Convex Relaxation of OPF

Steven Low

Computing + Math Sciences
Electrical Engineering

Caltech

October 2014
Lund, Sweden

Acknowledgment

Caltech

- M. Chandy, J. Doyle, M. Farivar, L. Gan, B. Hassibi, Q. Peng, T. Teeraratkul, C. Zhao

Former

- S. Bose (Cornell), L. Chen (Colorado), D. Gayme (JHU), J. Lavaei (Columbia), L. Li (Harvard), U. Topcu (Upenn)

SCE

- A. Auld, J. Castaneda, C. Clark, J. Gooding, M. Montoya, S. Shah, R. Sherick

Optimal power flow (OPF)

OPF is solved routinely to determine

- How much power to generate where
- Parameter setting, e.g. taps, VARs
- Market operation \& pricing

Non-convex and hard to solve
■ Huge literature since 1962

- Common practice: DC power flow (LP)
- Also: Newton-Ralphson, interior point, ...

Outline

Optimal power flow (OPF)
■ bus injection model, branch flow model
3 convex relaxations

- SDP, chordal, second-order cone (SOCP)
- Relation among them

Sufficient conditions for exact relaxation

- Radial: 3 main conditions
- Mesh: phase shifters

Summary: OPF (bus injection model)

$$
\begin{array}{ll}
\min & \operatorname{tr} C V V^{*} \\
\text { subject to } & \underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} V V^{*}\right) \leq \bar{s}_{j} \quad \underline{v}_{j} \leq\left|V_{j}\right|^{2} \leq \bar{v}_{j} \\
& \text { nonconvex QCQP }
\end{array}
$$

Summary: OPF (branch flow model)

$\min \quad f(x)$
over $\quad x:=(S, I, V, s)$
s. t. $\quad \underline{s}_{j} \leq s_{j} \leq \bar{s}_{j} \quad \underline{v}_{j} \leq v_{j} \leq \bar{v}_{j}$
branch flow
model $\left\{\begin{array}{l}\sum_{i \rightarrow j}\left(S_{i j}-z_{i j}\left|I_{i j}\right|^{2}\right)-\sum_{j \rightarrow k} S_{j k}=s_{j} \\ V_{j}=V_{i}-z_{i j} I_{i j} \quad S_{i j}=V_{i} I_{i j}^{*}\end{array}\right.$
nonconvex

details

Bus injection model

admittance matrix:

$$
Y_{i j}:= \begin{cases}\sum_{k \sim i} y_{i k} & \text { if } i=j \\ -y_{i j} & \text { if } i \sim j \\ 0 & \text { else }\end{cases}
$$

graph model G : undirected
Y specifies topology of G and impedance z on lines

Bus injection model

In terms of V :

$$
s_{j}=\operatorname{tr}\left(Y_{j}^{H} V V^{H}\right) \quad \text { for all } j \quad Y_{j}=Y^{*} e_{j} e_{j}^{T}
$$

Power flow problem:
Given (Y, s) find V

Branch flow model

graph model G : directed

Branch flow model

$$
V_{i}-V_{j}=z_{i j} I_{i j} \quad \text { for all } i \rightarrow j \quad \text { Kirchhoff law }
$$

$S_{i j}=V_{i} I_{i j}^{*} \quad$ for all $i \rightarrow j \quad$ power definition

Branch flow model

$$
\begin{array}{lcl}
V_{i}-V_{j}=z_{i j} I_{i j} & \text { for all } i \rightarrow j & \text { Kirchhoff law } \\
S_{i j}=V_{i} I_{i j}^{*} & \text { for all } i \rightarrow j & \text { power definition } \\
\sum_{i \rightarrow j}\left(S_{i j}-z_{i j}\left|I_{i j}\right|^{2}\right)+s_{j}=\sum_{j \rightarrow k} S_{j k} & \text { for all } j & \text { power balance }
\end{array}
$$

Power flow problem:
Given (z, s) find (S, I, V)

