SYSTEMS MODELING, SIMULATION AND OPTIMIZATION IN A HETEROGENEOUS WORLD

08

Johan Åkessson, CTO Modelon

THANKS TO

Christian Andersson, Johan Andreasson, John Batteh, Claus Führer, Magnus Gäfvert, Maria Henningsson, Toivo Henningsson, Clas Jacobson, Per-Ola Larsson, Fredrik Magnusson, Hubertus Tummescheit, Stéphane Velut

OUTLINE

- Model-based Systems Engineering
- Heterogeneity
- Application examples

SYSTEMS ENGINEERING CHALLENGE

PRELUDE – HETEROGENEITY IN MBSE

odelon_

MODELON

Expert partner in open-standards solutions for computational model-based engineering

- Centered around Modelica and FMI open standards for model authoring, analysis, and deployment
- R&D and distribution of best-of-breed software components
- Services with excellence in domain expertise and industry applications

MODELON BACKGROUND & PROFILE

- Product and service company: solutions
 - Dymola (Dassault Systèmes)
 - Modelica libraries (Modelon)
 - FMI Tools (Modelon)
 - Custom toolchains (Modelon)
- Expert profile: MSc + PhD
- Spin-off from Automatic Control @ Lund University
 - Origin of Modelica technology
 - Leaders in system control modeling and simulation since 1970s
- Modelica Association
 - Active in Modelica and FMI standards development
- Academic
 - Engagement in LCCC
 - MS thesis projects

/Nodelon_

PART

SYSTEMS: ADVANCING RELENTLESSLY

/Nodelon_

2015-05-10

MOTIVATION

Source: 3D Experience Forum, Mannheim, June 26 2013

of development time no physical prototype is available!

How to achieve an earlier vehicle evaluation & validation?

MOTIVATION

Source: 3D Experience Forum, Mannheim, June 26 2013

of engineers get evaluation experience in the full vehicle.

How can we enable engineers to validate in the full vehicle?

THE V MODEL

System verification very late or even too late!

COST OF POOR QUALITY

Kevin Otto: "Robust Design" Presentation Lund February 2012

2015-05-10 © Modelon

delon

THE V MODEL REVISED

ANY task at ANY level of the system can be verified against ANY requirement at ANY time!

Modelica and FMI

WHAT IS MODELICA ?

- Modelica is a free modeling language developed and owned by the Modelica Association
 - Non-profit organization
 - Over 100 members
 - Active development through the Modelica Design Group
 - Develops the largest, free library for multi-domain models, the Modelica Standard Library
- The Modelica language
 - Object-oriented modeling language
 - Acausal and equation based
 - First principles (mass, energy, momentum balances)
 - Supports multi-domain modeling

Think HTML for modeling

MODELICA LANGUAGE AND MODELICA STANDARD LIBRARY

Modelica[®] is a non-proprietary, object-oriented, equation based language to conveniently model complex physical systems containing, e.g., mechanical, electrical, electronic, hydraulic, thermal, fluid, control,

electric power or process-oriented subcomponents.

- Object-oriented and equation based modeling language from non-profit Modelica Association
- Model structured like schematics with reusable objects and couplings
- Behavior defined by:
 - First principles (mass, energy, momentum balances)
 - Equations!
- www.modelica.org

Modelica Tools (Commercial and Open Source)

OBJECT ORIENTED MODELING

- Each Icon represents one physical component.
 For example, electrical resistance, mechanical device, pump
- A connection line represent the actual physical coupling. For example, electrical wire, rigid mechanical coupling.
- Variables in the connectors define the Interaction to other objects
- A component consists of connected sub-components (= hierarchical structure) and/or is described by equations.

FUNCTIONAL MOCKUP INTERFACE (FMI)

- Tool independent standard to support both model exchange and cosimulation of dynamic models
- Original development of standard part of EU-funded MODELISAR project led and initiated by Daimler
- First version FMI 1.0 published in 2010
- FMI currently supported by more than 60 tools (see <u>www.fmi-standard.org</u> for most up to date list)
- Active development as Modelica® Association project
- FMI 2.0 released July 2014 and brings additional functionality to FMI standard

Problems / Needs

- Component development by supplier
- ✓ Integration by OEM
- Many different simulation tools

WHY FMI?

Problem

 Due to different applications, models of a system often have to be developed using different programs (modeling and simulation environments).

- In order to simulate the system, the different programs must somehow interact with each other.
- The system integrator must cope with simulation environments from many suppliers.
- This makes the model exchange a necessity. No current standardized interface.
- Even though **Modelica**® is tool independent, it cannot be used as such a standardized interface for model exchange.

MULTIDOMAN COLLABORATION

- Engineers in different domains work with FMUs
 - Share models, distributed collaboration, work in tool of choice, reduced license costs, protect IP, couple carefully!!

