Contract Theories

Albert Benveniste

B. Caillaud D. Nickovic R. Passerone J-B. Raclet W. Damm T. Henzinger K. Larsen A. Sangiovanni-Vincentelli

INRIA Rennes

April 17, 2015

Contracts in embedded systems design: why?

Formalizing OEM/supplier relations: "contracts for contracts"

Complement Legal Contracts with Technical Contracts

Structuring requirements or specifications

Requirements are structured into chapters/viewpoints/aspects (function, safety, performance & timing, QoS...)

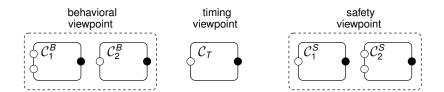
Concurrent development at the system designer

Different viewpoints are developed by different teams Weaving viewpoints must be sound and correct

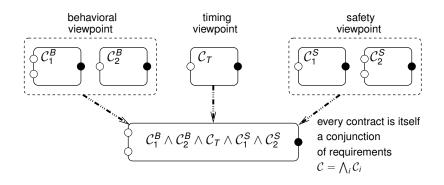
Independent development by the suppliers

Suppliers must be able to develop their sub-systems having all the info they need; system integration must be correct

Structuring requirements or specifications Concurrent development

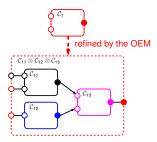


Structuring requirements or specifications Concurrent development

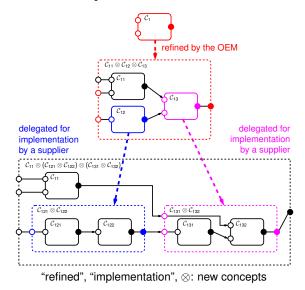


Requirements are combined by using "contract conjunction" Viewpoints are fused by using "contract conjunction" Structuring requirements or specifications Independent development

Structuring requirements or specifications Independent development



Structuring requirements or specifications Independent development



A meta-theory of contracts Meta-theory → Assume/Guarantee contracts Meta-theory → Interface Automata **Meta-theory** \mapsto **Modal Interfaces**

Motivations for a meta-theory

A wide and diverse bibliography:

Systems from components:

OO-programming in the 80's [B. Meyer...]

- Refinement
 - by simulation: in the 80's [Milner], OK for closed systems
 - by alternating simulation for open systems: early 90's [Abadi, Lamport, Wolper] late 90's [de Alfaro, Kupferman, Henzinger]
- Composition and compatibility: [Abadi, Lamport93] [de Alfaro-Henzinger 2000]
- Conjunction and consistency: [Passerone, Raclet, Caillaud, Benveniste... 2008]
- Product lines (not discussed here): [Larsen, Nyman, Wasowski 2008]

Motivations for a meta-theory

Fact:

- Different frameworks have been proposed to address similar issues:
 - specification theories
 - interface theories
 - contract theories

the meta-theory

Goal:

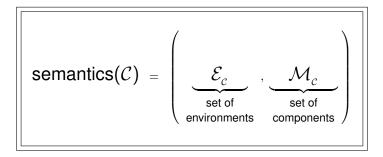
- Capture the essence of the above frameworks
- Highlight their very nature
- Develop new generic tools and techniques
- Instantiate to known frameworks, hoping for new results

The meta-theory: Components and Contracts

- Components: actual pieces of SW/HW/devices, open system
- Environment: context of use (a component), often unkown at design time
- Components cannot constrain their environment

The meta-theory: Components and Contracts

- Components: actual pieces of SW/HW/devices, open system
- Environment: context of use (a component), often unkown at design time
- Components cannot constrain their environment
- Contracts are intentionally abstract
- Pinpoint responsibilities of component vs. environment



We assume some primitive concepts:

Component	М
Composition	\times is partially defined, commutative and associative
Composability	$M_1 \times M_2$ being well-defined is a typing relation
Environment	<i>E</i> is an environment for <i>M</i> iff $E \times M$ is well-defined

- On top of these primitive concepts we define
 - generic concepts and operators
 - satisfying generic properties
- How concepts, operators, and properties, are made effective
 - depends on the specific framework

Generic Relations and Operators:

Contract	$sem(\mathcal{C})=(\mathcal{E}_c,\mathcal{M}_c) \ \ where \ \mathcal{C}\in \mathbf{C}: \ underlying \ class \ of \ contracts$
Consistency	$\mathcal{M}_c eq \emptyset$
Compatibility	$\mathcal{E}_c eq \emptyset$

Generic Relations and Operators:

Contract	$sem\left(\mathcal{C}\right)=\left(\mathcal{E}_{c},\mathcal{M}_{c}\right) \ \text{ where } \mathcal{C}\in \mathbf{C}: \ \text{underlying class of contracts }$
Consistency	$\mathcal{M}_{c} \neq \emptyset$ say that $(\mathcal{C}_{1}, \mathcal{C}_{2})$ is consistent iff $\mathcal{C}_{1} \wedge \mathcal{C}_{2}$ is consistent
Compatibility	$\mathcal{E}_c eq \emptyset$
Implementation	$M \models^{M} \mathcal{C} \text{ iff } M \in \mathcal{M}_c ; E \models^{E} \mathcal{C} \text{ iff } E \in \mathcal{E}_c$
Refinement	$\mathcal{C}' \preceq \mathcal{C} \ \text{iff} \ \mathcal{E}_{c'} \supseteq \mathcal{E}_c \ \text{and} \ \mathcal{M}_{c'} \subseteq \mathcal{M}_c$
Conjunction	$\begin{array}{rcl} \mathcal{C}_{1} \wedge \mathcal{C}_{2} &=& GLB \text{ for } \preceq \text{ within } \mathbf{C} \\ \mathcal{C}_{1} \vee \mathcal{C}_{2} &=& LUB \text{ for } \preceq \text{ within } \mathbf{C} \end{array}$

Generic Relations and Operators:

Contract	$sem\left(\mathcal{C}\right)=\left(\mathcal{E}_{c},\mathcal{M}_{c}\right) \ \text{ where } \mathcal{C}\in \mathbf{C}: \ \text{underlying class of contracts}$
Consistency	$\mathcal{M}_{c} \neq \emptyset$ say that $(\mathcal{C}_{1}, \mathcal{C}_{2})$ is consistent iff $\mathcal{C}_{1} \wedge \mathcal{C}_{2}$ is consistent
Compatibility	$\mathcal{E}_c \neq \emptyset$ say that $(\mathcal{C}_1, \mathcal{C}_2)$ is compatible iff $\mathcal{C}_1 \otimes \mathcal{C}_2$ is compatible
Implementation	$M \models^{M} \mathcal{C} \text{ iff } M \in \mathcal{M}_c ; E \models^{E} \mathcal{C} \text{ iff } E \in \mathcal{E}_c$
Refinement	$\mathcal{C}' \preceq \mathcal{C} \text{ iff } \mathcal{E}_{c'} \supseteq \mathcal{E}_c \text{ and } \mathcal{M}_{c'} \subseteq \mathcal{M}_c$
Conjunction	$\begin{array}{rcl} \mathcal{C}_1 \wedge \mathcal{C}_2 &=& GLB \text{ for } \preceq \text{ within } \mathbf{C} \\ \mathcal{C}_1 \vee \mathcal{C}_2 &=& LUB \text{ for } \preceq \text{ within } \mathbf{C} \end{array}$
Composition	$\mathcal{C}_{1} \otimes \mathcal{C}_{2} = \min \left\{ \mathcal{C} \mid \begin{bmatrix} \forall M_{1} \models^{M} \mathcal{C}_{1} \\ \forall M_{2} \models^{M} \mathcal{C}_{2} \\ \forall E \models^{E} \mathcal{C} \end{bmatrix} \Rightarrow \begin{bmatrix} M_{1} \times M_{2} \models^{M} \mathcal{C} \\ E \times M_{2} \models^{E} \mathcal{C}_{1} \\ E \times M_{1} \models^{E} \mathcal{C}_{2} \end{bmatrix} \right\}$
Quotient	$\mathcal{C}_1/\mathcal{C}_2 = \max\{\mathcal{C} \in \mathbf{C} \mid \mathcal{C} \otimes \mathcal{C}_2 \preceq \mathcal{C}_1\}$

