
Contract Theories
Albert Benveniste

B. Caillaud D. Nickovic R. Passerone J-B. Raclet
W. Damm T. Henzinger K. Larsen

A. Sangiovanni-Vincentelli

INRIA Rennes

April 17, 2015

Contracts in embedded systems design: why?

I Formalizing OEM/supplier relations: “contracts for contracts”
Complement Legal Contracts with Technical Contracts

I Structuring requirements or specifications
Requirements are structured into chapters/viewpoints/aspects
(function, safety, performance & timing, QoS. . .)

I Concurrent development at the system designer
Different viewpoints are developed by different teams
Weaving viewpoints must be sound and correct

I Independent development by the suppliers
Suppliers must be able to develop their sub-systems having
all the info they need; system integration must be correct

Structuring requirements or specifications
Concurrent development

CB
1 CB

2 CT CS
1 CS

2

viewpoint
timing

viewpoint
safety

viewpoint
behavioral

CB
1 ∧ CB

2 ∧ CT ∧ CS
1 ∧ CS

2 is a conjunction
every contract

C =
∧

i Ci

Structuring requirements or specifications
Concurrent development

behavioral
viewpoint

timing
viewpoint

safety
viewpoint

CB
1 CB

2 CT CS
1 CS

2

every contract is itself
a conjunction
of requirements
C =

∧
i Ci

CB
1 ∧ CB

2 ∧ CT ∧ CS
1 ∧ CS

2

Requirements are combined by using “contract conjunction”
Viewpoints are fused by using “contract conjunction”

Structuring requirements or specifications
Independent development

by a supplier
implementation
delegated for

by a supplier

delegated for
implementation

C11

C121 C122 C131 C132

C121 ⊗ C122 C131 ⊗ C132

C11

C12

C13

C11 ⊗ C12 ⊗ C13

refined by the OEM

C1

C11 ⊗ (C121 ⊗ C122)⊗ (C131 ⊗ C132)

Structuring requirements or specifications
Independent development

by a supplier
implementation
delegated for

by a supplier

delegated for
implementation

C11

C121 C122 C131 C132

C121 ⊗ C122 C131 ⊗ C132

C1

C11

C12

C13

C11 ⊗ C12 ⊗ C13

refined by the OEM

C11 ⊗ (C121 ⊗ C122)⊗ (C131 ⊗ C132)

Structuring requirements or specifications
Independent development

C1

C11

C12

C13

C11

C121 C122 C131 C132

C121 ⊗ C122 C131 ⊗ C132

C11 ⊗ C12 ⊗ C13

C11 ⊗ (C121 ⊗ C122)⊗ (C131 ⊗ C132)

by a supplier by a supplier
implementation
delegated for delegated for

implementation

refined by the OEM

“refined”, “implementation”, ⊗: new concepts

A meta-theory of contracts

Details

Meta-theory 7→ Assume/Guarantee contracts

Details

Meta-theory 7→ Interface Automata

Details

Meta-theory 7→ Modal Interfaces

Details

Contract Based Requirement Engineering

Details

Concluding Remarks

Motivations for a meta-theory

A wide and diverse bibliography:

I Systems from components:
OO-programming in the 80’s [B. Meyer. . .]

I Refinement

I by simulation: in the 80’s [Milner], OK for closed systems
I by alternating simulation for open systems:

early 90’s [Abadi, Lamport, Wolper]
late 90’s [de Alfaro, Kupferman, Henzinger]

I Composition and compatibility:
[Abadi, Lamport93] [de Alfaro-Henzinger 2000]

I Conjunction and consistency:
[Passerone, Raclet, Caillaud, Benveniste... 2008]

I Product lines (not discussed here): [Larsen, Nyman, Wasowski 2008]

Motivations for a meta-theory

Fact:

I Different frameworks have been proposed to address similar issues:

I specification theories
I interface theories
I contract theories

the meta-theory

Goal:

I Capture the essence of the above frameworks

I Highlight their very nature

I Develop new generic tools and techniques

I Instantiate to known frameworks, hoping for new results

The meta-theory: Components and Contracts

I Components: actual pieces of SW/HW/devices, open system

I Environment: context of use (a component), often unkown at design time

I Components cannot constrain their environment

Contracts are intentionally abstract

Pinpoint responsibilities of component vs. environment

C =


EC︸ ︷︷ ︸

set of
environments

, MC︸ ︷︷ ︸
set of

components



The meta-theory: Components and Contracts

I Components: actual pieces of SW/HW/devices, open system

I Environment: context of use (a component), often unkown at design time

I Components cannot constrain their environment

I Contracts are intentionally abstract

I Pinpoint responsibilities of component vs. environment

semantics(C) =


EC︸ ︷︷ ︸

set of
environments

, MC︸ ︷︷ ︸
set of

components



The meta-theory

I We assume some primitive concepts:

