{idea: } W_{c(G)} = \left(VV^* \text{ on } c(G)\right) \end{cases} \cap \left\{ W_{c(G)} \ge 0 \text{ rank-1} \right\}$$

matrix completion [Grone et al 1984]

W:= {W: satisfies <u>linear</u> constraints } $\bigcap \{W \ge 0 \text{ rank-1}\}$ idea: $W = VV^*$

$$\begin{array}{lll} \text{local} & W_G(j,k) \succeq 0, \text{ rank } W_G(j,k) = 1, & (j,k) \in E_{+} \\ \text{global} & \sum_{(j,k) \in c} \angle [W_G]_{jk} = & 0 & \mod 2\pi & \bigoplus_{\text{cond}} \\ \end{array}$$

Theorem: $V \equiv W \equiv W_{c(G)} \equiv W_G$

Bose, Low, Chandy Allerton 2012 Bose, Low, Teeraratkul, Hassibi TAC2014

Theorem: $V \equiv W \equiv W_{c(G)} \equiv W_G$

Given $W_G \in \mathbf{W}_G$ or $W_{c(G)} \in \mathbf{W}_{c(G)}$ there is unique completion $W \in \mathbf{W}$ and unique $V \in \mathbf{V}$

Can minimize cost over any of these sets, but ...

Relaxations

$$W_{G} := \begin{cases} W_{jj}, W_{jk} : (j,k) \text{ in } G \\ \text{satisfy } \underline{\text{linear}} \text{ constraints} \\ \text{idea: } W_{G} = (VV^{*} \text{ only on } G) \end{cases} \cap \begin{cases} W(j,k) \ge 0 \text{ rank-1}, \\ \text{cycle cond } \text{on } \angle W_{jk} \end{cases}$$

$$\text{idea: } W_{G} = (VV^{*} \text{ only on } G)$$

$$W_{c(G)} := \begin{cases} W_{jj}, W_{jk} : (j,k) \text{ in } c(G) \\ \text{satisfy } \underline{\text{linear}} \text{ constraints} \\ \text{idea: } W_{c(G)} = (VV^{*} \text{ on } c(G)) \end{cases} \cap \{W_{c(G)} \ge 0 \text{ rank-1}\}$$

$$\text{idea: } W_{c(G)} = (VV^{*} \text{ on } c(G))$$

$$\text{matrix completion [Grone et al 1984]}$$

W:= {W: satisfies <u>linear</u> constraints } $\bigcap \{W \ge 0 \text{ rank-1}\}$ idea: $W = VV^*$

<u>Theorem</u>

Radial G: V ⊆ W⁺ ≅ W⁺_{c(G)} ≅ W⁺_G
Mesh G: V ⊆ W⁺ ≅ W⁺_{c(G)} ⊆ W⁺_G

Bose, Low, Chandy Allerton 2012 Bose, Low, Teeraratkul, Hassibi TAC2014

Theorem

Radial G: V ⊆ W⁺ ≅ W⁺_{c(G)} ≅ W⁺_G
Mesh G: V ⊆ W⁺ ≅ W⁺_{c(G)} ⊆ W⁺_G

For radial networks: always solve SOCP !

OPF

 $\min_{V} C(V) \text{ subject to } V \in \mathbf{V}$

OPF-sdp:

 $\min_{W} C(W_G) \quad \text{subject to} \quad W \in \mathbb{W}^+$

OPF-ch:

 $\min_{W_{c(G)}} C(W_G) \quad \text{subject to} \quad W_{c(G)} \in \mathbb{W}_{c(G)}^+$

OPF-socp:

 $\min_{W_G} C(W_G) \quad \text{subject to} \quad W_G \in \mathbb{W}_G^+$

- tightest superset
- max # variables •
- slowest •

Chordal relaxation

- equivalent superset ٠
- much faster for sparse networks

SOCP relaxation

- coarsest superset
- min # variables •
- fastest

For radial network: always solve SOCP !