Generic Properties:

Refinement	substituability ↗ of sets of environments substituability ↘ of sets of implementations
Composition	$ \begin{array}{c} (\mathcal{C}_{1},\mathcal{C}_{2}) \text{ compatible} \\ \mathcal{C}_{i}^{\prime} \preceq \mathcal{C}_{i} \end{array} \end{array} \Rightarrow \left\{ \begin{array}{c} (\mathcal{C}_{1}^{\prime},\mathcal{C}_{2}^{\prime}) \text{ compatible} \\ \mathcal{C}_{1}^{\prime} \otimes \mathcal{C}_{2}^{\prime} \preceq \mathcal{C}_{1} \otimes \mathcal{C}_{2} \end{array} \right. $ independent implementability $ \begin{array}{c} (\mathcal{C}_{1} \otimes \mathcal{C}_{2}) \otimes \mathcal{C}_{3} = \mathcal{C}_{1} \otimes (\mathcal{C}_{2} \otimes \mathcal{C}_{3}) \\ \text{associativity} \end{array} \\ \left[(\mathcal{C}_{11} \wedge \mathcal{C}_{21}) \otimes (\mathcal{C}_{12} \wedge \mathcal{C}_{22}) \right] \preceq \left[(\mathcal{C}_{11} \otimes \mathcal{C}_{12}) \wedge (\mathcal{C}_{21} \otimes \mathcal{C}_{22}) \right] \\ \text{sub-distributivity: sets the freedom in design processes,} \\ \text{fusing viewpoints before/after composing sub-systems} \end{array} $
Quotient	$\mathcal{C} \preceq \mathcal{C}_1/\mathcal{C}_2 \iff \mathcal{C} \otimes \mathcal{C}_2 \preceq \mathcal{C}_1$

Abstracting and testing

- Restrictions must hold for relations and operators on contracts to be analyzable
- Such restrictions may not hold for system models in practice
- Typical obstacles are infinite data types and functions operating on them

Abstracting and testing

- Restrictions must hold for relations and operators on contracts to be analyzable
- Such restrictions may not hold for system models in practice
- Typical obstacles are infinite data types and functions operating on them
- Two complementary ways of overcoming this consist in
 - performing abstractions
 - performing testing
- The meta-theory offers generic means:
 - abstraction on top of abstract interpretation for components
 - observers for contract-compliant testing

Bibliographical note

Very few attempts to develop a meta-theory. Two recent papers:

- Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski. Moving from specifiations to contracts in component-based design. FASE 2012
 - Starts from an abstract notion of specification with axioms—refinement, conjunction, composition, quotient
 - ▶ Then it defines contracts as pairs (A, G) of specs
 - It establishes a link from abstract specs to modal automata
- Taolue Chen, Chris Chilton, Bengt Jonsson, Marta Z. Kwiatkowska: A Compositional Specification Theory for Component Behaviours. ESOP 2012: 148-168
 - trace based abstract specification
 - ports split into uncontrolled/controlled (or input/output)
 - assumptions involve inputs and guarantees involve outputs
 - conjunction, composition, quotient

A meta-theory of contracts

Details

Meta-theory \mapsto Assume/Guarantee contracts Meta-theory → Interface Automata **Meta-theory** \mapsto **Modal Interfaces**

Abstracting and Testing contracts $C = (\mathcal{E}_c, \mathcal{M}_c)$

Approach:

- 1. Assume a Galois connection on components
- 2. Yields a canonical abstraction on sets of components
- 3. Yields a canonical abstraction for contracts

Properties:

- Consistency and Compatibility can be proved on abstractions (positive semi-decision)
- Contract abstraction is monotonic with respect to refinement
- Contract abstraction distributes over conjunction
- Contract abstraction "sub-distributes" over composition

There are obstructions to getting an abstraction with stronger properties

Abstracting and Testing contracts $\mathcal{C} = (\mathcal{E}_c, \mathcal{M}_c)$

1. Following [Cousot&Cousot], recall the notion of Galois connection:

 $\begin{array}{ll} \alpha: (\mathcal{X}_{\mathbf{C}}, \sqsubseteq_{\mathbf{C}}) \mapsto (\mathcal{X}_{\mathbf{A}}, \sqsubseteq_{\mathbf{A}}) & : & \text{the abstraction} \\ \gamma: (\mathcal{X}_{\mathbf{A}}, \sqsubseteq_{\mathbf{A}}) \mapsto (\mathcal{X}_{\mathbf{C}}, \sqsubseteq_{\mathbf{C}}) & : & \text{the concretization} \end{array}$

two monotonic maps such that

$$X_{\mathsf{C}} \sqsubseteq_{\mathsf{C}} \gamma(X_{\mathsf{A}}) \iff \alpha(X_{\mathsf{C}}) \sqsubseteq_{\mathsf{A}} X_{\mathsf{A}}$$

2. From Galois connection on X's to abstractions on sets-of-X:

- $\blacktriangleright \ \ Let \ \ \mathcal X^< \subseteq \mathbf 2^{\mathcal X} \ \ collect \ all \ \ \sqsubseteq -downward \ closed \ subsets \ of \ \ \mathcal X$
- Equip $\mathcal{X}_{C}^{<}$ and $\mathcal{X}_{A}^{<}$ with their inclusion orders \subseteq_{C} and \subseteq_{A}

Set

 $\widehat{\alpha}(\chi_{\mathbf{C}}) = \gamma^{-1}(\chi_{\mathbf{C}}) = \{X_{\mathbf{A}} \mid \gamma(X_{\mathbf{A}}) \text{ well defined and } \in \chi_{\mathbf{C}}\}$

3. the canonical way of defining abstractions for contracts is:

$$\alpha(\mathcal{C}_{\mathsf{C}}) = \left(\widehat{\alpha}(\mathcal{E}_{c_{\mathsf{C}}}), \widehat{\alpha}(\mathcal{M}_{c_{\mathsf{C}}})\right)$$

Abstracting and Testing contracts $C = (\mathcal{E}_c, \mathcal{M}_c)$

Approach:

- 1. Assume a testing technique on components
- 2. An observer for contracts is thus a pair of tests (for environments and components, respectively)

Properties:

- Implementations can be disproved using observers (negative semi-decision)
- Observers for contract conjunction can be obtained compositionally
- Observers for contract composition can "almost" be obtained compositionally

Abstracting and Testing contracts $C = (\mathcal{E}_c, \mathcal{M}_c)$

An observer for C is a pair $(b_C^{\mathsf{E}}, b_C^{\mathsf{M}})$ of non-deterministic boolean functions $\mathcal{M} \mapsto \{ \text{false, true} \}$ called verdicts, such that:

$$\begin{array}{ccc} b^{\mathsf{E}}_{\mathcal{C}}(E) \text{ outputs } \textit{false} & \Longrightarrow & E \notin \mathcal{E}_{\mathcal{C}} \\ b^{\mathsf{M}}_{\mathcal{C}}(M) \text{ outputs } \textit{false} & \Longrightarrow & M \notin \mathcal{M}_{\mathcal{C}} \end{array} \right\} \text{ semi-decision }$$