Component M

Composition × is partially defined, commutative and associative

Composability M1×M2 being well-defined is a typing relation

Environment E is an environment for M iff E×M is well-defined

I On top of these primitive concepts we define

I generic concepts and operators
I satisfying generic properties

I How concepts, operators, and properties, are made effective

I depends on the specific framework

The meta-theory

I Generic Relations and Operators:

Contract sem (C) = (EC ,MC) where C ∈ C : underlying class of contracts

Consistency MC 6= ∅ say that (C1, C2) is consistent iff C1 ∧ C2 is consistent

Compatibility EC 6= ∅ say that (C1, C2) is compatible iff C1 ⊗ C2 is compatible

Implementation M |=M C iff M ∈MC ; E |=E C iff E ∈EC

Refinement C′ � C iff EC′ ⊇ EC andMC′ ⊆MC

Conjunction
C1∧C2 = GLB for � within C
C1∨C2 = LUB for � within C

Composition C1⊗C2 = min

C
∣∣∣∣∣∣
 ∀M1 |=M C1

∀M2 |=M C2

∀E |=E C

⇒
 M1×M2 |=M C1

E×M2 |=E C1

E×M1 |=E C2

 
Quotient C1/C2 = max{ C ∈ C | C ⊗ C2 � C1}

The meta-theory

I Generic Relations and Operators:

Contract sem (C) = (EC ,MC) where C ∈ C : underlying class of contracts

Consistency MC 6= ∅ say that (C1, C2) is consistent iff C1 ∧ C2 is consistent

Compatibility EC 6= ∅ say that (C1, C2) is compatible iff C1 ⊗ C2 is compatible

Implementation M |=M C iff M ∈MC ; E |=E C iff E ∈EC

Refinement C′ � C iff EC′ ⊇ EC andMC′ ⊆MC

Conjunction
C1∧C2 = GLB for � within C
C1∨C2 = LUB for � within C

Composition C1⊗C2 = min

C
∣∣∣∣∣∣
 ∀M1 |=M C1

∀M2 |=M C2

∀E |=E C

⇒
 M1×M2 |=M C1

E×M2 |=E C1

E×M1 |=E C2

 
Quotient C1/C2 = max{ C ∈ C | C ⊗ C2 � C1}

The meta-theory

I Generic Relations and Operators:

Contract sem (C) = (EC ,MC) where C ∈ C : underlying class of contracts

Consistency MC 6= ∅ say that (C1, C2) is consistent iff C1 ∧ C2 is consistent

Compatibility EC 6= ∅ say that (C1, C2) is compatible iff C1 ⊗ C2 is compatible

Implementation M |=M C iff M ∈MC ; E |=E C iff E ∈EC

Refinement C′ � C iff EC′ ⊇ EC andMC′ ⊆MC

Conjunction
C1∧C2 = GLB for � within C
C1∨C2 = LUB for � within C

Composition C1⊗C2 = min

C
∣∣∣∣∣∣
 ∀M1 |=M C1

∀M2 |=M C2

∀E |=E C

⇒
 M1×M2 |=M C1

E×M2 |=E C1

E×M1 |=E C2

 
Quotient C1/C2 = max{ C ∈ C | C ⊗ C2 � C1}

The meta-theory

Generic Properties:

Refinement
substituability↗ of sets of environments
substituability↘ of sets of implementations

Composition

(C1, C2) compatible
C′i � Ci

}
⇒
{

(C′1, C′2) compatible
C′1 ⊗ C′2 � C1 ⊗ C2

independent implementability

(C1 ⊗ C2)⊗ C3 = C1 ⊗ (C2 ⊗ C3)

associativity

[(C11 ∧ C21)⊗ (C12 ∧ C22)] � [(C11 ⊗ C12) ∧ (C21 ⊗ C22)]

sub-distributivity: sets the freedom in design processes,
fusing viewpoints before/after composing sub-systems

Quotient C � C1/C2 ⇔ C ⊗ C2 � C1

Abstracting and testing

I Restrictions must hold for relations and operators on contracts to be
analyzable

I Such restrictions may not hold for system models in practice

I Typical obstacles are infinite data types and functions operating on them

I Two complementary ways of overcoming this consist in

I performing abstractions
I performing testing

I The meta-theory offers generic means:

I abstraction on top of abstract interpretation for components
I observers for contract-compliant testing

Abstracting and testing

I Restrictions must hold for relations and operators on contracts to be
analyzable

I Such restrictions may not hold for system models in practice

I Typical obstacles are infinite data types and functions operating on them

I Two complementary ways of overcoming this consist in

I performing abstractions
I performing testing

I The meta-theory offers generic means:

I abstraction on top of abstract interpretation for components
I observers for contract-compliant testing

Bibliographical note

Very few attempts to develop a meta-theory. Two recent papers:

I Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim G. Larsen, Axel
Legay, Ulrik Nyman, and Andrzej Wasowski. Moving from specifiations to
contracts in component-based design. FASE 2012

I Starts from an abstract notion of specification with
axioms—refinement, conjunction, composition, quotient

I Then it defines contracts as pairs (A,G) of specs
I It establishes a link from abstract specs to modal automata

I Taolue Chen, Chris Chilton, Bengt Jonsson, Marta Z. Kwiatkowska: A
Compositional Specification Theory for Component Behaviours. ESOP
2012: 148-168

I trace based abstract specification
I ports split into uncontrolled/controlled (or input/output)
I assumptions involve inputs and guarantees involve outputs
I conjunction, composition, quotient

A meta-theory of contracts

Details

Meta-theory 7→ Assume/Guarantee contracts

Details

Meta-theory 7→ Interface Automata

Details

Meta-theory 7→ Modal Interfaces

Details

Contract Based Requirement Engineering

Details

Concluding Remarks

Abstracting and Testing contracts C = (EC ,MC)

Approach:

1. Assume a Galois connection on components

2. Yields a canonical abstraction on sets of components

3. Yields a canonical abstraction for contracts

Properties:

I Consistency and Compatibility can be proved on abstractions (positive
semi-decision)

I Contract abstraction is monotonic with respect to refinement

I Contract abstraction distributes over conjunction

I Contract abstraction “sub-distributes” over composition

There are obstructions to getting an abstraction with stronger properties

Abstracting and Testing contracts C = (EC ,MC)

1. Following [Cousot&Cousot], recall the notion of Galois connection:

α : (XC,vC) 7→ (XA,vA) : the abstraction
γ : (XA,vA) 7→ (XC,vC) : the concretization

two monotonic maps such that

XC vC γ(XA) ⇐⇒ α(XC) vA XA

2. From Galois connection on X ’s to abstractions on sets-of-X :

I Let X< ⊆ 2X collect all v-downward closed subsets of X
I Equip X<C and X<A with their inclusion orders ⊆C and ⊆A

I Set

α̂(χC) = γ −1(χC) = {XA | γ(XA) well defined and ∈χC}

3. the canonical way of defining abstractions for contracts is:

α (CC) =
(
α̂
(
ECC

)
, α̂
(
MCC

))

Abstracting and Testing contracts C = (EC ,MC)

Approach:

1. Assume a testing technique on components

2. An observer for contracts is thus a pair of tests (for environments and
components, respectively)

Properties:

I Implementations can be disproved using observers (negative
semi-decision)

I Observers for contract conjunction can be obtained compositionally

I Observers for contract composition can “almost” be obtained
compositionally

Abstracting and Testing contracts C = (EC ,MC)

An observer for C is a pair (bE
C , b

M
C) of non-deterministic boolean functions

M 7→ {false, true} called verdicts, such that:

bE
C(E) outputs false =⇒ E 6∈ EC

bM
C (M) outputs false =⇒ M 6∈ MC

}
semi-decision

Operator Observer

C = (EC ,MC)
(
bE
C , b

M
C
)

C = C1∧C2 bE
C = bE

C1
∨ bE
C2
, bM
C = bM

C1
∧ bM
C2

C = C1∨C2 bE
C = bE

C1
∧ bE
C2
, bM
C = bM

C1
∨ bM
C2

C = C1⊗C2

bE
C(E) =

∧
M1 |=M C1

M2 |=M C2

[
bE
C2 (E×M1) ∧ bE

C1 (E×M2)
]

bM
C (M1 ×M2) = bM

C1
(M1) ∧ bM

C2
(M2)

A meta-theory of contracts

Details

Meta-theory 7→ Assume/Guarantee contracts

Details

Meta-theory 7→ Interface Automata

Details

Meta-theory 7→ Modal Interfaces

Details

Contract Based Requirement Engineering

Details

Concluding Remarks

Assume/Guarantee contracts: summary
I Component:

I Kahn Process Network (KPN) or
I Synchronous Transition System (STS)

