Networked Robust Stabilization: when gap meets two-port

Guoxiang Gu and Li Qiu

Louisiana State University Hong Kong University of Science and Technology

October 2014

Guoxiang Gu and Li Qiu (LSU and HKUST)

イロト 不得下 イヨト イヨト

Networked control system (NCS)

- The plant and controller are uncertain and the uncertainty is described by the gap metric.
- The communication network is a cascade of two-port networks, modeling bidirectional transmission with relays.
- We only consider SISO plants and controllers in this talk, for the sake of simplicity.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Gap metric: a review

(Zames; Vidyasagar; Georgiou and Smith; Qiu and Davison; Vinnicombe, from 1980 to ${\sim}1995.)$

- P is LTI and possibly unstable.
- Graph of P

$$\mathcal{G}_{P} = \left\{ \left[egin{array}{c} u \\ y \end{array}
ight] \in \mathcal{H}_{2} imes \mathcal{H}_{2} : y = Pu
ight\}.$$

a subspace of $\mathcal{H}_2 \times \mathcal{H}_2$.

• Gap metric between P_1 and P_2 .

$$\delta(P_1,P_2) = \|\Pi_{\mathcal{G}_{P_1}} - \Pi_{\mathcal{G}_{P_2}}\|.$$

• Uncertain systems can be described by gap balls

$$\mathcal{B}(P,r) = \{\tilde{P} : \delta(P,\tilde{P}) \leq r\}.$$

• Gap ball viewed as rotation of the graph:

$$\{\tilde{P}: \mathcal{G}_{\tilde{P}} = (I + \Delta)\mathcal{G}_{P}, \|\Delta\|_{\infty} \leq r\} \subset \mathcal{B}(P, r).$$

The maximal rotating angle is $\arcsin r$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Gap metric: a review (continued)

Figure: Feedback System (P, C).

• The gang of four

$$GoF(P,C) = \begin{bmatrix} \frac{1}{1-PC} & \frac{-C}{1-PC} \\ \frac{P}{1-PC} & \frac{-PC}{1-PC} \end{bmatrix} = \begin{bmatrix} 1 \\ P \end{bmatrix} (1-PC)^{-1} \begin{bmatrix} 1 & -C \end{bmatrix}.$$

• Need to work on the inverse graph of C

$$\mathcal{G}'_{\mathcal{C}} = \left\{ \left[\begin{array}{c} u \\ y \end{array}
ight] \in \mathcal{H}_2 \times \mathcal{H}_2 : u = \mathcal{C}y
ight\}.$$

• (P, C) is stable if \mathcal{G}_P and \mathcal{G}'_C are complementary.

Gap metric: a review (continued)

•
$$(\tilde{P}, \tilde{C})$$
 is stable for all $\tilde{P} \in \mathcal{B}(P, r_P)$ and $\tilde{C} \in \mathcal{B}(C, r_C)$ iff

 $\operatorname{arcsin} r_P + \operatorname{arcsin} r_C < \operatorname{arcsin} \|GoF(P, C)\|_{\infty}^{-1}$.

(arcsin theorem)

• Optimal robust control problem:

$$\min_{C} \|GoF(P,C)\|_{\infty}$$

an "easy" \mathcal{H}_∞ control problem.

イロト イポト イヨト イヨト

Two-port circuit: a review

• Transmission representation

$$\left[\begin{array}{c}v_1(s)\\i_1(s)\end{array}\right]=A(s)\left[\begin{array}{c}v_2(s)\\i_2(s)\end{array}\right].$$

Ideal transmission

$$A_0(s) = \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight].$$

• Transmission with distortion

$$A(s) = I + \Delta(s).$$

・ロト ・回ト ・ヨト ・

Cascade connection of two-port circuits

• The transmission matrices are multiplied

$$\begin{bmatrix} v_1(s) \\ i_1(s) \end{bmatrix} = A_1(s)A_2(s)...A_l(s)\begin{bmatrix} v_{l+1}(s) \\ i_{l+1}(s) \end{bmatrix}.$$

Guoxiang Gu and Li Qiu (LSU and HKUST)

・ロト ・回ト ・ヨト ・

Two-port communication network

- $\bullet~{\sf Voltages} \to {\sf down-link}$ signals, currents $\to~{\sf up-link}$ signals.
- Transmission matrix

$$\left[\begin{array}{c} u_1\\ y_1 \end{array}\right] = A \left[\begin{array}{c} u_2\\ y_2 \end{array}\right].$$

Ideal transmission

$$A_0 = I = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

• Transmission with distortion

$$A = I + \Delta = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} \Delta_{\div} & \Delta_{-} \\ \Delta_{+} & \Delta_{\times} \end{bmatrix}, \quad \|\Delta\|_{\infty} < r.$$

(Notation invented by Halsey and Glover)

• We allow Δ to be nonlinear.

