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graphical models

XA ?? XB |XS

G = (V, E) |@i |  d|V | = p

Xi ?? XV \@i[{i} |X@i



efficient inference
belief propagation can be used to do inference

historically people knew what models to use

hidden Markov model

LDPC code

lattice



social network data

modern applications: 
unknown structure

financial data

gene regulatory network

structure for modern 
data is often unknown 



learning graphical 
model

P(X) =
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exp
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✓i jXiXj +
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both n and computational complexity are 

↵  |✓i j |  �

task: reconstruct graph and parameters from the 
data 

w.prob.! 1 as n, p !1

data: X(1), X(2), . . . , X(n) (i.i.d. samples)X ⇠ P

i

j
✓i j

X 2 {0, 1}p

G = (V, E)

|@i |  d
|V | = p

graphical
model:



baseline: exhaustive 
search algorithm

[Bresler-Mossel-Sly ’08]
[Abbeel-Koller-Ng ’06]

Xi ?? XV \@i[{i} |X@i
i

j

|P(Xi = +1|XU = xU , XW = xW )
�P(Xi = +1|XU = flipj(xU), XW = xW )| = 0

for some j 2 Uthen for some W ◆ @i \ Uand

“U fails test”

if U ( @i

test whether U ✓ @i



baseline: exhaustive 
search algorithm

[Bresler-Mossel-Sly ’08]

Xi ?? XV \@i[{i} |X@i
i

j

|P(Xi = +1|XU = xU , XW = xW )
�P(Xi = +1|XU = flipj(xU), XW = xW )|

for some j 2 Uthen for allif U ✓ @i W ◆ @i \ Uand

“U passes test”

test whether U ✓ @i
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baseline: exhaustive 
search algorithm

Xi ?? XV \@i[{i} |X@i
i

for each node i	

	
 test all possible neighborhoods U	

	
 choose largest U passing test

Algorithm:

[Bresler-Mossel-Sly ’08]

algorithm recovers with prob. 	
 	
 	
 	
  using	
 	

	
 	
 	
 	
 	
         	
 	
    samples, w runtime  

1� o(1)
eO
�
p2d+1

�
Theorem:

n = O(22de(4�+h)d log p)



our notion of 
computational efficiency

efficient: f (d)pc

want to have 	

no restrictions on 
graph structure

question: for what types 
of interactions can we 
learn efficiently? 

indep. of d!

can be exponential

exhaustive search: p⇥(d)



correlation decay

[Dobrushin ’70, Dobrushin-Shlosman ’85, Martinelli ’95, 	

Weitz ’06, Salas-Sokal ’97, Bandyopadhyay-Gmarnik ’08, 	

Gamarnik-Goldberg-Weber ’13, and many others…]	


EXiXj  (1� �)dist(i ,j)exponential decay of correlations:

i
j

[Bresler-Mossel-Sly ’08]Theorem:
if have correlation decay and	
 	
 	
 	
    for 	

can learn using       	
 	
 	
                samples in time 

EXiXj �  {i , j} 2 E
n = O(28de16�d log p) O(np2)

f (d)pc : c = 2, f (d) = 28de16�d

various models satisfy CDP:



can learn using       	
 	
 	
          	
      samples in time 
 if have correlation decay and	
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complexity: pd2d�
�1 ln(4/)

+

nodes
d�

�1 ln(1/)

��1 ln(1/)

exhaustive search over
nodesd�

�1 ln(1/)

:Theorem:
O(np2)n = O(28de16�d log p)

np2



all known low-complexity algorithms 	

explicitly or implicitly require correlation decay

correlation decay

[Bento-Montanari ’09]

[Ravikumar-Lafferty-Wainwright ’06]

[Anandkumar-Tan-Huang-Willsky ’12]

[Wu-Srikant-Ni ‘13]
[Ray-Sanghavi-Shakkottai ‘12]

[many many others]

several low-complexity algorithms 	

fail without require correlation decay

other low-complexity	

approaches to learning:

[Lee-Ganapathi-Koller ‘06]

Dobrushin 
condition 
|✓i j | = O(1/d)

✓12



can we learn 
efficiently without 
correlation decay?



repelling models
X 2 {0, 1}pP(X) =

1

Z
exp
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✓i jXiXj +
X

i2V
✓iXi

◆

↵  |✓i j |  �

✓i  h
↵ � d(h + ln 2)

✓i j  �↵repelling

can learn these models with prob. 	
	