I Contract: pair (Assumption, Guarantee) = (KPN,KPN) or (STS,STS)
C = (A,G) defines a contract (EC ,MC) following the meta-theory:

EC = {E | E ⊆ A}
MC = {M | A×M ⊆ G}

I The following (existing) definitions specialize the meta-theory:

C1 ∧ C2 ≡ (A1 ∪ A2,G1 ∩ G2)

C1 ⊗ C2 ≡ ((A1 ∩ A2) ∪ ¬(G1 ∩ G2),G1 ∩ G2)

I No quotient exists

I Dealing with variable alphabets of variables is unsatisfactory, due to an
unfortunate handling of assumptions in contract conjunction

Assume/Guarantee contracts: summary
I Component:

I Kahn Process Network (KPN) or
I Synchronous Transition System (STS)

I Contract: pair (Assumption, Guarantee) = (KPN,KPN) or (STS,STS)
C = (A,G) defines a contract (EC ,MC) following the meta-theory:

EC = {E | E ⊆ A}
MC = {M | A×M ⊆ G}

I The following (existing) definitions specialize the meta-theory:

C1 ∧ C2 ≡ (A1 ∪ A2,G1 ∩ G2)

C1 ⊗ C2 ≡ ((A1 ∩ A2) ∪ ¬(G1 ∩ G2),G1 ∩ G2)

I No quotient exists

I Dealing with variable alphabets of variables is unsatisfactory, due to an
unfortunate handling of assumptions in contract conjunction

Assume/Guarantee contracts: summary
I Component:

I Kahn Process Network (KPN) or
I Synchronous Transition System (STS)

I Contract: pair (Assumption, Guarantee) = (KPN,KPN) or (STS,STS)
C = (A,G) defines a contract (EC ,MC) following the meta-theory:

EC = {E | E ⊆ A}
MC = {M | A×M ⊆ G}

I The following (existing) definitions specialize the meta-theory:

C1 ∧ C2 ≡ (A1 ∪ A2,G1 ∩ G2)

C1 ⊗ C2 ≡ ((A1 ∩ A2) ∪ ¬(G1 ∩ G2),G1 ∩ G2)

I No quotient exists

I Dealing with variable alphabets of variables is unsatisfactory, due to an
unfortunate handling of assumptions in contract conjunction

A meta-theory of contracts

Details

Meta-theory 7→ Assume/Guarantee contracts

Details

Meta-theory 7→ Interface Automata

Details

Meta-theory 7→ Modal Interfaces

Details

Contract Based Requirement Engineering

Details

Concluding Remarks

A/G contracts: the Component Model

I To simplify we present the theory for a fixed alphabet Σ and without
distinguishing input vs. output

I A/G contract theory builts on top of component models that are assertions
(sets of behaviors). We can consider both

I asynchronous Kahn Process Networks (KPN)
I Synchronous Transition Systems (synchronous languages)
I for both cases, parallel composition is by intersection

M = (Σ,P) = P for short since Σ is fixed

P ⊆


Σ 7→ Dom∗ ∪ Domω KPN

or
(Σ 7→ Dom)∗ ∪ (Σ 7→ Dom)ω Synchronous

M1×M2 = P1∩P2

A/G contracts: the Contracts

C = (A,G); A (the assumptions) and G (the guarantees) are assertions over Σ

Behaviors must be of the same kind for both components and contracts
(either both KPN or both synchronous)

C = (A,G) defines a contract (EC ,MC), where:

EC = {E | E ⊆ A}
MC = {M | A×M ⊆ G}

Contracts C and C′ such that

A = A′ and G ∪ ¬A = G′ ∪ ¬A′

are equivalent as they yield identical sets of environments and components.

C can always be saturated meaning that G ⊇ ¬A. This is assumed next.

A/G contracts: the Contracts

C = (A,G); A (the assumptions) and G (the guarantees) are assertions over Σ

Behaviors must be of the same kind for both components and contracts
(either both KPN or both synchronous)

C = (A,G) defines a contract (EC ,MC), where:

EC = {E | E ⊆ A}
MC = {M | A×M ⊆ G}

Contracts C and C′ such that

A = A′ and G ∪ ¬A = G′ ∪ ¬A′

are equivalent as they yield identical sets of environments and components.

C can always be saturated meaning that G ⊇ ¬A. This is assumed next.

