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Towards a Scalable Control Theory
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Can we find distributed controllers by distributed computation?
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Outline

• Positive and Convex-Monotone Systems

○ Voltage Stability

○ HIV and Cancer Treatment
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Positive systems

A linear system is called positive if the state and output remain

nonnegative as long as the initial state and the inputs are

nonnegative:

dx

dt
= Ax + Bu y= Cx

Equivalently, A, B and C have nonnegative coefficients except

for the diagonal of A.

Examples:

Probabilistic models.

Economic systems.

Chemical reactions.

Traffic Networks.
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Positive Systems and Nonnegative Matrices

Classics:

Mathematics: Perron (1907) and Frobenius (1912)

Economics: Leontief (1936)

Books:

Nonnegative matrices: Berman and Plemmons (1979)

Dynamical Systems: Luenberger (1979)

Recent control related work:

Biology inspired theory: Angeli and Sontag (2003)

Synthesis by linear programming: Rami and Tadeo (2007)

Switched systems: Liu (2009), Fornasini and Valcher (2010)

Distributed control: Tanaka and Langbort (2010)

Robust control: Briat (2013)
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Stability of Positive systems

Suppose the matrix A has nonnegative off-diagonal elements.

Then the following conditions are equivalent:

(i) The system dx
dt
= Ax is exponentially stable.

(ii) There exits a vector ξ > 0 such that Aξ < 0.
(The vector inequalities are elementwise.)

(iii) There exits a vector z > 0 such that AT z < 0.

(iv) There is a diagonal matrix P ≻ 0 such that

ATP+ PA ≺ 0
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Lyapunov Functions of Positive systems

Solving the three alternative inequalities gives three different

Lyapunov functions:

Aξ < 0 ATP+ PA ≺ 0 AT z < 0

V (x) = max
k
(xk/ξk) V (x) = xTPx V (x) = zT x
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A Scalable Stability Test for Positive Systems

x1 x2 x3 x4

Stability of ẋ = Ax follows from existence of ξk > 0 such that



a11 a12 0 a14
a21 a22 a23 0

0 a32 a33 a32
a41 0 a43 a44




︸ ︷︷ ︸
A




ξ1
ξ2
ξ3
ξ4


 <




0

0

0

0




The first node verifies the inequality of the first row.

The second node verifies the inequality of the second row.

. . .

Verification is scalable!
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A Distributed Search for Stabilizing Gains

Suppose




a11 − {1 a12 0 a14
a21 + {1 a22 − {2 a23 0

0 a32 + {2 a33 a32
a41 0 a43 a44


 ≥ 0 for {1, {2 ∈ [0, 1].

For stabilizing gains {1, {2, find 0 < µk < ξk such that




a11 a12 0 a14
a21 a22 a23 0

0 a32 a33 a32
a41 0 a43 a44







ξ1
ξ2
ξ3
ξ4


+




−1 0

1 −1
0 1

0 0



[

µ1
µ2

]
<




0

0

0

0




and set {1 = µ1/ξ1 and {2 = µ2/ξ2. Every row gives a local test.

Distributed synthesis by linear programming (gradient search).
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Examples: Transportation Networks

Cloud computing / server farms

Heating and ventilation in buildings

Traffic flow dynamics

Production planning and logistics
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Externally Positive Systems

G ∈ RH
m$n
∞ is called externally positive if if the corresponding

impulse response �(t) is nonnegative for all t. The set of all

such matrices is denoted PH
m$n
∞ .

Suppose G,H ∈ PH
n$n
∞ . Then

GH ∈ PH
n$n
∞

aG+ bH ∈ PH
n$n
∞ when a, b ∈ R+.

qGq∞ = qG(0)q.

(I −G)−1 ∈ PH
n$n
∞ if and only if G(0) is Schur.
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Positively Dominated Systems

G ∈ RH
m$n
∞ is called positively dominated if pG jk(iω )p ≤ G jk(0)

for ω ∈ R. The set of all such matrices is denoted DH
m$n
∞ .

Suppose G,H ∈ DH
n$n
∞ . Then

GH ∈ DH
n$n
∞

aG+ bH ∈ DH
n$n
∞ when a, b ∈ R+.

qGq∞ = qG(0)q.

(I −G)−1 ∈ DH
n$n
∞ if and only if G(0) is Schur.
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Example 3: Mass-spring system

x1

x2

x3

x4

ẍi + di ẋ + kixi =
∑

j

{i j(x j − xi) +wi

(
s2 + dis+ ki +

∑

j

{i j

)
Xi(s) =

∑

j

(
{i jX j(s) + ({i j − {i j)Xi(s)

)
+Wi(s)

X = (A+ ELF)X +BW

The transfer matrices B, E and A+ ELF are positively dominated for

all L ∈D provided that di ≥ ki +
∑
j {i j .
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Max-separable Lyapunov Functions

Max-separable: V (x) = max{V1(x1), . . . ,Vn(xn)}

Theorem. Let ẋ = f (x) be a monotone system such that the

origin globally asymptotically stable and the compact set

X ⊂ R
n
+ is invariant. Then there exist strictly increasing

functions Vk : R+ → R+ for k = 1, . . . ,n, such that

V (x) = max{V1(x1), . . . ,Vn(xn)} satisfies

d

dt
V (x(t)) = −V (x(t))

along all trajectories in X .