• • • • • • • • • • • •

Plant with two-port distortion

• Linear fractional transformation (LFT)

$$ilde{P} = rac{(1+\Delta_{ imes})P+\Delta_{+}}{1+\Delta_{\div}+\Delta_{-}P}.$$

• Graph of the distorted system

$$\mathcal{G}_{\tilde{P}} = (I + \Delta)\mathcal{G}_{P}.$$

The same type of rotation as in the gap ball.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

System with $+, -, \times, \div$ uncertainty.

イロト イヨト イヨト イヨト

Two-port transmission model of NCS

Figure: Networked control system.

• \tilde{P}, \tilde{C} are only known to belong to gap balls

$$\tilde{P} \in \mathcal{B}(P, r_P), \tilde{C} \in \mathcal{B}(C, r_C).$$

• N_i is only known to have transmission matrix

$$A_i = I + \Delta_i, \|\Delta_i\|_{\infty} \leq r_i.$$

Main result

• The NCS is robustly stable iff

$$\operatorname{arcsin} r_P + \operatorname{arcsin} r_C + \sum_{i=1}^l \operatorname{arcsin} r_i < \operatorname{arcsin} \|GoF(P, C)\|_{\infty}^{-1}.$$

(Networked arcsin theorem)

Optimal design

 $\min_{C} \|GoF(P,C)\|_{\infty}.$

イロト イヨト イヨト イヨト

Hammerstein-Wiener model of NCS

• Δ_{\times} and Δ_{\div} are nonlinear time-varying systems satisfying

$$\|\Delta_{\times}\|_{\infty} \leq r, \quad \|\Delta_{\div}\|_{\infty} \leq r.$$

- Two-port network with diagonal transmission matrix.
- Δ_{\times} and Δ_{\div} can be used to model logarithmic quantizations.
- The NCS is robustly stable iff

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] - \left[\begin{array}{cc} \Delta_{\div} & 0 \\ 0 & \Delta_{\times} \end{array}\right] GoF$$

is stably invertible for all Δ_{\times} and $\Delta_{\div}.$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

μ -synthesis of Hammerstein-Wiener system

• Introducing scaling: the closed-loop system is robustly stable iff

$$\begin{split} & \inf_{\gamma \in (0,\infty)} \| \begin{bmatrix} 1 & 0 \\ 0 & \gamma \end{bmatrix} GoF(P,C) \begin{bmatrix} 1 & 0 \\ 0 & \gamma^{-1} \end{bmatrix} \|_{\infty} \\ & = \inf_{\gamma \in (0,\infty)} \| \begin{bmatrix} \frac{1}{1-PC} & \frac{-\gamma^{-1}C}{1-PC} \\ \frac{\gamma P}{1-PC} & \frac{PC}{1-PC} \end{bmatrix} \|_{\infty} \\ & = \inf_{\gamma \in (0,\infty)} \| GoF(\gamma P,\gamma^{-1}C) \|_{\infty} < \frac{1}{r}. \end{split}$$

Optimal design

$$\inf_{\gamma \in (0,\infty)} \inf_{C} \|GoF(\gamma P, \gamma^{-1}C)\|_{\infty}.$$

• The function $\gamma \mapsto \inf_{C} \|GoF(\gamma P, \gamma^{-1}C)\|_{\infty}$ was mistakenly conjectured to be unimodal.

・ロト ・回ト ・ヨト ・ヨト

Conclusions

- Trade-off between the capacities of the down-link and the up-link channels.
- Optimal robust networked control, linking the history.
- H_2 vs H_∞ theory

イロト イヨト イヨト イヨト