A/G contracts: the Contracts

C = (A,G); A (the assumptions) and G (the guarantees) are assertions over Σ

Behaviors must be of the same kind for both components and contracts
(either both KPN or both synchronous)

C = (A,G) defines a contract (EC ,MC), where:

EC = {E | E ⊆ A}
MC = {M | A×M ⊆ G}

Contracts C and C′ such that

A = A′ and G ∪ ¬A = G′ ∪ ¬A′

are equivalent as they yield identical sets of environments and components.

C can always be saturated meaning that G ⊇ ¬A. This is assumed next.

A/G contracts: the Contracts

Refinement (for C1, C2 saturated):

C′ � C holds iff
{

A′ ⊇ A
G′ ⊆ G

Composition (for C1, C2 saturated):

G = G1∩G2

A = max

{
A

∣∣∣∣∣ A∩G2 ⊆ A1

A∩G1 ⊆ A2

}
= (A1∩A2) ∪ ¬(G1∩G2)

No quotient exists

Problem: need to complement assertions. Use observers or abstractions?

Abstractions and observers can be defined

A/G contracts with variable alphabet

Variable alphabet is dealt with using a two steps procedure

1. Equalize alphabets in both assumptions and guarantees
(by existential inverse projection)

2. Reuse the theory developed for a fixed alphabet

Whereas alphabet equalization is known and works well for components (and
environments), we do have a problem when extending it to contracts:

Problem: alphabet equalization for A/G-contracts is well defined but is practically
inadequate when dealing with the conjunction, as it yields, for the assumptions
and when alphabets are disjoint:

A1∪A2 = true

meaning that every environment is considered legal

Bibliographical note

I A/G reasoning arises in OO-programming in the late 80’s [B. Meyer 1992]
Contracts quite often deal with complex typing handled with constraints
expressed on parameters (OCL)

I Formal behavioral contracts come in the early 90’s in the area of
compositional verification; main issue here is that of circular reasoning
[Clarke, de Long, Mc Millan 1989]; see also [Abadi & Lamport 1993]

I A/G behavioral contracts were revisited in [Passerone et al. 2007] by
SPEEDS project

A meta-theory of contracts

Details

Meta-theory 7→ Assume/Guarantee contracts

Details

Meta-theory 7→ Interface Automata

Details

Meta-theory 7→ Modal Interfaces

Details

Contract Based Requirement Engineering

Details

Concluding Remarks

Interface Automata: summary

I Component: deterministic and receptive input/output automaton

I M = (Σin,Σout,Q3q0,→) with usual parallel composition M1×M2

I Contract: deterministic (possibly non receptive) input/output automaton

I C = (Σin,Σout,Q, q0,→)

I C defines a contract (EC ,MC) following the meta-theory:

I EC collects all E not proposing as output an action that is
refused by C in the composition E×C

I MC collects all M such that, ∀E∈EC , E×C simulates E×M

Interface Automata: summary

I Refinement, as defined by alternating simulation, specializes the
meta-theory;

Conjunction is difficult, even for a fixed alphabet of actions

I Parallel composition ⊗, together with its notion of compatibility, exist and
specialize the meta-theory:

1. start from C1×C2, seen as i/o-automata

2. illegal pair (q1, q2) may exist, where (informally) “MC1
6⊆ EC2

”

3. pruning illegal pairs until fixpoint yields C1⊗C2

A meta-theory of contracts

Details

Meta-theory 7→ Assume/Guarantee contracts

Details

Meta-theory 7→ Interface Automata

Details

Meta-theory 7→ Modal Interfaces

Details

Contract Based Requirement Engineering

Details

Concluding Remarks

Interface Automata

We only present the theory for a fixed alphabet Σ
Alphabet equalization is as for A/G contracts (with the same problems)

Interface theories built on top of (a relaxed version of) Nancy Lynch i/o-automata

Deterministic Input/Output Automaton: M = (Σin,Σout,Q, q0,→), where:

Σ = Σin∪Σout : alphabet of actions

q0∈Q : initial state

q α−→ q′ : deterministic transition relation
q α−→ q1

q α−→ q2

}
⇒ q1=q2

Interface Automata: the Component Model

I Component: an i/o-automaton that is receptive:

∀q ∈ Q, ∀α ∈ Σin,∃q′ : q α−→ q′

I Parallel composition: well defined only if Σout

1 ∩ Σout

2 = ∅; the two
components synchronize on their actions

M1×M2 :


Σout = Σout

1 ∪ Σout

2

Q = Q1 × Q2

q0 = (q1,0, q2,0)

