Learning graphical models: hardness and tractability

Guy Bresler David Gamarnik Devavrat Shah MIT

graphical models

$$
G=(V, E) \quad|V|=p \quad|\partial i| \leq d
$$

$$
\begin{gathered}
X_{A} \Perp X_{B} \mid X_{S} \\
X_{i} \Perp X_{V \backslash a i \cup\{i\}} \mid X_{a i}
\end{gathered}
$$

efficient inference

belief propagation can be used to do inference
historically people knew what models to use

lattice

hidden Markov model

modern applications: unknown structure

financial data
re for moserthal network data often unknowa

gene regulatory network

learning graphical $G=(V, E)$ model
 $$
\begin{aligned} & |V|=p \\ & |\partial i| \leq d \\ & X \in\{0,1\}^{p} \end{aligned}
$$

graphical
model: $\quad \mathrm{P}(X)=\frac{1}{Z} \exp \left(\sum_{\{i, j\} \in E} \theta_{i j} X_{i} X_{j}+\sum_{i \in V} \theta_{i} X_{i}\right)$ $\alpha \leq\left|\theta_{i j}\right| \leq \beta$
data: $X^{(1)}, X^{(2)}, \ldots, X^{(n)} \quad X \sim P \quad$ (i.i.d. samples)
task: reconstruct graph and parameters from the data
w. prob. $\rightarrow 1$ as $n, p \rightarrow \infty$

baseline: exhaustive

 [Abbeel-Koller-Ng '06] [Bresler-Mossel-Sly '08] search algorithm$X_{i} \Perp X_{V \backslash \partial i v\{i\}} \mid X_{\partial i}$ test whether $U \subseteq \partial i$

if $U \subsetneq \partial i$ then for some $j \in U$ and $W \supseteq \partial i \backslash U$

$$
\begin{aligned}
& \mid \mathrm{P}\left(X_{i}=+1 \mid X_{U}=x_{U}, X_{W}=x_{W}\right) \\
& \quad-\mathrm{P}\left(X_{i}=+1 \mid X_{U}=\operatorname{flip}_{j}\left(x_{U}\right), X_{W}=x_{W}\right) \mid=0
\end{aligned}
$$

"U fails test"

baseline: exhaustive [Bresler-Mossel-Sly ’08]
 $X_{i} \Perp X_{V \backslash \text { aiv\{i\} }} \mid X_{a i}$ test whether $U \subseteq \partial i$

 if $U \subseteq \partial i$ then for all $j \in U$ and $W \supseteq \partial i \backslash U$$$
\mid \mathrm{P}\left(X_{i}=+1 \mid X_{U}=x_{U}, X_{W}=x_{W}\right)
$$

$$
-\mathrm{P}\left(X_{i}=+1 \mid X_{U}=\operatorname{flip}_{j}\left(x_{U}\right), X_{W}=x_{W}\right) \left\lvert\, \geq \frac{\tanh 2 \alpha}{2 e^{2(d-1) \beta}}\right.
$$

"U passes test"

baseline: exhaustive

 search algorithm$X_{i} \Perp X_{V \backslash \partial i \cup\{i\}} \mid X_{\partial i}$
Algorithm:
for each node i
test all possible neighborhoods U choose largest U passing test

Theorem: [Bresler-Mossel-Sly '08]
algorithm recovers with prob. $1-o(1)$ using $n=O\left(2^{2 d} e^{(4 \beta+h) d} \log p\right)$ samples, w runtime $\widetilde{O}\left(p^{2 d+1}\right)$

our notion of computational efficiency

exhaustive search: $p^{\Theta(d)}$

indep. of d!
 efficient:
 can be exponential

want to have
no restrictions on graph structure
question: for what types
of interactions can we
learn efficiently?

correlation decay

Theorem:[Bresler-Mossel-Sly '08]
if have correlation decay and $\mathrm{E} X_{i} X_{j} \geq \kappa$ for $\{i, j\} \in E$ can learn using $n=O\left(2^{8 d} e^{16 \beta d} \log p\right)$ samples in time $O\left(n p^{2}\right)$

$$
f(d) p^{c}: \quad c=2 f(d)=2^{8 d} e^{16 \beta d}
$$

exponential decay of correlations: $\mathrm{E} X_{i} X_{j} \leq(1-\gamma)^{\text {dist }(i, j)}$

various models satisfy CDP:

[Dobrushin '70, Dobrushin-Shlosman '85, Martinelli '95, Weitz '06, Salas-Sokal '97, Bandyopadhyay-Gmarnik '08, Gamarnik-Goldberg-Weber 'I3, and many others...]