Recap

Bus injection model

$$
s_{j}=\operatorname{tr}\left(Y_{j} V V^{*}\right)
$$

Branch flow model

$$
\begin{aligned}
V_{i}-V_{j} & =z_{i j} I_{i j} \\
S_{i j} & =V_{i} I_{i j}^{*} \\
\sum_{j \rightarrow k} S_{j k} & =\sum_{i \rightarrow j}\left(S_{i j}-z_{i j}\left|I_{i j}\right|^{2}\right)+s_{j}
\end{aligned}
$$

$$
(V, s) \in \mathbf{C}^{2(n+1)}
$$

$(S, I, V, s) \in \mathbf{C}^{2(m+n+1)}$

Equivalence

Theorem: $\quad \mathbf{V} \equiv \tilde{\mathbf{X}}$

- BIM and BFM are equivalent in this sense
- Any result in one model is in principle provable in the other,
- ... but some results are easier to formulate or prove in one than the other
- BFM seems to be much more numerically stable (radial networks)

$$
(V, s) \in \mathbf{C}^{2(n+1)}
$$

$$
(S, I, V, s) \in \mathbf{C}^{2(m+n+1)}
$$

solution set

OPF: bus injection model

min	$V^{*} C V$	gen cost, power loss
over	(V, s)	
subject to	$\underline{s}_{j} \leq s_{j} \leq \bar{s}_{j}$	$\underline{V}_{j} \leq\left\|V_{j}\right\| \leq \bar{V}_{j}$

OPF: bus injection model

min
over
subject to $\underline{s}_{j} \leq s_{j} \leq \bar{s}_{j}$

$$
s_{j}=\operatorname{tr}\left(Y_{j}^{H} V V^{H}\right)
$$

gen cost,

 power loss$$
\underline{V}_{j} \leq\left|V_{j}\right| \leq \bar{V}_{j}
$$

power flow equation

OPF: bus injection model

$$
\begin{array}{ll}
\min & \operatorname{tr} C V V^{*} \\
\text { subject to } & \underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} V V^{*}\right) \leq \bar{s}_{j} \quad \underline{v}_{j} \leq\left|V_{j}\right|^{2} \leq \bar{v}_{j}
\end{array}
$$

quadratically constrained QP (QCQP)

 nonconvex, NP-hard
OPF: branch flow model

$$
\begin{array}{ll}
\min & f(x) \\
\text { over } & x:=(S, I, V, s) \\
\text { s.t. } &
\end{array}
$$

OPF: branch flow model

$$
\begin{array}{ll}
\min & f(x) \\
\text { over } & x:=(S, I, V, s) \\
\text { s. t. } & \underline{s}_{j} \leq s_{j} \leq \bar{s}_{j} \quad \underline{v}_{j} \leq v_{j} \leq \bar{v}_{j}
\end{array}
$$

OPF: branch flow model

$\min \quad f(x)$
over $\quad x:=(S, I, V, s)$
s. t. $\quad \underline{s}_{j} \leq s_{j} \leq \bar{s}_{j} \quad \underline{v}_{j} \leq v_{j} \leq \bar{v}_{j}$
branch flow
model $\left\{\begin{array}{l}\sum_{i \rightarrow j}\left(S_{i j}-z_{i j}\left|I_{i j}\right|^{2}\right)-\sum_{j \rightarrow k} S_{j k}=s_{j} \\ V_{j}=V_{i}-z_{i j} I_{i j} \quad S_{i j}=V_{i} I_{i j}^{*}\end{array}\right.$
nonconvexity

Other features

Security constraint OPF

- Solve for operating points after each single contingency (N -1 security)
- N sets of variables and constraints, one for each contingency
Unit commitment
■ Discrete variables
Stochastic OPF
- Chance constraints $\operatorname{Pr}($ bad event $)<\varepsilon$

Other constraints

- Line flow, line loss, stability limit, ...