(q1, q2)
α−→ (q′1, q

′
2) iff qi

α−→i q′i , i = 1, 2

I Simulation: For qi ∈ Qi , say that q2 ≤ q1 if

∀α, q′2 such that q2
α−→2 q′2 =⇒

{
q1

α−→1 q′1
and q′2 ≤ q′1

Say that M2 ≤ M2 if q2,0 ≤ q1,0

Interface Automata: the Component Model

I Component: an i/o-automaton that is receptive:

∀q ∈ Q, ∀α ∈ Σin,∃q′ : q α−→ q′

I Parallel composition: well defined only if Σout

1 ∩ Σout

2 = ∅; the two
components synchronize on their actions

M1×M2 :


Σout = Σout

1 ∪ Σout

2

Q = Q1 × Q2

q0 = (q1,0, q2,0)

(q1, q2)
α−→ (q′1, q

′
2) iff qi

α−→i q′i , i = 1, 2

I Simulation: For qi ∈ Qi , say that q2 ≤ q1 if

∀α, q′2 such that q2
α−→2 q′2 =⇒

{
q1

α−→1 q′1
and q′2 ≤ q′1

Say that M2 ≤ M2 if q2,0 ≤ q1,0

Interface Automata: the Component Model

I Component: an i/o-automaton that is receptive:

∀q ∈ Q, ∀α ∈ Σin,∃q′ : q α−→ q′

I Parallel composition: well defined only if Σout

1 ∩ Σout

2 = ∅; the two
components synchronize on their actions

M1×M2 :


Σout = Σout

1 ∪ Σout

2

Q = Q1 × Q2

q0 = (q1,0, q2,0)

(q1, q2)
α−→ (q′1, q

′
2) iff qi

α−→i q′i , i = 1, 2

I Simulation: For qi ∈ Qi , say that q2 ≤ q1 if

∀α, q′2 such that q2
α−→2 q′2 =⇒

{
q1

α−→1 q′1
and q′2 ≤ q′1

Say that M2 ≤ M2 if q2,0 ≤ q1,0

Interface Automata: Contracts

Interface Automaton C = (Σin,Σout,Q, q0,→)

I Σin,Σout,Q,→ as in i/o-automata

I We do not request q0∈Q; thus, q0 6∈Q is also a possibility

When q0∈Q, C defines a contract by fixing a pair (EC ,MC), where:

I EC collects all E such that:

1. Σin

E = Σout and Σout

E = Σin. Thus, E and C, seen as i/o-automata,
are composable

2. E is C-compliant:
∀α ∈ Σout

E , qE
α−→E

∀(qE , q) reachable in E × C

}
⇒ (qE , q)

α−→E×C holds

I MC collects all M such that ∀E ∈ EC , C simulates E×M seen as
i/o-automata

Lemma: q0 ∈ Q iff C is both consistent (MC 6= ∅) and compatible (EC 6= ∅)

Interface Automata: Contracts

Refinement is by alternating simulation: for C1, C2 two contracts such that
Σout

1 =Σout

2 , say that q2 � q1 if

∀α ∈ Σout

2 ,∀q′2 s.t. q2
α−→2 q′2 =⇒

{
q1

α−→1 q′1
q′2 � q′1

∀α ∈ Σin

1 , ∀q′1 s.t. q1
α−→1 q′1 =⇒

{
q2

α−→2 q′2
q′2 � q′1

Say that C2 � C1 if q2,0 � q1,0.

Conjunction exists but is difficult.

Interface Automata: Contracts

Parallel Composition for C1, C2 two contracts such that Σout

1 ∩ Σout

2 = ∅:
1. Build C1 × C2 as an i/o-automaton and try it as the composition

2. By the meta-theory we must have

E |=E C =⇒
[
E×M2 |=E C1 and E×M1 |=E C2

]
which requires ∀α ∈ Σout

i : qi
α−→i =⇒ (q1, q2)

α−→C2×C1

(q1, q2) not satisfying this is called illegal and must be pruned away

3. Perform this recursively until fixpoint C1 ⊗ C2; the resulting Q can be empty:

Q empty ⇐⇒ (C1, C2) incompatible
Q nonempty ⇐⇒ (C1, C2) compatible

Bibliographical note

[de Alfaro Henzinger], several papers in the early 2000’s

I Composition and compatibility

I Refinement by alternating simulation

I State based models and Variable based models

I Conjunction (called shared refinement by the authors) is more delicate. . .