Bose, Low, Teeraratkul, Hassibi TAC 2014

Test case	Objective values (\$/hr)		Running times (sec)		
	SDP	SOCP	SDP		SOCP
9 bus	5297.4	5297.4	0.2		0.2
14 bus	8081.7	8075.3	0.2		0.2
30 bus	574.5	573.6	0.4		0.3
39 bus	41889.1	41881.5	0.7		0.3
57 bus	41738.3	41712.0	1.3		0.3
118 bus	129668.6	129372.4	6.9		0.6
300 bus	720031.0	719006.5	109.4		1.8
2383 bus	1840270	1789500.0	—		155.3
		SOCP inexact	SDP not scalable		

Test case	Objective values (\$/hr)		Running times (sec)		
	SDP/ch	SOCP	SDP	chordal	SOCP
9 bus	5297.4	5297.4	0.2	0.2	0.2
14 bus	8081.7	8075.3	0.2	0.2	0.2
30 bus	574.5	573.6	0.4	0.3	0.3
39 bus	41889.1	41881.5	0.7	0.3	0.3
57 bus	41738.3	41712.0	1.3	0.5	0.3
118 bus	129668.6	129372.4	6.9	0.7	0.6
300 bus	720031.0	719006.5	109.4	2.9	1.8
2383 bus	1840270	1789500.0	—	1005.6	155.3
		SOCP inexact	SDP not scalable		

What are semidefinite relaxations of OPF?

How to check & recover global optimal ?

Branch flow model

Λ

SOCP relaxation

$$\sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - z_{ij} \left| I_{ij} \right|^2 \right) + s_j$$

$$V_i - V_j = z_{ij} I_{ij}$$

$$V_i I_{ij}^* = S_{ij}$$

$$\sum_{j \to k} P_{jk} = \sum_{i \to j} \left(P_{ij} - r_{ij} \left| I_{ij} \right|^2 \right) + p_j$$

$$(S, I, V, s) \in \mathbb{C}^{2(m+n+1)}$$

$$\sum_{j \to k} Q_{jk} = \sum_{i \to j} \left(Q_{ij} - x_{ij} \left| I_{ij} \right|^2 \right) + q_j$$

Branch flow model

SOCP relaxation

$$\sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - z_{ij} |I_{ij}|^2 \right) + s_j \qquad \sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - z_{ij} \ell_{ij} \right) + s_j$$
$$V_i - V_j = z_{ij} I_{ij} \qquad v_i - v_j = 2 \operatorname{Re} \left(z_{ij}^* S_{ij} \right) - |z_{ij}|^2 \ell_{ij}$$
$$V_i I_{ij}^* = S_{ij} \qquad v_i \ell_{ij} = |S_{ij}|^2$$

$$(S,I,V,s) \in \mathbf{C}^{2(m+n+1)}$$

 $(S, \ell, v, s) \in \mathbf{R}^{3(m+n+1)}$

$\ell_{ij} \coloneqq \left| I_{ij} \right|^2$ $v_i \coloneqq \left| V_i \right|^2$

Branch flow model

SOCP relaxation

$$\sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - z_{ij} \left| I_{ij} \right|^2 \right) + s_j \qquad \sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - z_{ij} \ell_{ij} \right) + s_j$$
$$V_i - V_j = z_{ij} I_{ij} \qquad \qquad v_i - v_j = 2 \operatorname{Re} \left(z_{ij}^* S_{ij} \right) - \left| z_{ij} \right|^2 \ell_{ij}$$
$$V_i I_{ij}^* = S_{ij} \qquad \qquad v_i \ell_{ij} \ge \left| S_{ij} \right|^2$$

$$(S,I,V,s) \in \mathbf{C}^{2(m+n+1)}$$

power flow solutions: $x := (S, \ell, v, s)$ satisfy

$$\sum_{j \to k} S_{jk} = S_{ij} - z_{ij}\ell_{ij} + S_j$$
$$v_i - v_j = 2 \operatorname{Re}\left(z_{ij}^*S_{ij}\right) - \left|z_{ij}\right|^2 \ell_{ij}$$

• Recursive structure (radial networks)

 $\ell_{ij} v_i = \left| S_{ij} \right|^2$

- Variables represent physical quantities
- More numerically stable

$$\ell_{ij} \coloneqq |I_{ij}|^2$$
$$v_i \coloneqq |V_i|^2$$

Baran and Wu 1989 for radial networks

$$\mathbf{X}^{+} := \begin{cases} x : \text{satisfies linear} \\ \text{constraints} \end{cases} \cap \left\{ \ell_{jk} v_{j} \ge \left| S \right|^{2} \right\} \text{ soc}$$

$$C \coloneqq \begin{cases} \ell_{jk} v_j = |S|^2 \\ \text{cycle cond on } x \end{cases}$$