Outline

Optimal power flow (OPF)
■ bus injection model, branch flow model
3 convex relaxations

- SDP, chordal, second-order cone (SOCP)
- Relation among them

Sufficient conditions for exact relaxation

- Radial: 3 main conditions

■ Mesh: phase shifters

What are semidefinite relaxations of OPF?

How to check \& recover global optimal ?

details

Literature

Convex relaxation of OPF

relaxation	mode	first proposed	first analyzed
SOCP	BIM	Jabr 2006 TPS	
SDP	BIM	Bai et al 2008 EPES	Lavaei, Low 2012 TPS
Chordal	BIM	Bai, Wei 2011 EPES Jabr 2012 TPS	Molzahn et al 2013 TPS Bose et al 2014 TAC

Low. Convex relaxation of OPF (I, II), IEEE Trans Control of Network Systems, 2014

Literature

Convex relaxation of OPF

relaxation	model	first proposed	first analyzed
SOCP	BIM	Jabr 2006 TPS	
SDP	BIM	Bai et al 2008 EPES	Lavaei, Low 2012 TPS
Chordal	BIM	Bai, Wei 2011 EPES Jabr 2012 TPS	Molzahn et al 2013 TPS Bose et al 2014 TAC
SOCP	BFM	Farivar et al 2011 SGC Farivar, Low 2013 TPS	Farivar et al 2011 SGC Farivar, Low 2013 TPS

Low. Convex relaxation of OPF (I, II), IEEE Trans Control of Network Systems, 2014

Basic idea

min $\operatorname{tr} \mathrm{CVV}^{*}$
subject to $\underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} V V^{*}\right) \leq \bar{s}_{j} \quad \underline{v}_{j} \leq\left|V_{j}\right|^{2} \leq \bar{v}_{j}$

All complexity due to nonconvexity of \mathbf{V}
Relaxations:

- design convex supersets of \mathbf{V}
- minimize cost over convex supersets

Basic idea

min $\operatorname{tr} C V V^{*}$
subject to $\underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} V V^{*}\right) \leq \bar{s}_{j} \quad \underline{v}_{j} \leq\left|V_{j}\right|^{2} \leq \bar{v}_{j}$

All complexity due to nonconvexity of \mathbf{V}
Relaxations:

- design convex supersets of \mathbf{V}
- minimize cost over convex supersets

Exact relaxation: optimal solution of relaxation happens to lie in \mathbf{V} (when?)

Basic idea

min $\operatorname{tr} C V V^{*}$
subject to $\underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} V V^{*}\right) \leq \bar{s}_{j} \quad \underline{v}_{j} \leq\left|V_{j}\right|^{2} \leq \bar{v}_{j}$
ᄂ

Approach

1. Three equivalent characterizations of \mathbf{V}
2. Each suggests a lift and relaxation

- What is the relation among different relaxations ?
- When will a relaxation be exact?

Feasible sets

min

 $\operatorname{tr} C V V^{*}$$$
\text { subject to } \underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} V V^{*}\right) \leq \bar{s}_{j} \quad \underline{v}_{j} \leq\left|V_{j}\right|^{2} \leq \bar{v}_{j}
$$

Equivalent problem:

$$
\left.\begin{array}{ll}
\min & \operatorname{tr} C W \\
\text { subject to } & \begin{array}{ll}
\underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} W\right) \leq \bar{s}_{j} & \underline{v}_{i} \leq W_{i i} \leq \bar{v}_{i}
\end{array} \\
& W \geq 0, \text { rank } W=1
\end{array} \begin{array}{c}
\text { convex in } W \\
\text { except this constraint }
\end{array}\right]
$$

Equivalent feasible sets

$\mathbf{V}:=\{V$: satisfies quadratic constraints $\}$

instead of n variables solve for n^{2} vars !