Operator	Observer
$\mathcal{C} = (\mathcal{E}_{\mathcal{C}}, \mathcal{M}_{\mathcal{C}})$	$\left(b^{E}_{\mathcal{C}}, b^{M}_{\mathcal{C}} ight)$
$\mathcal{C}=\mathcal{C}_1{\wedge}\mathcal{C}_2$	$b^{E}_{\mathcal{C}} = b^{E}_{\mathcal{C}_1} \lor b^{E}_{\mathcal{C}_2} \;, \; b^{M}_{\mathcal{C}} = b^{M}_{\mathcal{C}_1} \land b^{M}_{\mathcal{C}_2}$
$\mathcal{C}=\mathcal{C}_1{\vee}\mathcal{C}_2$	$b^{E}_{\mathcal{C}} = b^{E}_{\mathcal{C}_1} \wedge b^{E}_{\mathcal{C}_2} \;, \; b^{M}_{\mathcal{C}} = b^{M}_{\mathcal{C}_1} \lor b^{M}_{\mathcal{C}_2}$
$\mathcal{C} = \mathcal{C}_1 \otimes \mathcal{C}_2$	$b_{\mathcal{C}}^{E}(E) = \bigwedge_{\substack{M_1 \models^{M} \mathcal{C}_1 \\ M_2 \models^{M} \mathcal{C}_2}} \left[b_{\mathcal{C}_2}^{E}(E \times M_1) \wedge b_{\mathcal{C}_1}^{E}(E \times M_2) \right]$ $b_{\mathcal{C}}^{M}(M_1 \times M_2) = b_{\mathcal{C}_1}^{M}(M_1) \wedge b_{\mathcal{C}_2}^{M}(M_2)$

A meta-theory of contracts Meta-theory → Assume/Guarantee contracts Meta-theory → Interface Automata **Meta-theory** \mapsto **Modal Interfaces**

Assume/Guarantee contracts: summary

Component:

- Kahn Process Network (KPN) or
- Synchronous Transition System (STS)
- Contract: pair (Assumption, Guarantee) = (KPN, KPN) or (STS, STS)

 $\mathcal{C}=(\textit{A},\textit{G})$ defines a contract $(\mathcal{E}_{_{\mathcal{C}}},\mathcal{M}_{_{\mathcal{C}}})$ following the meta-theory:

$$\begin{aligned} \mathcal{E}_c &= \{ E \mid E \subseteq A \} \\ \mathcal{M}_c &= \{ M \mid A \times M \subseteq G \} \end{aligned}$$

Assume/Guarantee contracts: summary

Component:

- Kahn Process Network (KPN) or
- Synchronous Transition System (STS)
- Contract: pair (Assumption, Guarantee) = (KPN, KPN) or (STS, STS)

 $\mathcal{C} = (A, G)$ defines a contract $(\mathcal{E}_{c}, \mathcal{M}_{c})$ following the meta-theory:

$$\mathcal{E}_c = \{ E \mid E \subseteq A \}$$

$$\mathcal{M}_c = \{ M \mid A \times M \subseteq G \}$$

The following (existing) definitions specialize the meta-theory:

$$\begin{array}{rcl} \mathcal{C}_1 \wedge \mathcal{C}_2 & \equiv & (A_1 \cup A_2, G_1 \cap G_2) \\ \mathcal{C}_1 \otimes \mathcal{C}_2 & \equiv & ((A_1 \cap A_2) \cup \neg (G_1 \cap G_2), G_1 \cap G_2) \end{array}$$

Assume/Guarantee contracts: summary

Component:

- Kahn Process Network (KPN) or
- Synchronous Transition System (STS)
- Contract: pair (Assumption, Guarantee) = (KPN, KPN) or (STS, STS)

 $\mathcal{C}=(\textit{A},\textit{G})$ defines a contract $(\mathcal{E}_{_{\mathcal{C}}},\mathcal{M}_{_{\mathcal{C}}})$ following the meta-theory:

$$\mathcal{E}_c = \{ E \mid E \subseteq A \}$$

$$\mathcal{M}_c = \{ M \mid A \times M \subseteq G \}$$

The following (existing) definitions specialize the meta-theory:

$$\begin{array}{rcl} \mathcal{C}_1 \wedge \mathcal{C}_2 &\equiv & (\mathcal{A}_1 \cup \mathcal{A}_2, \mathcal{G}_1 \cap \mathcal{G}_2) \\ \mathcal{C}_1 \otimes \mathcal{C}_2 &\equiv & ((\mathcal{A}_1 \cap \mathcal{A}_2) \cup \neg (\mathcal{G}_1 \cap \mathcal{G}_2), \mathcal{G}_1 \cap \mathcal{G}_2) \end{array}$$

No quotient exists

 Dealing with variable alphabets of variables is unsatisfactory, due to an unfortunate handling of assumptions in contract conjunction A meta-theory of contracts Meta-theory → Assume/Guarantee contracts **Details** Meta-theory → Interface Automata **Meta-theory** \mapsto **Modal Interfaces**

A/G contracts: the Component Model

- To simplify we present the theory for a fixed alphabet Σ and without distinguishing input vs. output
- A/G contract theory builts on top of component models that are assertions (sets of behaviors). We can consider both
 - asynchronous Kahn Process Networks (KPN)
 - Synchronous Transition Systems (synchronous languages)
 - for both cases, parallel composition is by intersection

 $M_1 \times M_2 = P_1 \cap P_2$

C = (A, G); A (the assumptions) and G (the guarantees) are assertions over Σ

Behaviors must be of the same kind for both components and contracts (either both KPN or both synchronous)

C = (A, G); A (the assumptions) and G (the guarantees) are assertions over Σ

Behaviors must be of the same kind for both components and contracts (either both KPN or both synchronous)

 $\mathcal{C} = (A, G)$ defines a contract $(\mathcal{E}_{c}, \mathcal{M}_{c})$, where:

$$\begin{aligned} \mathcal{E}_c &= \{ E \mid E \subseteq A \} \\ \mathcal{M}_c &= \{ M \mid A \times M \subseteq G \} \end{aligned}$$

C = (A, G); A (the assumptions) and G (the guarantees) are assertions over Σ

Behaviors must be of the same kind for both components and contracts (either both KPN or both synchronous)

C = (A, G) defines a contract $(\mathcal{E}_{c}, \mathcal{M}_{c})$, where:

$$\begin{aligned} \mathcal{E}_{\mathcal{C}} &= \{ E \mid E \subseteq A \} \\ \mathcal{M}_{\mathcal{C}} &= \{ M \mid A \times M \subseteq G \} \end{aligned}$$

Contracts \mathcal{C} and \mathcal{C}' such that

$$A = A'$$
 and $G \cup \neg A = G' \cup \neg A'$

are equivalent as they yield identical sets of environments and components. C can always be saturated meaning that $G \supseteq \neg A$. This is assumed next.

Refinement (for C_1, C_2 saturated):

$$\mathcal{C}' \preceq \mathcal{C} ext{ holds iff } \left\{ egin{array}{c} \mathsf{A}' \supseteq \mathsf{A} \ \mathsf{G}' \subseteq \mathsf{G} \end{array}
ight.$$

Composition (for C_1, C_2 saturated):

$$G = G_1 \cap G_2$$

$$A = \max \left\{ A \mid \begin{array}{c} A \cap G_2 \subseteq A_1 \\ A \cap G_1 \subseteq A_2 \end{array} \right\} = (A_1 \cap A_2) \cup \neg (G_1 \cap G_2)$$

No quotient exists

Problem: need to complement assertions. Use observers or abstractions?