Theorem
$$\mathbf{X} = \mathbf{X}^+ \cap C$$

A relaxed solution \mathcal{X} satisfies the cycle condition if

OPF: $\min_{x \in \mathbf{X}} f(x)$

SOCP: $\min_{x \in \mathbf{X}^+} f(x)$

<u>Theorem</u>

 $\mathbf{W}_G \equiv \mathbf{X}$ and $\mathbf{W}_G^+ \equiv \mathbf{X}^+$

Optimal power flow (OPF)

- bus injection model, branch flow model
- 3 convex relaxations
 - SDP, chordal, second-order cone (SOCP)
 - Relation among them

Sufficient conditions for exact relaxation

- Radial: 2/3 main conditions
- Mesh: phase shifters

A relaxation is exact if an optimal solution of the original OPF can be recovered from *every* optimal solution of the relaxation

type	condition	model	reference	remark
A	power injections	BIM, BFM	[25], [26], [27], [28], [29]	
			[30], [16], [17]	
B	voltage magnitudes	BFM	[31], [32], [33], [34]	allows general injection region
C	voltage angles	BIM	[35], [36]	makes use of branch power flows

TABLE I: Sufficient conditions for radial (tree) networks.

network	condition	reference	remark
with phase shifters	type A, B, C	[17, Part II], [37]	equivalent to radial networks
direct current	type A	[17, Part I], [19], [38]	assumes nonnegative voltages
	type B	[39], [40]	assumes nonnegative voltages

TABLE II: Sufficient conditions for mesh networks

$\begin{array}{lll} \mathsf{QCQP}(C,C_k) & & \\ \min & x^*Cx & \\ & \text{over} & x \in \mathbf{C}^n & \\ & \text{s.t.} & x^*C_kx \leq b_k & k \in K \end{array}$

graph of QCQP

$$G(C,C_k)$$
 has edge $(i,j) \Leftrightarrow$
 $C_{ij} \neq 0$ or $[C_k]_{ij} \neq 0$ for some k

QCQP over tree $G(C,C_k)$ is a tree

Key condition $i \sim j: (C_{ij}, [C_k]_{ij}, \forall k)$ lie on half-plane through 0

Theorem

SOCP relaxation is exact for QCQP over tree

Bose et al 2012 Sojoudi, Lavaei 2013

Not both lower & upper bounds on real & reactive powers at both ends of a line can be finite

when there is no voltage constraint

- feasible set : 2 intersection pts
- relaxation: line segment
- exact relaxation: c is optimal

voltage lower bound (upper bound on l) does not affect relaxation

2. Voltage upper bounds
OPF:
$$\min_{x \in \mathbf{X}} f(x)$$
 s.t. $\underline{v} \le v \le \overline{v}$, $s \in \Sigma$
SOCP: $\min_{x \in \mathbf{X}^+} f(x)$ s.t. $\underline{v} \le v \le \overline{v}$, $s \in \Sigma$

Key condition:

- $L(s) \leq \overline{v}$
- Jacobian condition $\underline{A}_{i_t} \cdots \underline{A}_{i_{t'}} z_{i_{t'+1}} > 0$ for all $1 \le t \le t' < k$

voltages if network were lossless

if upward current were reduced then all subsequent powers dec

Theorem

SOCP relaxation is exact for radial networks

Gan, Li, Topcu, Low TAC2014

$$\begin{array}{l} \textcircled{\begin{subarray}{lll} \textcircled{\label{eq:constraint}} \end{array}} \\ \begin{array}{l} \textbf{OPF:} & \min_{x \in \mathbf{X}} f(x) & \text{s.t.} & \underline{v} \leq v \leq \overline{v}, & s \in \Sigma \\ \end{array} \\ \begin{array}{l} \textbf{SOCP:} & \min_{x \in \mathbf{X}^+} f(x) & \text{s.t.} & \underline{v} \leq v \leq \overline{v}, & s \in \Sigma \end{array} \end{array}$$

Key condition:

- $L(s) \leq \overline{v}$
- Jacobian condition $\underline{A}_{i_t} \cdots \underline{A}_{i_{t'}} z_{i_{t'+1}} > 0$ for all $1 \le t \le t' < k$

satisfied with large margin in IEEE circuits and SCE circuits

Theorem

SOCP relaxation is exact for radial networks

Gan, Li, Topcu, Low TAC2014