[Rantzer, Rüffer, Dirr, CDC-13]
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Proof idea

t = 0

t = 1

t = 2

t = 3
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Convex-Monotone Systems

The system

ẋ(t) = f (x(t),u(t)), x(0) = a

is a monotone system if its linearization is a positive system. It

is a convex monotone system if every row of f is also convex.

Theorem. [Rantzer/ Bernhardsson (2014)]

For a convex monotone system ẋ = f (x,u), each component of

the trajectory φ t(a,u) is a convex function of (a,u).
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Outline

○ Positive and Convex -Monotone Systems

• Voltage Stability

○ HIV and Cancer Treatment
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One Transmission Line

u2u1

i

The power p = iu2 delivered to the load is upper bounded by

p = i(u1 − Ri) ≤
u21
4R
.

An active load:

di

dt
=

p̂

u1 − Ri
− i.

where p̂ is the power demand.

Voltage collapse occurs if p̂ is too large!
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Two Transmission Lines

u2
i2

u1
i1

u3
i3

y1 y2

Node 3 is an active load with

di3

dt
=

p̂(y1 + y2)

y1u1 + y2u2 − i3
− i3

For constant generator voltages u1 and u2, the load voltage

u3 = y1u1 + y2u2 − i3 could shrink to zero in finite time, which

means voltage collapse.
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Arbitrary Networks

Voltages at generators uG and loads uL are mapped into

external currents iG and iL according to

[
−iG(t)

iL(t)

]
=

[
YGG YGL

YLG YLL

] [
uG(t)

uL(t)

]

The load model:
diL
k

dt
(t) = p̂k

uL
k
(t)
− iLk (t) gives

diL

dt
(t) = p̂./[(YLL)−1(iL − YLGuG)] − iL(t)

This system is convex-monotone with state iL and input −uG ,

so

iG ,−uL, iL,
diL

dt
and

diG

dt

are all convex functions of uG
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Outline

○ Positive and Convex-Monotone Systems

○ Voltage Stability

• HIV and Cancer Treatment
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Combination Therapy is a Control Problem

Evolutionary dynamics:

ẋ =

(
A−

∑

i

uiD
i

)
x

Each state xk is the concentration of a mutant. (There can be

hundreds!) Each input ui is a drug dosage.

A describes the mutation dynamics without drugs, while

D1, . . . ,Dm are diagonal matrices modeling drug effects.

Determine u1, . . . ,um ≥ 0 with u1 + ⋅ ⋅ ⋅+ um ≤ 1 such that x

decays as fast as possible!

[Jonsson, Rantzer,Murray, ACC 2014]
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Optimizing Decay Rate

Stability of the matrix A−
∑
i uiD

i + γ I is equivalent to

existence of ξ > 0 with

(A−
∑

i

uiD
i + γ I)ξ < 0

For row k, this means

Akξ −
∑

i

uiD
i
kξk + γ ξk < 0

or equivalently

Akξ

ξk
−
∑

i

uiD
i
k + γ < 0

Maximizing γ is convex optimization in (logξ i,ui,γ ) !
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Using Measurements of Virus Concentrations

Evolutionary dynamics:

ẋ(t) =

(
A−

∑

i

ui(t)D
i

)
x(t)

Can we get faster decay using time-varying u(t) based on

measurements of x(t) ?
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Using Measurements of Virus Concentrations

The evolutionary dynamics can be written as a convex

monotone system:

d

dt
log xk(t) =

Akx(t)

xk(t)
−
∑

i

ui(t)D
i
k

Hence the decay of log xk is a convex function of the input and

optimal trajectories can be found even for large systems.
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Example

A =




−δ µ µ 0

µ −δ 0 µ
µ 0 −δ µ
0 µ µ −δ




clearance rate δ = 0.24 day−1, mutation rate µ = 10−4 day−1

and replication rates for viral variants and therapies as follows

Virus variant Therapy 1 Therapy 2 Therapy 3

Type 1 (x1) D11 = 0.05 D21 = 0.10 D31 = 0.30
Type 2 (x2) D12 = 0.25 D22 = 0.05 D32 = 0.30
Type 3 (x3) D13 = 0.10 D23 = 0.30 D33 = 0.30
Type 4 (x4) D14 = 0.30 D24 = 0.30 D34 = 0.15
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Example

Optimized drug doses:
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Summary

Scalability for Positive and Convex-Monotone Systems

Voltage Stability

HIV and Cancer Treatment
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