Systemic Risk in Financial Systems

Diego Feijer and Munther Dahleh LIDS, MIT

Cascades and Systemic Risk

Market Expectations and Economic Activity

- Aggregate expectations play a key role in credit markets and macroeconomic activity
- Optimism results in credit booms; pessimism leads to credit crunches, and potential recession
- Most recent financial crisis
- Fluctuations in market sentiments often seem to happen without apparent reason; they seem to be driven by animal spirits

Animal Spirits and Regulation

"History -including recent history- shows that without regulation, animal spirits will drive the economic activity to extremes."
G. Akerlof and R. Shiller
"Good Government and Animal Spirits." WSJ, Apr. 24, 2009

Related Literature

- Dominant theory to justify regulation is based on fire sales and pecuniary externalities:
- Occasionally binding collateral constraint
- Over-borrowing during credit booms

Caballero \& Krishnamurthy‘03; Lorenzoni‘08; Bianchi'11; Stein’12

- Silent about credit crunches
- In this model:
- Collateral constraint + (binding) credit risk constraint
- Endogenous state of the economy: booms and crunches

Preview of the Model

Banks raise funds from creditors to invest in risky asset

They choose a mix of short and long-term debt

Short-term creditors receive noisy signal about banks outlooks

They decide whether to rollover credit or not

Banks that experience runs can liquidate assets in a fire sale

Pay off from investment is realized

Insolvent banks fail, and creditors receive zero

Households

- Initial endowment of consumption good
- Consume endowment at date 0 , or invest in financial assets (lend to banks) and consume proceeds at date 2
- Two financial assets: $(m, 1-m)$
- Risky "bonds" with gross real return R_{B} (lend long-term)
- Riskless "money" with gross real return R_{M} (lend short-term)
- Linear preferences over consumption:

$$
U\left(\left\{C_{t}\right\}\right)=C_{0}+\beta \mathbb{E}\left[C_{2}\right]+\gamma m R_{M} \quad \text { with } \quad \beta+\gamma<1
$$

- Derive utility from "monetary" services provided by safe assets

Banks

- Continuum of identical banks, with total mass one
- Risky investment opportunity at date 0 , with real return $\theta \sim F \quad$ with mean $\quad \bar{\theta}>\frac{1}{\beta} \quad$ and support over $\left[\theta_{\min }, \theta_{\max }\right]$
- Banks need 1 unit of consumption good to undertake investment. They raise money (short-term debt)
- and finance issuing bonds (long-term debt): $(m, 1-m)$
- Short-term debt claims need to be rolled over at date 1
- To meet redemption demands, banks can sell any fraction of their assets in a secondary market.

Fire Sales and Patient Investors

- Sales yield $k \theta$ per unit liquidated. Fire-sale discount $k \in[0,1]$
- Collateral constraint: Short-term debt has to be riskless. If a bank issues m units of short-term finance, then

$$
m R_{M} \leq k \theta_{\min }
$$

- Patient investors receive fixed endowment $I>\frac{1}{\beta+\gamma}$ at date 1
- Investment technology: $g(\cdot)$ increasing and strictly concave
- No Crisis: they invest all resources in new, late arriving projects that yield total output of $g(I)$
- Crisis: they provide liquidity to banks purchasing assets at fire-sale discount, and invest the rest of resources in projects

Recap

Coordination Problem

- A bank fails at date 2 when unable to honor its liabilities
- Assumption (Zero recovery value). In case of failure, all creditors holding debt claims at date 2 receive a payoff of 0
- Suppose the capital structure of a bank is ($m, 1-m$)
- At date $1, \theta$ is realized and its value revealed to banks and patient investors. Each creditor j receives a noisy private signal: $\theta_{j}=\theta+\epsilon_{j} \quad$ with $\quad \epsilon_{j} \sim \mathcal{U}[-\epsilon, \epsilon]$ iid
- If a fraction λ of creditors decide to withdraw, the bank needs to liquidate a fraction $q: q k \theta=\lambda m R_{M}$. The bank fails if:
$(1-q) \theta<(1-\lambda) m R_{M}+(1-m) R_{B} \longrightarrow$ Defines:

Panic Runs

- The bank fails if

$$
\theta<\theta_{\mathrm{run}}(\lambda) \equiv m R_{M}+(1-m) R_{B}+\lambda m R_{M}\left(\frac{1}{k}-1\right)
$$

Lower dominance regio $\left.\theta_{\text {min }}, \theta_{\text {run }}(0)\right)$

Upper dominance
${ }^{\text {region }}\left(\theta_{\text {run }}(1), \theta_{\max }\right]$

- Switching strategy. In the limit as $\epsilon \rightarrow 0$, the coordination game has a unique (symmetric) equilibrium in which agents run whenever their signal is below the threshold:

Illiquidity component
Insolvency
threshold

Self-fulfilling illiquidity fears may drive a solvent bank to failure

Prices

- Credit Market: households indifference condition

$$
R_{M}=\frac{1}{\beta+\gamma}<R_{B}=\frac{1}{\beta\left(1-F\left(\theta^{*}\right)\right)}
$$

- Fire Sales: patient investors indifference condition; investment activities should yield same marginal returns