Abstractions and observers can be defined

A/G contracts with variable alphabet

Variable alphabet is dealt with using a two steps procedure

- 1. Equalize alphabets in both assumptions and guarantees (by existential inverse projection)
- 2. Reuse the theory developed for a fixed alphabet

Whereas alphabet equalization is known and works well for components (and environments), we do have a problem when extending it to contracts:

Problem: alphabet equalization for A/G-contracts is well defined but is practically inadequate when dealing with the conjunction, as it yields, for the assumptions and when alphabets are disjoint:

$$A_1 \cup A_2 = true$$

meaning that every environment is considered legal

Bibliographical note

- A/G reasoning arises in OO-programming in the late 80's [B. Meyer 1992] Contracts quite often deal with complex typing handled with constraints expressed on parameters (OCL)
- Formal behavioral contracts come in the early 90's in the area of compositional verification; main issue here is that of *circular reasoning* [Clarke, de Long, Mc Millan 1989]; see also [Abadi & Lamport 1993]
- A/G behavioral contracts were revisited in [Passerone et al. 2007] by SPEEDS project

A meta-theory of contracts Meta-theory → Assume/Guarantee contracts Meta-theory → Interface Automata **Meta-theory** \mapsto **Modal Interfaces**

Interface Automata: summary

Component: deterministic and receptive input/output automaton

- $M = (\Sigma^{\text{in}}, \Sigma^{\text{out}}, Q \ni q_0, \rightarrow)$ with usual parallel composition $M_1 \times M_2$
- Contract: deterministic (possibly non receptive) input/output automaton

►
$$C = (\Sigma^{in}, \Sigma^{out}, Q, q_0, \rightarrow)$$

- C defines a contract $(\mathcal{E}_{C}, \mathcal{M}_{C})$ following the meta-theory:
 - *E_c* collects all *E* not proposing as output an action that is refused by *C* in the composition *E*×*C*
 - \mathcal{M}_c collects all M such that, $\forall E \in \mathcal{E}_c$, $E \times \mathcal{C}$ simulates $E \times M$

Interface Automata: summary

 Refinement, as defined by alternating simulation, specializes the meta-theory;

Conjunction is difficult, even for a fixed alphabet of actions

- Parallel composition ⊗, together with its notion of compatibility, exist and specialize the meta-theory:
 - 1. start from $\mathcal{C}_1 \times \mathcal{C}_2$, seen as i/o-automata
 - 2. illegal pair (q_1, q_2) may exist, where (informally) " $\mathcal{M}_{c_1} \not\subseteq \mathcal{E}_{c_2}$ "
 - 3. pruning illegal pairs until fixpoint yields $C_1 \otimes C_2$

A meta-theory of contracts Meta-theory \mapsto Assume/Guarantee contracts Meta-theory → Interface Automata **Details Meta-theory** \mapsto **Modal Interfaces**

Interface Automata

We only present the theory for a fixed alphabet Σ Alphabet equalization is as for A/G contracts (with the same problems)

Interface theories built on top of (a relaxed version of) Nancy Lynch i/o-automata

Deterministic Input/Output Automaton: $M = (\Sigma^{\text{in}}, \Sigma^{\text{out}}, Q, q_0, \rightarrow)$, where:

 $\begin{array}{lll} \Sigma = \Sigma^{\mathrm{in}} \cup \Sigma^{\mathrm{out}} & : & \text{alphabet of actions} \\ & q_0 \in Q & : & \text{initial state} \\ & q \xrightarrow{\alpha} q' & : & \text{deterministic transition relation} & \begin{array}{c} q \xrightarrow{\alpha} q_1 \\ & q \xrightarrow{\alpha} q_2 \end{array} \right\} \Rightarrow q_1 = q_2 \end{array}$

Interface Automata: the Component Model

• Component: an i/o-automaton that is receptive:

$$\forall \boldsymbol{q} \in \boldsymbol{Q}, \forall lpha \in \boldsymbol{\Sigma}^{\mathrm{in}}, \exists \boldsymbol{q}': \boldsymbol{q} \stackrel{lpha}{\longrightarrow} \boldsymbol{q}'$$

Interface Automata: the Component Model

Component: an i/o-automaton that is receptive:

$$\forall q \in Q, \forall \alpha \in \Sigma^{in}, \exists q': q \stackrel{\alpha}{\longrightarrow} q'$$

Parallel composition: well defined only if Σ₁^{out} ∩ Σ₂^{out} = Ø; the two components synchronize on their actions

$$M_1 \times M_2 : \begin{cases} \Sigma^{\text{out}} = \Sigma_1^{\text{out}} \cup \Sigma_2^{\text{out}} \\ Q = Q_1 \times Q_2 \\ q_0 = (q_{1,0}, q_{2,0}) \\ (q_1, q_2) \xrightarrow{\alpha} (q'_1, q'_2) \quad \text{iff} \quad q_i \xrightarrow{\alpha}_i q'_i, i = 1, 2 \end{cases}$$

Interface Automata: the Component Model

Component: an i/o-automaton that is receptive:

$$\forall q \in Q, \forall \alpha \in \Sigma^{in}, \exists q': q \stackrel{\alpha}{\longrightarrow} q'$$

Parallel composition: well defined only if Σ₁^{out} ∩ Σ₂^{out} = Ø; the two components synchronize on their actions

$$M_1 \times M_2 : \begin{cases} \Sigma^{\text{out}} = \Sigma_1^{\text{out}} \cup \Sigma_2^{\text{out}} \\ Q = Q_1 \times Q_2 \\ q_0 = (q_{1,0}, q_{2,0}) \\ (q_1, q_2) \xrightarrow{\alpha} (q'_1, q'_2) \quad \text{iff} \quad q_i \xrightarrow{\alpha}_i q'_i, i = 1, 2 \end{cases}$$

Simulation: For $q_i \in Q_i$, say that $q_2 \leq q_1$ if

$$\forall lpha, q'_2 \text{ such that } q_2 \xrightarrow{lpha}_2 q'_2 \implies \begin{cases} q_1 \xrightarrow{lpha}_1 q'_1 \\ \text{and } q'_2 \leq q'_1 \end{cases}$$

Say that $M_2 \leq M_2$ if $q_{2,0} \leq q_{1,0}$

Interface Automata: Contracts

Interface Automaton $\mathcal{C} = (\Sigma^{\mathrm{in}}, \Sigma^{\mathrm{out}}, \textit{Q}, \textit{q}_0, \rightarrow)$

- ► $\Sigma^{\mathrm{in}}, \Sigma^{\mathrm{out}}, Q, \rightarrow$ as in i/o-automata
- We do not request $q_0 \in Q$; thus, $q_0 \notin Q$ is also a possibility

When $q_0 \in Q$, C defines a contract by fixing a pair $(\mathcal{E}_c, \mathcal{M}_c)$, where:

- \mathcal{E}_c collects all *E* such that:
 - 1. $\Sigma_E^{\rm in} = \Sigma^{\rm out}$ and $\Sigma_E^{\rm out} = \Sigma^{\rm in}$. Thus, *E* and *C*, seen as i/o-automata, are composable

2. *E* is *C*-compliant:

$$\forall \alpha \in \Sigma_E^{\text{out}}, q_E \xrightarrow{\alpha}_E$$

 $\forall (q_E, q) \text{ reachable in } E \times C$
 $\Rightarrow (q_E, q) \xrightarrow{\alpha}_{E \times C}$ holds