Theorem: if have correlation decay and $E X_{i} X_{j} \geq \kappa$ for $\{i, j\} \in E$: can learn using $n=O\left(2^{8 d} e^{16 \beta d} \log p\right)$ samples in time $O\left(n p^{2}\right)$

correlation decay

Dobrushin condition

$$
\left|\theta_{i j}\right|=O(1 / d)
$$

other low-complexity approaches to learning:
[Ravikumar-Lafferty-Wainwright '06]
[Lee-Ganapathi-Koller '06]
[Anandkumar-Tan-Huang-Willsky 'I2]
[Ray-Sanghavi-Shakkottai ‘12]
[Wu-Srikant-Ni '13]
[many many others]
[Bento-Montanari '09]
atvemolwovloeroruphiexliexialgedigidnritisms faipliaitl|purr rieqplicicityorreqlaitienackeredztion decay

can we learn efficiently without correlation decay?

repelling models

$$
\begin{array}{cc}
\mathrm{P}(X)=\frac{1}{Z} \exp \left(\sum_{\{i, j\} \in E} \theta_{i j} x_{i} x_{j}+\sum_{i \in V} \theta_{i} x_{i}\right) & \begin{array}{c}
x \in\{0,1\}^{p} \\
\alpha \leq\left|\theta_{i j}\right| \leq \beta
\end{array} \\
\text { repelling } \quad \theta_{i j} \leq-\alpha \\
\theta_{i} \leq h
\end{array}
$$

Theorem: [Bresler-Gamarnik-Shah 'I4a]
can learn these models with prob. 1-o(1) using $n=O\left(2^{2 d} e^{4 \beta d} \log p\right)$ samples, with runtime $O\left(n p^{2}\right)$

repelling models

Ex. Independent set model

$$
\alpha \rightarrow \infty, \text { i.e. } \theta_{i j} \rightarrow-\infty
$$

Key observation:
i and j are neighbors: $\left(X_{i}, X_{j}\right) \neq(1,1)$ w.p. 1
i and j are not neighbors: $\left(X_{i}, X_{j}\right)=(1,1)$ w.p. $\geq \gamma(d)$

repelling models

Theorem: [Bresler-Gamarnik-Shah 'I4a]
can learn these models with prob. $1-o(1)$ using $n=O\left(2^{2 d} e^{4 \beta d} \log p\right)$ samples, with runtime $O\left(n p^{2}\right)$
$\alpha \geq d(h+\ln 2)$
$\alpha \geq(d-\tau)(h+\ln 2)$

Theorem: [Bresler-Gamarnik-Shah ‘I4a]
can learn these models with prob. $1-o(1)$ using $n=O\left(2^{2 d} e^{4 \beta d} \log p\right)$ samples, with runtime $O\left(A R^{2}\right)$

learning parameters

Algorith®n6e-yodpaknows)the graph,

I. considelearpninghparameters is
2. this allows to estimateeasy

$$
\mathrm{P}\left(X_{i}=1 \mid X_{\partial i}=\mathbf{0}\right)=\frac{e^{h_{i}}}{1+e^{h_{i}}}
$$

3. solve for h_{i}

Theorem:

algorithm recovers with prob. $1-o(1)$ using $n=O\left(2^{2 d} e^{(4 \beta+h) d} \log p\right)$ samples, with runtime $O(n p)$

can we do better in general

exhaustive search: $p^{\Theta(d)}$

Theorem: [Bresler-Gamarnik-Shah 'I4a]
No algorithm can do better than $p^{\Theta(d)}$ under the computation model of "statistical algorithms" in general.

a general approach to simplifying:

reduce to sufficient statistics

reducing to sufficient statistics

$$
\mathrm{P}(X)=\frac{1}{Z} \exp \left(\sum_{\{i, j\} \in E} \theta_{i j} X_{i} X_{j}+\sum_{i \in V} \theta_{i} X_{i}\right) \quad X \in\{0,1\}^{p}
$$

$$
\left(\mu_{i}\right)_{i}=\left(\mathrm{E} X_{i}\right)_{i}=\left(\mathrm{P}\left(X_{i}=i\right)\right)_{i}
$$

$$
\left(\mu_{i j}\right)_{i j}=\left(\mathrm{E} X_{i} X_{j}\right)_{i j}=\left(\mathrm{P}\left(X_{i}=X_{j} i\right)\right)_{i j}
$$

sufficient statistics

try to estimate $\mu \mapsto \theta \quad$ (feasible in principle!)
physicists try to estimate this map using various "expansions"
[Ricci-Tersenghi '12]
[Sessak-Monasson '08]
[Cocco-Monasson 'I2]
...many others

reducing to sufficient statistics

$$
\mathrm{P}(X)=\frac{1}{Z} \exp \left(\sum_{\{i, j\} \in E} \theta_{i j} X_{i} X_{j}+\sum_{i \in V} \theta_{i} X_{i}\right) \quad X \in\{0,1\}^{p}
$$