$\mathbf{W}:=\{W$: satisfies linear constraints $\} \cap\{W \geq 0$ 佰 $\}$ idea: $W=V V^{*}$

Feasible set

only $n+2 m$ vars !

corresponding to edges (j, k) in G !
$\min \quad \operatorname{tr} C V V^{*}$
subject to $\underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} V V^{*}\right) \leq \bar{s}_{j} \quad \underline{v}_{j} \leq\left|V_{j}\right|^{2} \leq \bar{v}_{j}$
V

Feasible set

$$
\text { only } n+2 m \text { vars ! }
$$

partial matrix W_{G} defined on G

$$
W_{G}:=\left\{\left[W_{G}\right]_{j j},\left[W_{G}\right]_{j k},\left[W_{G}\right]_{k j} \mid j, j k \in G\right\}
$$

Kircchoff's laws depend directly only on W_{G}

Example

$$
W=\left[\begin{array}{lllll}
W_{11} & \mathrm{~W}_{12} & \mathrm{~W}_{13} & \mathrm{~W}_{14} & \mathrm{~W}_{15} \\
W_{21} & \mathrm{~W}_{22} & \mathrm{~W}_{23} & \mathrm{~W}_{24} & \mathrm{~W}_{25} \\
W_{31} & \mathrm{~W}_{32} & \mathrm{~W}_{33} & \mathrm{~W}_{34} & \mathrm{~W}_{35} \\
W_{41} & \mathrm{~W}_{42} & \mathrm{~W}_{43} & \mathrm{~W}_{44} & \mathrm{~W}_{45} \\
W_{51} & \mathrm{~W}_{52} & \mathrm{~W}_{53} & \mathrm{~W}_{54} & \mathrm{~W}_{55}
\end{array}\right]
$$

$$
W_{G}=\left[\begin{array}{lllll}
W_{11} & \mathrm{~W}_{12} & \mathrm{~W}_{13} & & \\
W_{21} & \mathrm{~W}_{22} & & & \mathrm{~W}_{25} \\
W_{31} & & \mathrm{~W}_{33} & \mathrm{~W}_{34} & \\
& & \mathrm{~W}_{43} & \mathrm{~W}_{44} & \mathrm{~W}_{45} \\
& \mathrm{~W}_{52} & & \mathrm{~W}_{54} & \mathrm{~W}_{55}
\end{array}\right]
$$

Want to solve for W_{G}
$n+2 m$ variables

SDP solves for $W \in \mathbf{C}^{n^{2}}$
n^{2} variables

Feasible sets

$$
\text { OPF } \quad \mathbf{V}:=\left\{V\left|\underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} V V^{*}\right) \leq \bar{s}_{j}, \quad \underline{v}_{j} \leq\left|V_{j}\right|^{2} \leq \bar{v}_{j}\right\}\right.
$$

SDP

$$
\mathbf{W}:=\left\{W \mid \underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} W\right) \leq \bar{s}_{j}, \underline{v}_{j} \leq W_{i j} \leq \bar{v}_{j}\right\} \cap\left\{\begin{array}{c}
W \geq 0, \text { rank-1 }\} \\
\text { depend only on } W_{G} \\
\text { entries of of } W
\end{array}\right.
$$

P Feasible sets

OPF $\quad \mathbf{V}:=\left\{V\left|\underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} V V^{*}\right) \leq \bar{s}_{j}, \quad \underline{v}_{j} \leq\left|V_{j}\right|^{2} \leq \bar{v}_{j}\right\}\right.$
SDP

$$
\mathbf{W}:=\left\{W \mid \underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} W\right) \leq \bar{s}_{j}, \underline{v}_{j} \leq W_{j j} \leq \bar{v}_{j}\right\} \cap\{W \geq 0, \text { rank-1 }\}
$$

first idea:

$$
\mathbf{W}_{G}:=\left\{W_{G} \mid \underline{s}_{j} \leq \operatorname{tr}\left(Y_{j} W_{G}\right) \leq \bar{s}_{j}, \underline{v}_{j} \leq\left[W_{G}\right]_{j j} \leq \bar{v}_{j}\right\} \cap\left\{W_{G} \geq 0, \text { rank-1 }\right\}
$$