▶ M_c collects all *M* such that $\forall E \in \mathcal{E}_c$, *C* simulates $E \times M$ seen as i/o-automata

Lemma: $q_0 \in Q$ iff C is both consistent ($\mathcal{M}_c \neq \emptyset$) and compatible ($\mathcal{E}_c \neq \emptyset$)

Interface Automata: Contracts

Refinement is by alternating simulation: for C_1, C_2 two contracts such that $\Sigma_2^{\text{out}} = \Sigma_2^{\text{out}}$, say that $q_2 \leq q_1$ if

$$\begin{aligned} \forall \alpha \in \Sigma_2^{\text{out}}, \forall q'_2 \text{ s.t. } q_2 \xrightarrow{\alpha} q'_2 & \Longrightarrow & \begin{cases} q_1 \xrightarrow{\alpha} 1 q'_1 \\ q'_2 \leq q'_1 \end{cases} \\ \forall \alpha \in \Sigma_1^{\text{in}}, \forall q'_1 \text{ s.t. } q_1 \xrightarrow{\alpha} 1 q'_1 & \Longrightarrow & \begin{cases} q_2 \xrightarrow{\alpha} 2 q'_2 \\ q'_2 \leq q'_1 \end{cases} \end{aligned}$$

Say that $C_2 \preceq C_1$ if $q_{2,0} \preceq q_{1,0}$.

Conjunction exists but is difficult.

Interface Automata: Contracts

Parallel Composition for C_1, C_2 two contracts such that $\Sigma_1^{out} \cap \Sigma_2^{out} = \emptyset$:

- 1. Build $\mathcal{C}_1 \times \mathcal{C}_2$ as an i/o-automaton and try it as the composition
- 2. By the meta-theory we must have

$$E \models^{\mathsf{E}} \mathcal{C} \implies \left[E \times M_2 \models^{\mathsf{E}} \mathcal{C}_1 \text{ and } E \times M_1 \models^{\mathsf{E}} \mathcal{C}_2 \right]$$

which requires $\forall \alpha \in \Sigma_i^{\text{out}} : q_i \xrightarrow{\alpha}_i \implies (q_1, q_2) \xrightarrow{\alpha}_{\mathcal{C}_2 \times \mathcal{C}_1}$

 (q_1, q_2) not satisfying this is called illegal and must be pruned away

3. Perform this recursively until fixpoint $C_1 \otimes C_2$; the resulting Q can be empty:

Q empty	\iff	$(\mathcal{C}_1, \mathcal{C}_2)$ incompatible
Q nonempty	\iff	$(\mathcal{C}_1, \mathcal{C}_2)$ compatible

Bibliographical note

[de Alfaro Henzinger], several papers in the early 2000's

- Composition and compatibility
- Refinement by alternating simulation
- State based models and Variable based models
- Conjunction (called shared refinement by the authors) is more delicate...

A meta-theory of contracts Meta-theory → Assume/Guarantee contracts Meta-theory → Interface Automata Meta-theory → Modal Interfaces

Modal Interfaces: Summary

Component: deterministic and receptive input/output automaton

► $M = (\Sigma^{\text{in}}, \Sigma^{\text{out}}, Q \ni q_0, \rightarrow)$ with usual parallel composition $M_1 \times M_2$

► Contract:
$$C = (\Sigma^{\text{in}}, \Sigma^{\text{out}}, Q, q_0, \xrightarrow{\rightarrow}, \xrightarrow{-\rightarrow})$$

must may

- C yields (C^{must} , C^{may}), deterministic non-receptive i/o-automata
- C defines a contract $(\mathcal{E}_c, \mathcal{M}_c)$ following the meta-theory:
 - E_C collects all E not proposing as output an action that is refused by C^{must} in the composition E×C^{must}
 - M_c collects all M such that, ∀E∈E_c, E×C^{may} simulates E×M and E×M simulates E×C^{must}
- consistency condition: $\rightarrow \subseteq -- \rightarrow$

Modal Interfaces: Summary

• Modal Refinement $C_2 \preceq C_1$, defined by

and
$$\xrightarrow{-- \rightarrow_2} \subseteq \xrightarrow{-- \rightarrow_1} \longrightarrow_1 \subseteq \xrightarrow{-- \rightarrow_2}$$

specializes the meta-theory;

Conjunction follows by pruning illegal pairs of states for consistency

- Parallel composition ⊗, together with its notion of compatibility, exist; Quotient exists; all specialize the meta-theory
- Variable alphabets are handled by using different alphabet equalizations
 - ▶ for ∧: adding may self-loops, and
 - for \otimes : adding *may*+*must* self-loops

A meta-theory of contracts Meta-theory \mapsto Assume/Guarantee contracts Meta-theory → Interface Automata **Meta-theory** \mapsto **Modal Interfaces Details**

Modal Interfaces: Components

- We first develop the theory for a fixed alphabet, and then the general case
- The model of components is the same as for Interface Automata, namely deterministic and receptive i/o-automata

Modal Interfaces: Contracts

Modal Interface: $C = (\Sigma^{in}, \Sigma^{out}, Q, q_0, \rightarrow, - \rightarrow)$:

► $\Sigma^{\text{in}}, \Sigma^{\text{out}}, Q, q_0$ are as in Interface Automata ($q_0 \in Q$ may not hold)

► \rightarrow , --→ $\subseteq Q \times \Sigma \times Q$ are two transition relations, called must and may

Modal Interfaces: Contracts

Modal Interface:
$$C = (\Sigma^{in}, \Sigma^{out}, Q, q_0, \rightarrow, - \rightarrow)$$
:

When $q_0 \in Q$, C yields two (generally non receptive) i/o-automata denoted by C^{must} and C^{may} and defines (\mathcal{E}_c , \mathcal{M}_c) as follows:

 \triangleright \mathcal{E}_c collects all *E* such that:

1.
$$\Sigma_{E}^{in} = \Sigma^{out}$$
 and $\Sigma_{E}^{out} = \Sigma^{in}$; hence $E \times C^{must}$ is well defined;

2. *E* is C^{must} -compliant:

$$\begin{array}{c} \forall \alpha \in \Sigma_{E}^{\text{out}} \\ \forall q_{E} : q_{E} \xrightarrow{\alpha}_{E} \\ \forall q : (q_{E}, q) \text{ reachable in } E \times \mathcal{C}^{may} \end{array} \right\} \Rightarrow (q_{E}, q) \xrightarrow{\alpha}_{E \times \mathcal{C}^{must}}$$

• \mathcal{M}_c collects all *M* such that, for any $E \in \mathcal{E}_c$:

3. only may transitions are allowed for $E \times M$: C^{may} simulates $E \times M$

4. *must* transitions are mandatory in $E \times M$:

$$\begin{array}{c} \forall (q_E, q_M) \text{ reachable in } E \times M \\ \forall q \in \mathcal{C}^{may} : (q_E, q_M) \leq q \\ \forall \alpha \in \Sigma_M^{\text{out}} : q \xrightarrow{\alpha}_{\mathcal{C}^{must}} \end{array} \right\} \Rightarrow (q_E, q_M) \xrightarrow{\alpha}_{E \times N}$$

Call state *q* consistent if $q \stackrel{\alpha}{\to} \Rightarrow q \stackrel{\alpha}{\dashrightarrow}$; if *q* inconsistent $\exists \alpha, q \stackrel{\alpha}{\to}$ but $q \stackrel{\alpha}{\not \to}$, i.e.: $\forall E \models^{\mathsf{E}} \mathcal{C} \\ \forall M \models^{\mathsf{M}} \mathcal{C} \end{cases} \Rightarrow \mathsf{no} (q_E, q_M) \mathsf{of} E \times M \mathsf{satisfies} (q_E, q_M) \leq q : \mathsf{prune} q \mathsf{away}$