Short-term production planning in district heating networks

DISTRICT HEATING NETWORK

Energy Management and Control in Buildings

NETWORK

OPTIMIZATION PROBLEM

Objectives

- Heat balance (supply = demand)
- Economy
 - Maximize electricity production
 - Minimize production and operation cost
 - Minimize heat loss
- Safety and availability
- Environment and sustainability

Degrees of freedom

- Production units
- Supply temperature and flow
- Storage (accumulator, network, buildings)

PROPOSED SOLUTION IN 2 STEPS

- Step1: Unit Commitment
 - Simple, linear, discrete-time plant models
 - Mixed Integer Linear Programming
 - Optimized status (on/off) of plants (and heatflows)
- Step 2: Economic Dispatch
 - Known status (on/off) from Step 1
 - Physical plant models
 - Nonlinear dynamic optimization, initialized by Step 1
 - Optimized temperature, flows, electricity, storage

Base-line approach: Mixed integer linear programs

TOOLS

- Model development in Dymola
 - Optimization-friendly models
- Gurobi for solving MILPs (UCP)
- Dynamic optimization with JModelica.org (EDP)
 - Collocation
 - Time delay support
- **Python** to interact with models and results

JModelica.org is distributed under the GPL v.3 license approved by the Open Source Initiative

Modelon_

Energy Management and Control in Buildings

CASE STUDY: IDBÄCKEN, VATTENFALL AB

Main DOF

- 8 production units
- 1 accumulator
- 1 cogeneration plant
- 1 external cooler
- Distribution pump
- Circulation pump

Physical model

- Cogeneration plant
- Accumulator
- DH water

Economic optimization for both UCP and EDP

Results

- Feasible to integrate physical models in economic dispatch problem
- Higher quality of plans (compared to MILP-based & measurement data)

Energy Management and Control in Buildings

DOE with FMI in MATLAB

SIZING AND CONTROL DESIGN

Modelica models

- Complex models
- Nonlinear
- Many parameters

Design and implementation of controllers in Matlab / Simulink

- Prefer simpler models
- Linearizations
- Understanding dominating parameter effects
- Understanding system variability
- Identify worst cases

HOW to get the answers?

COMBINING TWO PARADIGMS

Quality science/ Robust design / Six-sigma / Design-of-experiments

- Steady-state models
- Many parameters
- Data-driven models
- Focus on workflows, processes and tools

Control engineering

- Dynamic models
- Few parameters
- Physics-based or data-driven models
- Focus on mathematical rigor
- Large potential in combining approaches
- Modelica and FMI is a suitable platform

2015-05-10 © Modelon

DOE IN MATLAB WITH FMI

delon_

EXAMPLE: ENGINE COOLING SYSTEM

- Demo model from Modelon's Liquid Cooling Library
- Design variables:
 - Maximum pump speed
 - Radiator efficiency
 - Minimum air mass flow
- Requirements:
 - Engine-out coolant temp < 100C
 - Handle heat load of 100 kW
 - Ambient temperature operating range [-20C, 45C]

DOE DESIGNS

2015-05-10 © Modelon

odelon_

SIZING: SCREENING DESIGN SPACE

		G11 • (*	f_x						
	А	В	С	D	E	F	G	Н	
1									
2		name	type	dist	min	max	value	mean	stde
3									
4		Q_flow	FMUInput	constant			1.00E+05		
5		gasFlowBoundary.T	FMUParameter	constant			318.15		
6		N_pump	FMUInput	uniform	50	2000			
7		mflow_gas	FMUInput	uniform	0.5	5			
8		efficiency	FMUParameter	uniform	0.4	0.9			
9		expansionVolume.V	FMUParameter	constant			0.008		
10									
11									
12									
14 4	F H SC	reening / Sizing / Nominal design / Dynam	nics / 🔁 /						
Rea	dy 🎦								
_									

- >> doe_setup = FMUDoESetup('CoolingLoop.fmu', 'DesignParameters.xlsx', 'Screening');
- >> nbr_of_experiments = 100;
- >> result = doe_setup.qmc(nbr_of_experiments);
- >> T_engine_out = result.steady_state.y(: , 3)

delon_

>> result.main_effects(result, T_liquid_ae', T_engine_out > 100);

SIZING: DETERMINING A DESIGN

Zooming in to a smaller region of the design

S	р	a	C	e	•	

	A	В	С	D	E	F	G	Н		
1										
2		name	type	dist	min	max	value	mean		
3										
4		Q_flow	FMUInput	constant			1.00E+05	1		
5		gasFlowBoundary.T	FMUParar	constant			318.15	1		
6		N_pump	FMUInput	uniform	400	800				
7		mflow_gas	FMUInput	uniform	2	. 4				
8		efficiency	FMUParar	uniform	0.6	0.8				
9		expansionVolume.V	FMUParar	constant			0.008	j -		
10										
11										
12						<u> </u>				
K 4 • FI Screening Sizing Nominal design Dynamics 2										
Ready 🔚										

>> doe_setup = FMUDoESetup('CoolingLoop.fmu', 'DesignParameters.xlsx', 'Sizing');

- >> nbr_of_experiments = 100;
- >> result = doe_setup.qmc(nbr_of_experiments);
- >> T_engine_out = result.steady_state.y(: , 3)

delon

>> result.main_effects(result, T_liquid_ae', T_engine_out > 100);

DYNAMICS: WHERE IS THE NONLINEARITY?

- Correlate feature of Bode plot with DoE factors
 - >> N = result.doe.nbr_of_experiments; >> ss_gain = zeros(N,1); >> for k = 1:1:N >> ss_gain(k) = dcgain(result.linsys.sys{k} (1, 1)); >> end >> result.main_effects(ss_gain, 'gain');

gain

gain

gain

CONTROLLER EVALUATION

- Loop-shaping: PI-controller with K = -50, Ti = 100
- Closed-loop step response

Step Response

- >> Gc = -50*(1+1/(100*s));
- >> cl_sys = cell(N,1);
- >> for k = 1:1:N
- >> Gp = result.linsys.sys{k}(1, 1);
- >> cl_sys{k} = minreal(Gp*Gc/(1+Gp*Gc));
- >> end
- >> batch_step(cl_sys);

CONCLUSIONS

- Heterogeneity is a challenge in MBSE
 - Physical domains
 - Analysis
 - Model fidelity
 - Tools
- Modelica and FMI can help
- Unresolved challenges remains!