W_{G} is equivalent to V when G is chordal Not equivalent otherwise
(1) Equivalent feasible sets
$\mathbf{W}_{G}:=\left\{\begin{array}{l}W_{i j}, W_{j k}:(j, k) \text { in } G \\ \text { satisfy linear constraints }\end{array}\right\} \cap\left\{\begin{array}{l}W(j, k) \geq 0 \text { rank }-1, \\ \text { cycle cond on } \angle W_{j k}\end{array}\right\}$ idea: $W_{G}=\left(V V^{*}\right.$ only on $\left.G\right)$
$\mathbf{W}_{c(G)}:=\left\{\begin{array}{l}W_{i j}, W_{j k}:(j, k) \text { in } c(G) \\ \text { satisfy linear constraints }\end{array}\right\} \cap\left\{W_{c(G)} \geq 0\right.$ rank-1\} idea: $W_{c(G)}=\left(V V^{*}\right.$ on $\left.c(G)\right)$
matrix completion [Grone et al 1984]
$\mathbf{W}:=\{W$: satisfies linear constraints $\} \cap\{W \geq 0$ rank- 1$\}$ idea: $W=V V^{*}$

Cycle condition

local

$$
\begin{gathered}
W_{G}(j, k) \succeq 0, \text { rank } W_{G}(j, k)=1, \quad(j, k) \in E \\
\sum_{(j, k) \in c} \angle\left[W_{G}\right]_{j k}=0 \quad \bmod 2 \pi \longleftarrow \text { cycle } \\
\text { cond }
\end{gathered}
$$

Equivalent feasible sets

Theorem: $\mathbf{V} \equiv \mathbf{W} \equiv \mathbf{W}_{c(G)} \equiv \mathbf{W}_{G}$

Bose, Low, Chandy Allerton 2012
Bose, Low, Teeraratkul, Hassibi TAC2014

Equivalent feasible sets

Theorem: $\quad \mathbf{V} \equiv \mathbf{W} \equiv \mathbf{W}_{c(G)} \equiv \mathbf{W}_{G}$

Given $W_{G} \in \mathbf{W}_{G}$ or $W_{c(G)} \in \mathbf{W}_{c(G)}$ there is unique completion $W \in \mathbf{W}$ and unique $V \in \mathbf{V}$

Can minimize cost over any of these sets, but ...

Relaxations

 idea: $W_{G}=\left(V V^{*}\right.$ only on $\left.G\right)$$$
\mathbf{W}_{c(G)}:=\left\{\begin{array}{l}
W_{j j}, W_{j k}:(j, k) \text { in } c(G) \\
\text { satisfy linear constraints }
\end{array}\right\} \cap\left\{W_{c(G)} \geq 0 \text { nant-1 }\right\}
$$ idea: $W_{c(G)}=\left(V V^{*}\right.$ on $\left.c(G)\right)$

matrix completion [Grone et al 1984]
$\mathbf{W}:=\{W$: satisfies linear constraints $\} \cap\{W \geq 0$ ranl-1 $\}$ idea: $W=V V^{*}$

Relaxations

Theorem

■ Radial $G: \mathbf{V} \subseteq \mathbf{W}^{+} \cong \mathbf{W}_{c(G)}^{+} \cong \mathbf{W}_{G}^{+}$
■ Mesh $G: \mathbf{V} \subseteq \mathbf{W}^{+} \cong \mathbf{W}_{c(G)}^{+} \subseteq \mathbf{W}_{G}^{+}$
Bose, Low, Chandy Allerton 2012
Bose, Low, Teeraratkul, Hassibi TAC2014

Relaxations

Theorem

\square Radial $G: \mathbf{V} \subseteq \mathbf{W}^{+} \cong \mathbf{W}_{c(G)}^{+} \cong \mathbf{W}_{G}^{+}$

- Mesh $G: \mathbf{V} \subseteq \mathbf{W}^{+} \cong \mathbf{W}_{c(G)}^{+} \subseteq \mathbf{W}_{G}^{+}$

For radial networks: always solve SOCP !