Call state *q* consistent if $q \xrightarrow{\alpha} \Rightarrow q \xrightarrow{\alpha}$; if *q* inconsistent $\exists \alpha, q \xrightarrow{\alpha}$ but $q \xrightarrow{\alpha}$, i.e.: $\forall E \models^{\mathsf{E}} \mathcal{C} \\ \forall M \models^{\mathsf{M}} \mathcal{C} \end{cases} \Rightarrow \mathsf{no} (q_{\mathsf{E}}, q_{\mathsf{M}}) \mathsf{of} E \times M \mathsf{satisfies} (q_{\mathsf{E}}, q_{\mathsf{M}}) \leq q : \mathsf{prune} q \mathsf{away}$

1. May transitions leading to q can be erased without changing $(\mathcal{E}_c, \mathcal{M}_c)$

Call state *q* consistent if $q \xrightarrow{\alpha} \Rightarrow q \xrightarrow{\alpha}$; if *q* inconsistent $\exists \alpha, q \xrightarrow{\alpha}$ but $q \xrightarrow{\alpha}$, i.e.: $\forall E \models^{\mathsf{E}} \mathcal{C} \\ \forall M \models^{\mathsf{M}} \mathcal{C} \end{cases} \Rightarrow \mathsf{no} (q_E, q_M) \mathsf{of} E \times M \mathsf{satisfies} (q_E, q_M) \leq q : \mathsf{prune} q \mathsf{away}$

- 1. May transitions leading to q can be erased without changing $(\mathcal{E}_{c}, \mathcal{M}_{c})$
- Performing this makes state q unreachable in C^{may}; as a result, the set of environments is possibly augmented

Call state q consistent if $q \xrightarrow{\alpha} \Rightarrow q \xrightarrow{\alpha}$; if q inconsistent $\exists \alpha, q \xrightarrow{\alpha}$ but $q \xrightarrow{\alpha}$, i.e.:

$$\begin{array}{l} \forall E \models^{\mathsf{E}} \mathcal{C} \\ \forall M \models^{\mathsf{M}} \mathcal{C} \end{array} \end{array} \} \Rightarrow \text{ no } (q_E, q_M) \text{ of } E \times M \text{ satisfies } (q_E, q_M) \leq q : \text{ prune } q \text{ away}$$

- 1. May transitions leading to q can be erased without changing $(\mathcal{E}_{c}, \mathcal{M}_{c})$
- Performing this makes state q unreachable in C^{may}; as a result, the set of environments is possibly augmented
- 3. Since we have removed may transitions, some more states have possibly become inconsistent. So, we repeat until fixpoint

Call state *q* consistent if $q \xrightarrow{\alpha} \Rightarrow q \xrightarrow{\alpha}$; if *q* inconsistent $\exists \alpha, q \xrightarrow{\alpha}$ but $q \xrightarrow{\alpha}$, i.e.: $\forall E \models^{\mathsf{E}} \mathcal{C} \\ \forall M \models^{\mathsf{M}} \mathcal{C} \end{cases} \Rightarrow \mathsf{no} (q_{\mathsf{E}}, q_{\mathsf{M}}) \mathsf{of} E \times M \mathsf{satisfies} (q_{\mathsf{E}}, q_{\mathsf{M}}) \leq q : \mathsf{prune} q \mathsf{away}$

- 1. May transitions leading to q can be erased without changing $(\mathcal{E}_{c}, \mathcal{M}_{c})$
- Performing this makes state q unreachable in C^{may}; as a result, the set of environments is possibly augmented
- 3. Since we have removed may transitions, some more states have possibly become inconsistent. So, we repeat until fixpoint
- 4. At fixpoint, $Q = Q_{con} \uplus Q_{incon}$, collecting consistent and inconsistent states

Call state *q* consistent if $q \stackrel{\alpha}{\to} \Rightarrow q \stackrel{\alpha}{\dashrightarrow}$; if *q* inconsistent $\exists \alpha, q \stackrel{\alpha}{\to}$ but $q \stackrel{\alpha}{\not \to}$, i.e.: $\forall E \models^{\mathsf{E}} \mathcal{C} \\ \forall M \models^{\mathsf{M}} \mathcal{C} \end{cases} \Rightarrow \mathsf{no} (q_E, q_M) \mathsf{of} E \times M \mathsf{satisfies} (q_E, q_M) \leq q : \mathsf{prune} q \mathsf{away}$

- 1. May transitions leading to q can be erased without changing $(\mathcal{E}_c, \mathcal{M}_c)$
- Performing this makes state q unreachable in C^{may}; as a result, the set of environments is possibly augmented
- 3. Since we have removed may transitions, some more states have possibly become inconsistent. So, we repeat until fixpoint
- 4. At fixpoint, $Q = Q_{con} \uplus Q_{incon}$, collecting consistent and inconsistent states
- 5. Since Q_{incon} is unreachable from Q_{con} , delete Q_{incon} , thus obtaining [C]

Call state *q* consistent if $q \xrightarrow{\alpha} \Rightarrow q \xrightarrow{\alpha}$; if *q* inconsistent $\exists \alpha, q \xrightarrow{\alpha}$ but $q \xrightarrow{\alpha}$, i.e.: $\forall E \models^{\mathsf{E}} \mathcal{C} \\ \forall M \models^{\mathsf{M}} \mathcal{C} \end{cases} \Rightarrow \mathsf{no} (q_E, q_M) \mathsf{of} E \times M \mathsf{satisfies} (q_E, q_M) \leq q : \mathsf{prune} q \mathsf{away}$

- 1. May transitions leading to q can be erased without changing $(\mathcal{E}_c, \mathcal{M}_c)$
- Performing this makes state q unreachable in C^{may}; as a result, the set of environments is possibly augmented
- 3. Since we have removed may transitions, some more states have possibly become inconsistent. So, we repeat until fixpoint
- 4. At fixpoint, $Q = Q_{con} \uplus Q_{incon}$, collecting consistent and inconsistent states
- 5. Since Q_{incon} is unreachable from Q_{con} , delete Q_{incon} , thus obtaining [C]

Theorem:

- $1. \ \ \mathcal{M}_{[\mathcal{C}]} = \mathcal{M}_{\mathcal{C}} \ \text{and} \ \mathcal{E}_{[\mathcal{C}]} \supseteq \mathcal{E}_{\mathcal{C}}$
- 2. $\left[\mathcal{C} \right]$ offers the smallest set of environments with this property
- 3. C is consistent and compatible if and only if $Q_{con}
 i q_0$

Modal Interfaces: Refinement and Conjunction

For C a Modal Interface and $q \in Q$ a state of it:

$$may(q) = \{ \alpha \in \Sigma \mid q \xrightarrow{\alpha} \}$$
$$must(q) = \{ \alpha \in \Sigma \mid q \xrightarrow{\alpha} \}$$

For C_i , i = 1, 2 and q_i a state of C_i . Say that $q_2 \leq q_1$, if:

$$\begin{cases} may_2(q_2) \subseteq may_1(q_1) \\ must_2(q_2) \supseteq must_1(q_1) \end{cases}$$

and $\forall \alpha \in \Sigma : \begin{cases} q_1 \stackrel{\alpha}{- \to 1} q'_1 \\ q_2 \stackrel{\alpha}{- \to 2} q'_2 \end{cases} \implies q'_2 \preceq q'_1$

Say that $\mathcal{C}_2 \preceq \mathcal{C}_1$ if $q_{2,0} \preceq q_{1,0}$.