(spebijal casase ${ }^{\text {®f }}$ repelling model)

Theorem: [Bresler-Gamarnik-Shah 'I4b] [Montanari 'I4]
learning parameters of graphical models from sufficient statistics is NP-hard

some remarks on proof

Reduction:

Suppose there exists efficient algorithm for $\mu \mapsto \theta$
Use it as a black-box to solve a known difficult problem
The difficult problem: given θ find corresponding $\mu \equiv \mu(\theta)$
For independent set with $\theta=\mathbf{0}$ this corresponds to
counting \# of independent sets in G
a known hard (to approximate) problem
[Dyer-Frieze-Jerrum '02]
[Sly 'IO]
[Sly-Sun 'I2]

some remarks on proof

Reduction:

The difficult problem: given θ find corresponding $\mu \equiv \mu(\theta)$ Solve using black-box $\mu \mapsto \theta$

$$
\mu(\theta) \in \arg \max _{\nu \in \mathcal{M}}\langle\nu, \theta\rangle+H_{\mathrm{ER}}(\nu)
$$

Gradient ascent:

$$
\mu^{t+1}=\mu^{t}+\frac{1}{t}\left(\theta-\theta^{t}\right)
$$

Key challenge:
μ^{t+1} needs to be projected on marginal polytope \mathcal{M}

some remarks on proof

what if algorithm naturally avoids boundary

Lemma: [Bresler-Gamarnik-Shah 'I4b] For the objective of interest, the polytope boundary has an inherent repulsion property
marginal polytope is very complicated

once you know the graph, learning parameters is easy

> graph tells you on which higher order statistics to focus

learning from sufficient statistics is probably not a good idea

so far: i.i.d. data

revisit original goal: learning from data

what sort of data?

Social Behavior: Purchases, Likes, ...

dynamics over time

learning models from data

$$
\mathrm{P}(X)=\frac{1}{Z} \exp \left(\sum_{\{i, j\} \in E} \theta_{i j} X_{i} X_{j}+\sum_{i \in V} \theta_{i} X_{i}\right)
$$

$$
X \in\{0,1\}^{p} \quad \alpha \leq\left|\theta_{i j}\right| \leq \beta
$$

data: $X^{(1)}, X^{(2)}, \ldots, X^{(n)} \quad$ T.i.d. samples n steps of some process
task: reconstruct graph and parameters from the data w.prob. $\rightarrow 1$ as $n, p \rightarrow \infty$

Glauber dynamics

I. each node has a Poisson(I) clock
2. when clock rings, update variable according to

$$
\mathrm{P}\left(X_{i}=1 \mid X_{\partial i}^{t}\right)=\frac{\exp \left(2 \sum_{j \in \partial i} \theta_{i j} X_{j}^{t}\right)}{1+\exp \left(2 \sum_{j \in \partial i} \theta_{i j} X_{j}^{t}\right)}
$$

slow mixing

i.i.d. sampling is NP-hard for some models but Glauber dynamics defined for any graphical model
for models without correlation decay, the Glauber dynamics is known to mix exponentially slowly in p
samples will be far from i.i.d.

efficient learning from the Glauber dynamics

Theorem: [Bresler-Gamarnik-Shah '14c] with $n=O\left(e^{4 d \beta} \log p\right)$ samples per node, and runtime $O\left(n p^{2}\right)$ can learn
any pairwise model even without correlation decay
learning theory:
[Aldous-Vazirani '90]
[Bartlett-Fischer-Hoffgen '94]
[Bshouty-Mossel-
O'Donnell-Servedio '03]
epidemic models:
[Netrapalli-Sanghavi 'I2]
[Dahleh-Tsitsiklis-Zoumpoulis 'I3]

estimating effect of a neighbor

 imaginary scenario: node i updates, then node j flips, then node i again test for existence of an edge:

$$
\begin{gathered}
\exp \left(\theta_{i j}\right)=\frac{p^{+}\left(1-p^{-}\right)}{p^{-}\left(1-p^{+}\right)} \\
p^{+}=\mathbb{P}\left(X_{i}=+1 \mid X_{\partial i \backslash j}=+\mathbf{1}, X_{j}=+1\right) \\
p^{-}=\mathbb{P}\left(X_{i}=+1 \mid X_{\partial i \backslash j}=+\mathbf{1}, X_{j}=-1\right)
\end{gathered}
$$

this would require $\Omega\left(e^{d \beta} p^{2}\right)$ samples per node a more delicate argument is required to get to $O_{d}(\log p)$

summary

correlation decay is not necessary to learn efficiently
however exhaustive algorithm seems the best in general
reducing to sufficient statistics is computationally suboptimal
observing dynamics over time can make things easy
insight: often makes sense to learn structure first and only then estimate parameters