Convex relaxations

OPF

$\min _{V} C(V)$ subject to $V \in \mathbf{V}$
OPF-sdp:
$\min _{W} C\left(W_{G}\right) \quad$ subject to $\quad W \in \mathbb{W}^{+}$
OPF-ch:
$\min _{W_{c(G)}} C\left(W_{G}\right) \quad$ subject to $\quad W_{c(G)} \in \mathbb{W}_{c(G)}^{+}$
OPF-socp:
$\min _{W_{G}} C\left(W_{G}\right) \quad$ subject to $\quad W_{G} \in \mathbb{W}_{G}^{+}$

Recap: convex relaxations

SDP relaxation

- tightest superset
- max \# variables
- slowest

Chordal relaxation

- equivalent superset
- much faster for sparse networks
simple construction

SOCP relaxation

- coarsest superset
- min \# variables
- fastest

Recap: convex relaxations

SDP relaxation

- tightest superset
- max \# variables
- slowest

Chordal relaxation

- equivalent superset
- much faster for sparse networks

SOCP relaxation

- coarsest superset
- min \# variables
- fastest

For radial network: always solve SOCP!

Examples

- SOCP is faster but coarser than SDP

Bose, Low, Teeraratkul, Hassibi TAC 2014

Without PS: SDP vs SOCP

Test case	Objective values $(\$ / \mathrm{hr})$		Running times (sec)		
	SDP	SOCP	SDP		SOCP
9 bus	5297.4	5297.4	0.2		0.2
14 bus	8081.7	8075.3	0.2		0.2
30 bus	574.5	573.6	0.4		0.3
39 bus	41889.1	41881.5	0.7		0.3
57 bus	41738.3	41712.0	1.3		0.3
118 bus	129668.6	129372.4	6.9	0.6	
300 bus	720031.0	719006.5	109.4	1.8	
2383 bus	1840270	1789500.0	-		155.3
SOCP inexact					SDP not scalable

Examples

Test case	Objective values (\$/hr)		Running times (sec)		
	SDP/ch	SOCP	SDP	chordal	SOCP
9 bus	5297.4	5297.4	0.2	0.2	0.2
14 bus	8081.7	8075.3	0.2	0.2	0.2
30 bus	574.5	573.6	0.4	0.3	0.3
39 bus	41889.1	41881.5	0.7	0.3	0.3
57 bus	41738.3	41712.0	1.3	0.5	0.3
118 bus	129668.6	129372.4	6.9	0.7	0.6
300 bus	720031.0	719006.5	109.4	2.9	1.8
2383 bus	1840270	1789500.0	-	1005.6	155.3
		SOCP inexact	SDP no scalable		

What are semidefinite relaxations of OPF?

How to check \& recover global optimal ?

Branch flow model

$$
\begin{aligned}
& \text { Branch flow model } \\
& \sum_{j \rightarrow k} S_{j k}=\sum_{i \rightarrow j}\left(S_{i j}-z_{i j}\left|I_{i j}\right|^{2}\right)+s_{j} \\
& V_{i}-V_{j}=z_{i j} I_{i j} \\
& V_{i} I_{i j}^{*}=S_{i j} \\
& (S, I, V, s) \in \mathbf{C}^{2(m+n+1)}
\end{aligned}
$$

SOCP relaxation

Branch flow model

Branch flow model

$$
\begin{array}{lr}
\sum_{j \rightarrow k} S_{j k}=\sum_{i \rightarrow j}\left(S_{i j}-z_{i j}\left|I_{i j}\right|^{2}\right)+s_{j} & \sum_{j \rightarrow k} S_{j k}=\sum_{i \rightarrow j}\left(S_{i j}-z_{i j} \ell_{i j}\right)+s_{j} \\
V_{i}-V_{j}=z_{i j} I_{i j} & v_{i}-v_{j}=2 \operatorname{Re}\left(z_{i j}^{*} S_{i j}\right)-\left|z_{i j}\right|^{2} \ell_{i j} \\
V_{i} I_{i j}^{*}=S_{i j} & v_{i} \ell_{i j}=\left|S_{i j}\right|^{2} \\
(S, I, V, s) \in \mathbf{C}^{2(m+n+1)} & (S, \ell, v, s) \in \mathbf{R}^{3(m+n+1)}
\end{array}
$$