 	
 	
  using	
 	
 	

	
 	
 	
 	
 	
 	
 	
       samples, with runtime 

1� o(1)
Theorem: [Bresler-Gamarnik-Shah ‘14a]

O(np2)n = O(22de4�d log p)



repelling models

Key observation:

Ex. Independent set model

i
j

i and j are neighbors: (Xi, Xj) 6= (1, 1) w.p. 1

i and j are not neighbors: (Xi, Xj) = (1, 1) w.p. � �(d)

↵ ! 1, i.e. ✓ij ! �1



repelling models

long-range	

correlations
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can learn these models with prob. 	
	
 	
 	
  using	
 	
 	

	
 	
 	
 	
 	
 	
 	
       samples, with runtime 

1� o(1)
Theorem: [Bresler-Gamarnik-Shah ‘14a]

O(np2)n = O(22de4�d log p)



repelling models

O(np2+⌧ )
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can learn these models with prob. 	
	
 	
 	
  using	
 	
 	

	
 	
 	
 	
 	
 	
 	
       samples, with runtime 

1� o(1)
Theorem: [Bresler-Gamarnik-Shah ‘14a]

O(np2)n = O(22de4�d log p)



algorithm recovers with prob. 	
 	
 	
 	
  using	

	
 	
 	
 	
 	
 	
               samples, with runtime 

1� o(1)
Theorem:

O(np)

learning parameters

X@i = 0

P(Xi = 1|X@i = 0) =
ehi

1 + ehi

1. consider samples with 

2. this allows to estimate 

3. solve for hi 

Algorithm: (node-wise parameters)once you know the graph, 
learning parameters is 

easy

n = O(22de(4�+h)d log p)



can we do better in general

exhaustive search: p⇥(d)

No algorithm can do better than         under the 	

computation model of “statistical algorithms” in 	

general. 

Theorem: [Bresler-Gamarnik-Shah ‘14a]

p⇥(d)



a general approach to 
simplifying: 	


!

reduce to sufficient statistics 



reducing to 
sufficient statistics

X 2 {0, 1}p

try to estimate µ 7! ✓

P(X) =
1

Z
exp

✓ X

{i ,j}2E

✓i jXiXj +
X

i2V
✓iXi

◆

sufficient statistics
(µi j)i j = (EXiXj)i j = (P(Xi = Xj i))i j

(µi)i = (EXi)i = (P(Xi = i))i

physicists try to estimate this 	

map using various “expansions” 

[Ricci-Tersenghi ’12] 	

[Sessak-Monasson ’08]	

[Cocco-Monasson ’12]	

 …many others

(feasible in principle!)



reducing to 
sufficient statistics

µ = (E(Xi))i = (P(Xi = 1))i

✓i j ! �1

P(X) =
1

Z
exp

✓X

i2V
✓iXi

◆
, X is an independent set

P(X) =
1

Z
exp

✓ X

{i ,j}2E

✓i jXiXj +
X

i2V
✓iXi

◆
X 2 {0, 1}p

sufficient statistics

Theorem: [Bresler-Gamarnik-Shah ’14b] [Montanari ’14]

learning parameters of graphical models 	

from sufficient statistics is NP-hard

(special case of repelling model)



some remarks on proof
Reduction:

Use it as a black-box to solve a known difficult problem

Suppose there exists efficient algorithm for µ 7! ✓

The difficult problem: given     find corresponding  ✓ µ ⌘ µ(✓)

counting # of independent sets in G
a known hard (to approximate) problem 
[Dyer-Frieze-Jerrum ’02]
[Sly ’10]
[Sly-Sun ’12]