Theorem:

$$\mathcal{C}_{2} \preceq \mathcal{C}_{1} \quad \text{iff} \quad \left\{ \begin{array}{ccc} \mathcal{E}_{c_{2}} & \supseteq & \mathcal{E}_{c_{1}} \\ \mathcal{M}_{c_{2}} & \subseteq & \mathcal{M}_{c_{1}} \end{array} \right.$$

Modal Interfaces: Refinement and Conjunction

For C a Modal Interface and $q \in Q$ a state of it:

$$may(q) = \{ \alpha \in \Sigma \mid q \xrightarrow{\alpha} \}$$
$$must(q) = \{ \alpha \in \Sigma \mid q \xrightarrow{\alpha} \}$$

The pre-conjunction $C_1 \& C_2$ of two Modal Interfaces is only defined if $\Sigma_1^{\mathrm{in}} = \Sigma_2^{\mathrm{in}}$ and $\Sigma_1^{\mathrm{out}} = \Sigma_2^{\mathrm{out}}$ and is given by:

$\Sigma^{\mathrm{in}} = \Sigma_1^{\mathrm{in}}$;	$\Sigma^{\rm out} = \Sigma_1^{\rm out}$
$Q = Q_1 imes Q_2$;	$q_0=(q_{1,0},q_{2,0})$
$must(q_1, q_2)$	=	$must_1(q_1) \cup must_2(q_2)$
$may(q_1, q_2)$	=	$may_1(q_1) \cap may_2(q_2)$

The conjunction is defined as

$$\mathcal{C}_1 \wedge \mathcal{C}_2 = [\mathcal{C}_1 \& \mathcal{C}_2]$$

and is the GLB for refinement order: specializes the meta-theory.

Modal Interfaces: Composition and Quotient

The composition $C_1 \otimes C_2$ of two Modal Interfaces is only defined if $\Sigma_1^{\text{out}} \cap \Sigma_2^{\text{out}} = \emptyset$ It is given by: $\Sigma^{\text{out}} = \Sigma_1^{\text{out}} \cup \Sigma_2^{\text{out}}$, $Q = Q_1 \times Q_2$, $q_0 = (q_{1,0}, q_{2,0})$, and:

> $must[0](q_1, q_2) = must_1(q_1) \cap must_2(q_2)$ $may[0](q_1, q_2) = may_1(q_1) \cap may_2(q_2)$

Say that pair (q_1, q_2) is illegal if

	$\mathit{may}(q_1) \cap \Sigma^{\mathrm{in}}_2$	Z	must(q ₂)
or	$\mathit{may}(\mathit{q}_2)\cap \Sigma_1^{\mathrm{in}}$	Z	$must(q_1)$

Illegal pairs of states cause harm to environments and must be pruned away. Pruning illegal pairs of states until fixpoint (as above) yields

 $\mathcal{C}_1 {\otimes} \mathcal{C}_2$

specializing the meta-theory

Modal Interfaces with variable alphabets

We consider Modal Interfaces with consistent states only

$$\& : \begin{cases} must(q_1, q_2) = must_1(q_1) \cup must_2(q_2) \\ may(q_1, q_2) = may_1(q_1) \cap may_2(q_2) \end{cases} \\ \otimes : \begin{cases} must(q_1, q_2) = must_1(q_1) \cap must_2(q_2) \\ may(q_1, q_2) = may_1(q_1) \cap may_2(q_2) \end{cases}$$

Alphabet equalization should be neutral against all relations and operations

for & :
$$\begin{bmatrix} \alpha \in may_1(q_1) \text{ and } \alpha \in whatever_2(q_2) \\ & \Downarrow \\ \alpha \in whatever(q_1, q_2) \end{bmatrix}$$
for \otimes :
$$\begin{bmatrix} \alpha \in must_1(q_1) \text{ and } \alpha \in whatever_2(q_2) \\ & \Downarrow \\ \alpha \in whatever(q_1, q_2) \end{bmatrix}$$

Neutral alphabet extension is by adding

- may self-loops for the conjunction and
- must+may self-loops for the composition

Modal Interfaces with variable alphabets

We consider Modal Interfaces with consistent states only Define the weak extension of \mathcal{C} to $\Sigma' \supset \Sigma$, written $\mathcal{C}^{\uparrow \Sigma'}$, as follows:

$$\mathcal{C}^{\Uparrow \Sigma'} : \begin{cases} (\Sigma^{\mathrm{in}})^{\Uparrow \Sigma'} &= \Sigma^{\mathrm{in}} \cup (\Sigma' \setminus \Sigma) \\ (\Sigma^{\mathrm{out}})^{\Uparrow \Sigma'} &= \Sigma^{\mathrm{out}} \\ Q^{\Uparrow \Sigma'} &= Q \\ q_0^{\Uparrow \Sigma'} &= q_0 \\ may^{\Uparrow \Sigma'} &= may \cup (\Sigma' \setminus \Sigma) \\ must^{\Uparrow \Sigma'} &= must \end{cases}$$

and the strong extension of \mathcal{C} to $\Sigma' \supset \Sigma$, written $\mathcal{C}^{\uparrow \Sigma'}$

$$\mathcal{C}^{\uparrow \Sigma'}: \left\{ \begin{array}{rcl} \ldots & = & \ldots \\ \textit{must}^{\uparrow \Sigma'} & = & \textit{must} \cup (\Sigma' \setminus \Sigma) \end{array} \right.$$

Neutral alphabet extension is by adding

- may self-loops for the conjunction and
- must+may self-loops for the composition

Modal Interfaces with variable alphabets

We consider Modal Interfaces with consistent states only

$$M' \models^{\mathsf{M}} \mathcal{C} :::= M' \models^{\mathsf{M}} \mathcal{C}^{\uparrow \Sigma'}$$
$$E' \models^{\mathsf{E}} \mathcal{C} :::= E' \models^{\mathsf{E}} \mathcal{C}^{\uparrow \Sigma'}$$
$$\mathcal{C}_1 \land \mathcal{C}_2 :::= \mathcal{C}_1^{\uparrow \Sigma} \land \mathcal{C}_2^{\uparrow \Sigma}$$
$$\mathcal{C}_1 \otimes \mathcal{C}_2 :::= \mathcal{C}_1^{\uparrow \Sigma} \otimes \mathcal{C}_2^{\uparrow \Sigma}$$
$$\mathcal{C}_1/\mathcal{C}_2 :::= \mathcal{C}_1^{\uparrow \Sigma} / \mathcal{C}_2^{\uparrow \Sigma}$$

Neutral alphabet extension is by adding

- may self-loops for the conjunction and
- must+may self-loops for the composition

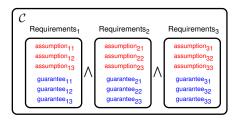
Bibliographical note

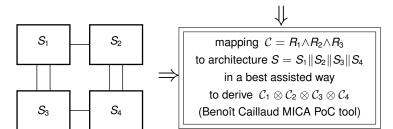
Modal specifications and Modal automata

- Hennesy in the 80's
- Kim Larsen 1987
- introducing variability in design at low cost
- Revitalized in the late 2000's for use as interface models
 - Kim Larsen, Nyman, Wasowski: modal automata (role of determinism in the complexity of the theory), use for product lines
 - Raclet, Caillaud, Benveniste: modal interfaces, full fledged theory dealing with variable alphabets; correction to a mistake in compatibility