Private Money Creation

- Assumption (Looting). The owner of a bankrupt bank steals any remaining assets for personal consumption
- Taking k as given, banks choose m to maximize profits:

$$
\begin{aligned}
& \Pi(m ; k)=\left(\bar{\theta}-\frac{1}{\beta}\right)+\frac{m\left(\frac{1}{\beta}-R_{M}\right)-F\left(\theta^{*}\right) m R_{M}\left(\frac{1}{k}-1\right)}{\text { Gains }} \\
& \text { subject to: }\left\{\begin{array}{cl}
m R_{M} \leq k \theta_{\min } & \text { (collateral) } \\
\theta^{*}=\frac{m R_{M}}{k}+\frac{1-m}{\beta\left(1-F\left(\theta^{*}\right)\right)} & \text { (credit risk) }
\end{array}\right.
\end{aligned}
$$

- First term: expected profits if only long-term debt
- Second term: gains from moving to cheaper short-term debt
- Third term: cost (risk) that comes along with short-term debt

Sentiments

$$
\theta^{*}=\frac{m R_{M}}{k}+\frac{1-m}{\beta\left(1-F\left(\theta^{*}\right)\right)} \text { has two solutions }
$$

Competitive Equilibrium

- Definition. A CE is a pair $\left(m^{*}, k^{*}\right)$ such that,
- m^{*} maximizes:

$$
\begin{aligned}
&\left(\bar{\theta}-\frac{1}{\beta}\right)+m\left(\frac{1}{\beta}-R_{M}\right)-F\left(\theta_{s}^{*}\right) m R_{M}\left(\frac{1}{k}-1\right) \\
& \text { subject to: } \begin{cases}m R_{M} \leq k \theta_{\min } & \text { (collateral) } \\
s \in\{\mathrm{opt}, \text { pes }\rangle & \text { (sentiment) }\end{cases}
\end{aligned}
$$

- and: $\frac{1}{k^{*}}=g^{\prime}\left(I-m^{*} R_{M}\right)$

Credit Booms and Crunches

Fluctuations in market sentiment are driven by animal spirits

Welfare

- Proceeds from investments by banks and patient investors are rebated back to households
- Welfare at date 2 is $W(m)$:

$$
\begin{aligned}
\left(\bar{\theta}-\frac{1}{\beta}\right) & +m\left(\frac{1}{\beta}-R_{M}\right) \\
& +\left\{\left(1-F\left(\theta^{*}\right)\right) g(I)+F\left(\theta^{*}\right)\left(g\left(I-m R_{M}\right)+m R_{M}\right)-\frac{I}{\beta}\right\}
\end{aligned}
$$

- First term: net expected return to investment by banks
- Second term: monetary services
- Third term: net expected return to investment by patient investors

Welfare

- Proceeds from investments by banks and patient investors are rebated back to households
- Consumption at date 2:

$$
\left.\begin{array}{l}
\mathbb{E}\left[\theta \mid \theta>\theta^{*}\right]+g(I) \\
\mathbb{E}\left[(1-q) \theta \mid \theta<\theta^{*}\right] \\
\quad+g\left(I-m R_{M}\right)+m R_{M}+\mathbb{E}\left[q \theta \mid \theta<\theta^{*}\right]
\end{array}\right\} \begin{aligned}
& 1-F\left(\theta^{*}\right. \\
& F\left(\theta^{*}\right)
\end{aligned}
$$

- Welfare at date 2 is $W(m)$:

$$
\begin{aligned}
\left(\bar{\theta}-\frac{1}{\beta}\right) & +m\left(\frac{1}{\beta}-R_{M}\right) \\
& +\left\{\left(1-F\left(\theta^{*}\right)\right) g(I)+F\left(\theta^{*}\right)\left(g\left(I-m R_{M}\right)+m R_{M}\right)-\frac{I}{\beta}\right\}
\end{aligned}
$$

Planning Problem

- The planner solves:

Inefficiency

- Theorem. CE, in general, not constrained efficient.
- Wedge between private and social solutions:

$$
\begin{gathered}
\tau_{s}^{*}=-\mu_{s}^{P} \frac{\theta_{\min }}{R_{M}} \frac{d k}{d m}+C(m) \frac{d F\left(\theta_{s}^{*}\right)}{d m}-m R_{M}\left(\frac{1}{k}-1\right) \frac{\partial F\left(\theta_{s}^{*}\right)}{\partial m} \\
\quad \text { with } \quad C(m) \equiv\left(g(I)-g\left(I-m R_{M}\right)-m R_{M}\right) \geq 0
\end{gathered}
$$

- $\tau_{\text {opt }}^{*} \geq 0 \Longleftrightarrow$ excessive money creation
- $\tau_{\text {pes }}^{*} \leq 0 \Longleftrightarrow$ insufficient money creation
- Efficiency-restoring tax:

$$
\max _{m} W(m)=\max _{m}\left\{\Pi_{s}\left(m ; k^{*}\right)-\tau_{s}^{*} m\right\}
$$

Key Results

Sign of restoring tax depends on the collective sentiment in the credit market:

Concluding Remarks

- The economy benefits from private money creation, but banks incentives are often distorted because they don't internalize cost of runs and fire sales
- State of the economy is endogenous: interaction between insolvency risk and rollover risk. Multiple equilibria
- Unified setting (boom/crunch) to justify interventions; direction depends on the sentiment in the credit market
- Highlights the need for dynamic regulatory frameworks
- Restoring tax/subsidy doesn't prevent ups/downs, but prevents the economy from swinging to extremes

questions

- Where does the money go if the bank is insolvent? Would be an incentive to always fail
- Can we induce a dynamic behavior between equilibria that says theta_opt changes as a function of k