For independent set with          this corresponds to✓ = 0



some remarks on proof
Reduction:

Solve using black-box µ 7! ✓

Gradient ascent:

µt+1 = µt +
1

t

⇣
✓ � ✓t

⌘

µ(✓) 2 arg max

⌫2M
h⌫, ✓i+HER(⌫)

The difficult problem: given     find corresponding  ✓ µ ⌘ µ(✓)

µt ! ✓t

Key challenge:

needs to be projected on marginal polytope Mµt+1



some remarks on proof

Lemma: [Bresler-Gamarnik-Shah ‘14b]  
For the objective of interest, the 	

polytope boundary has an 	

inherent repulsion property

what if algorithm naturally 
avoids boundary	


marginal polytope is 
very complicated	




once you know the graph,	

learning parameters is easy

graph tells you on which 	

higher order statistics to focus

learning from sufficient statistics	

is probably not a good idea



revisit original goal: 	

!

learning from data

so far: i.i.d. data



Social Behavior: Purchases, Likes, …

Excellent Food 
@ IKEA!

Girl w Dragon 
Tatto: Myth or 

reality?

what sort of data?

dynamics over time

Great 
Bookshelf @ 
IKEA

Belgian Chocs
are Great!



learning models 
from data

X(1), X(2), . . . , X(n) i.i.d. samples

P(X) =
1

Z
exp

✓ X

{i ,j}2E

✓i jXiXj +
X

i2V
✓iXi

◆

i

j
✓i j

X 2 {0, 1}p

both n and computational complexity are 

task: reconstruct graph and parameters from the data 

↵  |✓i j |  �

w.prob.! 1 as n, p !1

data:
n steps of some process



Glauber dynamics
1. each node has a Poisson(1) clock

2. when clock rings, update variable according to

P(Xi = 1|Xt@i) =
exp

�
2

P
j2@i ✓i jX

t
j

�

1 + exp

�
2

P
j2@i ✓i jX

t
j

�

LCCC @ Lund 
has been a 
great mtg

Gr8 Food 
@IKEA

meaningless 
status update
#ocdUpdates

dance party @ 
LCCC Lund 
tonight, don’t 
miss it.



slow mixing

for models without correlation decay, the Glauber 
dynamics is known to mix exponentially slowly in p  

samples will be far from i.i.d.

i.i.d. sampling is NP-hard for some models	

but Glauber dynamics defined for any graphical model



efficient learning from 
the Glauber dynamics

[Netrapalli-Sanghavi ’12]

[Dahleh-Tsitsiklis-Zoumpoulis ’13]

epidemic models:learning theory:

[Bshouty-Mossel-	

O’Donnell-Servedio ’03]

[Aldous-Vazirani ‘90]

[Bartlett-Fischer-Hoffgen ‘94]

Theorem:             with n = O(e4d� log p)

any pairwise model even without correlation decay
samples per node, and runtime O(np2)

 [Bresler-Gamarnik-Shah ’14c]

can learn



estimating effect of 
a neighbor
imaginary scenario: node i updates, 
then node j flips, then node i again

i

this would require samples per node⌦(ed�p2)

Coffee @IKEA 
is terrible!j

Try coffee @ 
LCCC, Lund

a more delicate argument is required to get to Od(log p)

test for existence of an edge:

exp

�
✓ij

�
=

p+(1� p�)

p�(1� p+)

p+ = P
�
Xi = +1|X@i\j = +1, Xj = +1

�

p� = P
�
Xi = +1|X@i\j = +1, Xj = �1

�



summary

correlation decay is not necessary to learn efficiently

observing dynamics over time can make things easy

reducing to sufficient statistics is computationally suboptimal

insight: often makes sense to learn structure first 	

and only then estimate parameters

however exhaustive algorithm seems the best in general