Branch flow model

Branch flow model

$$
\begin{aligned}
& \sum_{j \rightarrow k} S_{j k}=\sum_{i \rightarrow j}\left(S_{i j}-z_{i j}\left|I_{i j}\right|^{2}\right)+s_{j} \quad \sum_{j \rightarrow k} S_{j k}=\sum_{i \rightarrow j}\left(S_{i j}-z_{i j} \ell_{i j}\right)+s_{j} \\
& V_{i}-V_{j}=z_{i j} I_{i j} \\
& V_{i} I_{i j}^{*}=S_{i j} \quad v_{j}=2 \operatorname{Re}\left(z_{i j}^{*} S_{i j}\right)-\left|z_{i j}\right|^{2} \ell_{i j} \\
& v_{i} \ell_{i j} \geq\left|S_{i j}\right|^{2}
\end{aligned}
$$

$(S, I, V, s) \in \mathbf{C}^{2(m+n+1)}$

Branch flow model

power flow solutions: $x:=(S, \ell, v, s)$ satisfy

$$
\begin{aligned}
\sum_{j \rightarrow k} S_{j k} & =S_{i j}-z_{i j} \ell_{i j}+s_{j} \\
v_{i}-v_{j} & =2 \operatorname{Re}\left(z_{i j}^{*} S_{i j}\right)-\left|z_{i j}\right|^{2} \ell_{i j} \\
\ell_{i j} v_{i} & =\left|S_{i j}\right|^{2}
\end{aligned}
$$

Advantages

- Recursive structure (radial networks)
- Variables represent physical quantities
- More numerically stable

$$
\begin{aligned}
& \ell_{i j}:=\left|I_{i j}\right|^{2} \\
& v_{i}=\left|=\left|V_{i}\right|^{2}\right.
\end{aligned}
$$

Baran and Wu 1989 for radial networks

Branch flow model

$$
\begin{aligned}
& \mathbf{X}^{+}:=\left\{\begin{array}{c}
x: \text { satisfies linear } \\
\text { constraints }
\end{array}\right\} \cap\left\{\ell_{j k} v_{j} \geq|S|^{2}\right\} \text { soc } \\
& C:=\left\{\begin{array}{l}
\ell_{j k} v_{j}=|S|^{2} \\
\text { cycle cond on } x
\end{array}\right\}
\end{aligned}
$$

Theorem $\quad \mathbf{X} \equiv \mathbf{X}^{+} \cap C$

Cycle condition

A relaxed solution X satisfies the cycle condition if

$$
\exists \theta \text { s.t. } \quad B \theta=\beta(x) \quad \bmod 2 \pi
$$

incidence matrix; depends on topology

$$
\beta_{j k}(x):=\angle\left(v_{j}-z_{j k}^{H} S_{j k}\right)
$$

BFM: SOCP relaxation of OPF

OPF: $\min _{x \in \mathbf{X}} f(x)$

SOCP: $\min _{x \in \mathbf{X}^{+}} f(x)$

Equivalence

Theorem

$$
\mathbf{W}_{G} \equiv \mathbf{X} \quad \text { and } \quad \mathbf{W}_{G}^{+} \equiv \mathbf{X}^{+}
$$

Outline

Optimal power flow (OPF)
■ bus injection model, branch flow model
3 convex relaxations

- SDP, chordal, second-order cone (SOCP)
- Relation among them

Sufficient conditions for exact relaxation

- Radial: 2/3 main conditions

■ Mesh: phase shifters

Exact relaxation

A relaxation is exact if an optimal solution of the original OPF can be recovered from every optimal solution of the relaxation