A meta-theory of contracts Meta-theory → Assume/Guarantee contracts Meta-theory → Interface Automata **Meta-theory** \mapsto **Modal Interfaces Contract Based Requirement Engineering**

Motivations





system architecture (SysML)

Top-level specification: assumptions & guarantees

viewpoint gate(x) where $x \in \{\text{entry, exit}\}$

 $R_{g,1}(x)$: "vehicles shall not pass when x_gate is closed",

 $R_{g,2}^{\circ}(x)$: after ?vehicle_pass ?vehicle_pass is forbidden

R_{g.3}: after lx_gate_open lx_gate_open is forbidden and after lx_gate_close lx_gate_close is forbidden

viewpoint payment

- $R_{p,1}$: "user inserts a coin every time a ticket is inserted and only then"
- R_{p.2}: "user may insert a ticket only initially or after an exit ticket has been issued"
- $R_{p,3}$: "exit ticket is issued after ticket is inserted and payment is made and only then"

viewpoint supervisor

- $R_{g,1}$ (entry)
- $R_{g,1}^{-}$ (exit)
- $R_{g,2}^{\circ}$ (entry)
- $R_{g,2}^{\circ}$ (exit)
- R_{s.1}: initially and after lentry_gate close lentry_gate open is forbidden
- R_{s.2}: after !ticket_issued !entry_gate open must be enabled
- $R_{s,3}: \qquad \mbox{"at most one ticket is issued per vehicle entering the parking and tickets can be issued only if requested and ticket is issued only if the parking is not full"$
- $R_{s,4}$: "when the entry gate is closed, the entry gate may not open unless a ticket has been issued"
- $R_{s,5}$: "the entry gate must open when a ticket is issued"
- $\mathbf{R}_{s,6}$: "exit gate must open after an exit ticket is inserted and only then"
- R_{s.7}: "exit gate closes only after vehicle has exited parking"

Each requirement is translated to a Modal Interface

The different Modal Interfaces are combined by using conjunction \implies viewpoints

The different viewpoints are combined using conjunction as well

Top-level specification: $C = C_{entry_gate} \wedge C_{exit_gate} \wedge C_{payment} \wedge C_{supervisor}$

viewpoint entry_gate and exit_gate viewpoint payment viewpoint supervisor

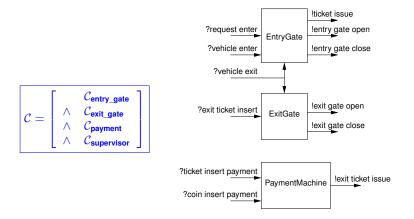
- $R_{g,1}$ (entry)
- $R_{g,1}^{-}$ (exit)
- $R_{g,2}^{o}$ (entry)
- $R_{g,2}^{-}$ (exit)
- $\mathbf{R}_{s,1}$: initially and after !entry_gate close !entry_gate open is forbidden
- $\mathbf{R}_{s,2}$: after !ticket_issued !entry_gate open must be enabled
- ${\rm R}_{{\rm s},3}$: "at most one ticket is issued per vehicle entering the parking and tickets can be issued only if requested and ticket is issued only if the parking is not full"
- ${
 m R}_{s,4}$: "when the entry gate is closed, the entry gate may not open unless a ticket has been issued"
- $\mathbf{R}_{s,5}$: "the entry gate must open when a ticket is issued"
- $R_{s,6}$: "exit gate must open after an exit ticket is inserted and only then"
- $R_{s,7}$: "exit gate closes only after vehicle has exited parking"

The supervisor as a Modal Interface

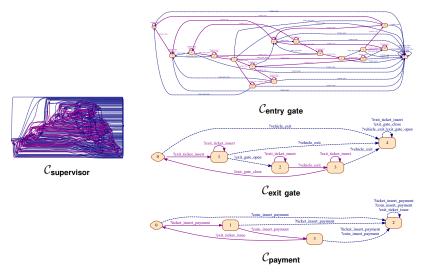
 $C_{\text{supervisor}} =$

Architecture for sub-contracting $\mathcal C$ as a \otimes -composition of sub-systems

- this is the duty of the designer
- note the change in architecture: supervision performed by the entry gate



The following \otimes -decomposition of ${\cal C}$ into three sub-contracts was automatically generated (note the reduction in size)



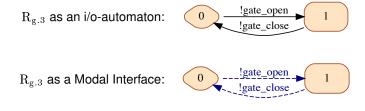
A meta-theory of contracts Meta-theory \mapsto Assume/Guarantee contracts Meta-theory → Interface Automata **Meta-theory** \mapsto **Modal Interfaces Details**

Translating Assumptions and Guarantees into Modal Interfaces

Top-level specification

gate(x) where x ∈{entry, exit} R_{g.1}(x): "vehicles shall not pass when x_gate is closed", R_{g.2}(x): atter ?vehicle_pass ?vehicle_pass is forbidden R_{g.3}: after lx_gate_open lx_gate_open is forbidden and after lx_gate_close lx_gate_close is forbidden

Translating the guarantees:



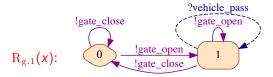
Note the may transitions for outputs

Translating Assumptions and Guarantees into Modal Interfaces

Top-level specification

 $\begin{array}{l} \mbox{gate}(x) \mbox{ wher } x \in \{\mbox{erry, exit}\} \\ R_{g,1}(x): "vehicles shall not pass when x_gate is closed", \\ R_{g,2}(x): after ?vehicle_pass ?vehicle_pass is forbidden \\ R_{g,3}: \quad after |x_gate_open | x_gate_open |s forbidden and after | x_gate_close | x_gate_close is forbidden \\ \end{array}$

Translating the assumptions:



Note the *must* transitions for outputs and the *may* transitions for inputs Finally the contract for the gate viewpoint is:

$$\mathcal{C}_{\text{gate}} = ((R_{g.1} \wedge R_{g.2}) \otimes R_{g.3}) / (R_{g.1} \wedge R_{g.2})$$

A meta-theory of contracts Meta-theory → Assume/Guarantee contracts Meta-theory → Interface Automata **Meta-theory** \mapsto **Modal Interfaces Concluding Remarks**

Contracts: large system design by distributed OEM/supplier chains

- Contracts: large system design by distributed OEM/supplier chains
- Contracts support both formal and semi-formal use:
 - formal: possible for specific contract formalisms
 - \blacktriangleright semi-formal: manual "local reasoning" \rightarrow system-wide properties

- Contracts: large system design by distributed OEM/supplier chains
- Contracts support both formal and semi-formal use:
 - formal: possible for specific contract formalisms
 - \blacktriangleright semi-formal: manual "local reasoning" \rightarrow system-wide properties
- Extending the formal scope of contracts:
 - abstractions
 - observers

- Contracts: large system design by distributed OEM/supplier chains
- Contracts support both formal and semi-formal use:
 - formal: possible for specific contract formalisms
 - \blacktriangleright semi-formal: manual "local reasoning" \rightarrow system-wide properties
- Extending the formal scope of contracts:
 - abstractions
 - observers
- The meta-theory clarifies the unique features
 - of contract-based reasoning, versus
 - other techniques of compositional reasoning
- Meta-theory specializes to various formalisms (more than shown)

More...

- Use of Modal Interfaces for the separate compilation of multiple-clocked synchronous programs, showing that contracts yield useful and non trivial theories of interfaces [Benven. & al. 2012]
- Perspective: meta-theory to support heterogeneity
- Perspective: synchronizing safety with {function+physics}:
 - safety analysis: abstract reliability or fault tree models
 - {function+physics+faults}: too complex for being analysable
 ⇒ for use as observers for safety analysis models