Summary of sufficient conds

type	condition	model	reference	remark
A	power injections	BIM, BFM	$[25],[26],[27],[28],[29]$	
			$[30],[16],[17]$	
B	voltage magnitudes	BFM	$[31],[32],[33],[34]$	allows general injection region
C	voltage angles	BIM	$[35],[36]$	makes use of branch power flows

TABLE I: Sufficient conditions for radial (tree) networks.

network	condition	reference	remark
with phase shifters	type A, B, C	$[17$, Part II], [37]	equivalent to radial networks
direct current	type A	$[17$, Part I], [19], [38]	assumes nonnegative voltages
	type B	$[39],[40]$	assumes nonnegative voltages

TABLE II: Sufficient conditions for mesh networks

1. QCQP over tree

QCQP $\left(C, C_{k}\right)$
$\min \quad x^{*} C x$
over $\quad x \in \mathbf{C}^{n}$
s.t. $\quad x^{*} C_{k} x \leq b_{k} \quad k \in K$
graph of QCQP
$G\left(C, C_{k}\right)$ has edge $(i, j) \Leftrightarrow$
$C_{i j} \neq 0$ or $\left[C_{k}\right]_{i j} \neq 0$ for some k
QCQP over tree
$G\left(C, C_{k}\right)$ is a tree

1. Linear separability

QCQP $\left(C, C_{k}\right)$

\min	$x^{*} C x$
over	$x \in \mathbf{C}^{n}$
s.t.	$x^{*} C_{k} x \leq b_{k} \quad k \in K$

Key condition
$i \sim j:\left(C_{i j},\left[C_{k}\right]_{i j}, \forall k\right)$ lie on half-plane through 0
Theorem
SOCP relaxation is exact for QCQP over tree

Implication on OPF

Not both lower \& upper bounds on real \& reactive powers at both ends of a line can be finite

2. Voltage upper bounds

when there is no voltage constraint

- feasible set : 2 intersection pts
- relaxation: line segment
- exact relaxation: c is optimal

2. Voltage upper bounds

$\left(p_{0}, q_{0}\right)$
$\left(p_{1}, q_{1}\right)$ given

voltage lower bound (upper bound on l) does not affect relaxation

(a) Voltage constraint not binding
(b) Voltage constraint binding

2. Voltage upper bounds

OPF: $\min _{x \in \mathbf{X}} f(x) \quad$ s.t. $\underline{v} \leq v \leq \bar{v}, s \in \Sigma$
SOCP: $\min _{x \in \mathbf{X}^{+}} f(x)$ s.t. $\underline{v} \leq v \leq \bar{v}, s \in \Sigma$

Key condition:

- $L(s) \leq \bar{v}$
voltages if network were lossless
- Jacobian condition
$\underline{A}_{i_{t}} \cdots \underline{A}_{i_{t^{\prime}}} z_{i_{t^{\prime}+1}}>0$ for all $1 \leq t \leq t^{\prime}<k$
if upward current were reduced then all subsequent powers dec

Theorem

SOCP relaxation is exact for radial networks

2. Voltage upper bounds

OPF: $\min _{x \in \mathbf{X}} f(x) \quad$ s.t. $\underline{v} \leq v \leq \bar{v}, s \in \Sigma$
SOCP: $\min _{x \in \mathbf{X}^{+}} f(x) \quad$ s.t. $\underline{v} \leq v \leq \bar{v}, s \in \Sigma$

Key condition:

- $L(s) \leq \bar{v}$
- Jacobian condition
$\underline{A}_{i_{t}} \cdots \underline{A}_{i_{t^{\prime}}} z_{i_{t^{\prime}+1}}>0$ for all $1 \leq t \leq t^{\prime}<k$
satisfied with large margin in IEEE circuits and SCE circuits

Theorem

SOCP relaxation is exact for radial networks