A meta-theory of contracts

Details

Meta-theory 7→ Assume/Guarantee contracts

Details

Meta-theory 7→ Interface Automata

Details

Meta-theory 7→ Modal Interfaces

Details

Contract Based Requirement Engineering

Details

Concluding Remarks

Modal Interfaces: Summary

I Component: deterministic and receptive input/output automaton

I M = (Σin,Σout,Q3q0,→) with usual parallel composition M1×M2

I Contract: C = (Σin,Σout,Q, q0, →︸︷︷︸
must

, 99K︸︷︷︸
may

)

I C yields (Cmust , Cmay), deterministic non-receptive i/o-automata

I C defines a contract (EC ,MC) following the meta-theory:

I EC collects all E not proposing as output an action that is
refused by Cmust in the composition E×Cmust

I MC collects all M such that, ∀E∈EC ,
E×Cmay simulates E×M and E×M simulates E×Cmust

I consistency condition: →⊆ 99K

Modal Interfaces: Summary

I Modal Refinement C2 � C1, defined by

99K2 ⊆ 99K1

and −→1 ⊆ −→2

specializes the meta-theory;

Conjunction follows by pruning illegal pairs of states for consistency

I Parallel composition ⊗, together with its notion of compatibility, exist;
Quotient exists; all specialize the meta-theory

I Variable alphabets are handled by using different alphabet equalizations

I for ∧: adding may self-loops, and
I for ⊗: adding may+must self-loops

A meta-theory of contracts

Details

Meta-theory 7→ Assume/Guarantee contracts

Details

Meta-theory 7→ Interface Automata

Details

Meta-theory 7→ Modal Interfaces

Details

Contract Based Requirement Engineering

Details

Concluding Remarks

Modal Interfaces: Components

I We first develop the theory for a fixed alphabet, and then the general case

I The model of components is the same as for Interface Automata, namely
deterministic and receptive i/o-automata

Modal Interfaces: Contracts

Modal Interface: C = (Σin,Σout,Q, q0,→, 99K):

I Σin,Σout,Q, q0 are as in Interface Automata (q0∈Q may not hold)

I →, 99K⊆ Q × Σ× Q are two transition relations, called must and may

Modal Interfaces: Contracts

Modal Interface: C = (Σin,Σout,Q, q0,→, 99K):

When q0∈Q, C yields two (generally non receptive) i/o-automata denoted by
Cmust and Cmay and defines (EC ,MC) as follows:

I EC collects all E such that:

1. Σin

E = Σout and Σout

E = Σin; hence E × Cmust is well defined;
2. E is Cmust -compliant:

∀α ∈ Σout

E

∀qE : qE
α−→E

∀q : (qE , q) reachable in E × Cmay

⇒ (qE , q)
α−→E×Cmust

I MC collects all M such that, for any E ∈ EC :

3. only may transitions are allowed for E×M: Cmay simulates E×M
4. must transitions are mandatory in E×M:

∀(qE , qM) reachable in E×M
∀q ∈ Cmay : (qE , qM)≤q
∀α ∈ Σout

M : q α−→Cmust

⇒ (qE , qM)
α−→E×M

Modal Interfaces: Consistency and Compatibility

Call state q consistent if q α→ ⇒ q
α
99K ; if q inconsistent ∃α, q α→ but q

α

699K , i.e.:

∀E |=E C
∀M |=M C

}
⇒ no (qE , qM) of E×M satisfies (qE , qM)≤q : prune q away

1. May transitions leading to q can be erased without changing (EC ,MC)

2. Performing this makes state q unreachable in Cmay ; as a result, the set of
environments is possibly augmented

3. Since we have removed may transitions, some more states have possibly
become inconsistent. So, we repeat until fixpoint

4. At fixpoint, Q = Qcon]Qincon, collecting consistent and inconsistent states

5. Since Qincon is unreachable from Qcon, delete Qincon, thus obtaining [C]

Theorem:

1. M
[C]

=MC and E
[C]
⊇ EC

2. [C] offers the smallest set of environments with this property

3. C is consistent and compatible if and only if Qcon 3 q0

Modal Interfaces: Consistency and Compatibility

Call state q consistent if q α→ ⇒ q
α
99K ; if q inconsistent ∃α, q α→ but q

α

699K , i.e.:

∀E |=E C
∀M |=M C

}
⇒ no (qE , qM) of E×M satisfies (qE , qM)≤q : prune q away

1. May transitions leading to q can be erased without changing (EC ,MC)

2. Performing this makes state q unreachable in Cmay ; as a result, the set of
environments is possibly augmented

3. Since we have removed may transitions, some more states have possibly
become inconsistent. So, we repeat until fixpoint

4. At fixpoint, Q = Qcon]Qincon, collecting consistent and inconsistent states

5. Since Qincon is unreachable from Qcon, delete Qincon, thus obtaining [C]

Theorem:

1. M
[C]

=MC and E
[C]
⊇ EC

2. [C] offers the smallest set of environments with this property

3. C is consistent and compatible if and only if Qcon 3 q0

Modal Interfaces: Consistency and Compatibility

Call state q consistent if q α→ ⇒ q
α
99K ; if q inconsistent ∃α, q α→ but q

α

699K , i.e.:

∀E |=E C
∀M |=M C

}
⇒ no (qE , qM) of E×M satisfies (qE , qM)≤q : prune q away

1. May transitions leading to q can be erased without changing (EC ,MC)

2. Performing this makes state q unreachable in Cmay ; as a result, the set of
environments is possibly augmented

3. Since we have removed may transitions, some more states have possibly
become inconsistent. So, we repeat until fixpoint

4. At fixpoint, Q = Qcon]Qincon, collecting consistent and inconsistent states

5. Since Qincon is unreachable from Qcon, delete Qincon, thus obtaining [C]

Theorem:

1. M
[C]

=MC and E
[C]
⊇ EC

2. [C] offers the smallest set of environments with this property

3. C is consistent and compatible if and only if Qcon 3 q0

Modal Interfaces: Consistency and Compatibility

Call state q consistent if q α→ ⇒ q
α
99K ; if q inconsistent ∃α, q α→ but q

α

699K , i.e.:

∀E |=E C
∀M |=M C

}
⇒ no (qE , qM) of E×M satisfies (qE , qM)≤q : prune q away

1. May transitions leading to q can be erased without changing (EC ,MC)

2. Performing this makes state q unreachable in Cmay ; as a result, the set of
environments is possibly augmented

3. Since we have removed may transitions, some more states have possibly
become inconsistent. So, we repeat until fixpoint

4. At fixpoint, Q = Qcon]Qincon, collecting consistent and inconsistent states

5. Since Qincon is unreachable from Qcon, delete Qincon, thus obtaining [C]

Theorem:

1. M
[C]

=MC and E
[C]
⊇ EC

2. [C] offers the smallest set of environments with this property

3. C is consistent and compatible if and only if Qcon 3 q0

Modal Interfaces: Consistency and Compatibility

Call state q consistent if q α→ ⇒ q
α
99K ; if q inconsistent ∃α, q α→ but q

α

699K , i.e.:

∀E |=E C
∀M |=M C

}
⇒ no (qE , qM) of E×M satisfies (qE , qM)≤q : prune q away

1. May transitions leading to q can be erased without changing (EC ,MC)

2. Performing this makes state q unreachable in Cmay ; as a result, the set of
environments is possibly augmented

3. Since we have removed may transitions, some more states have possibly
become inconsistent. So, we repeat until fixpoint

4. At fixpoint, Q = Qcon]Qincon, collecting consistent and inconsistent states

5. Since Qincon is unreachable from Qcon, delete Qincon, thus obtaining [C]

Theorem:

1. M
[C]

=MC and E
[C]
⊇ EC

2. [C] offers the smallest set of environments with this property

3. C is consistent and compatible if and only if Qcon 3 q0

Modal Interfaces: Consistency and Compatibility

Call state q consistent if q α→ ⇒ q
α
99K ; if q inconsistent ∃α, q α→ but q

α

699K , i.e.:

∀E |=E C
∀M |=M C

}
⇒ no (qE , qM) of E×M satisfies (qE , qM)≤q : prune q away

1. May transitions leading to q can be erased without changing (EC ,MC)

2. Performing this makes state q unreachable in Cmay ; as a result, the set of
environments is possibly augmented

3. Since we have removed may transitions, some more states have possibly
become inconsistent. So, we repeat until fixpoint

4. At fixpoint, Q = Qcon]Qincon, collecting consistent and inconsistent states

5. Since Qincon is unreachable from Qcon, delete Qincon, thus obtaining [C]

Theorem:

1. M
[C]

=MC and E
[C]
⊇ EC

2. [C] offers the smallest set of environments with this property

3. C is consistent and compatible if and only if Qcon 3 q0

Modal Interfaces: Consistency and Compatibility

Call state q consistent if q α→ ⇒ q
α
99K ; if q inconsistent ∃α, q α→ but q

α

699K , i.e.:

∀E |=E C
∀M |=M C

}
⇒ no (qE , qM) of E×M satisfies (qE , qM)≤q : prune q away

1. May transitions leading to q can be erased without changing (EC ,MC)

2. Performing this makes state q unreachable in Cmay ; as a result, the set of
environments is possibly augmented

3. Since we have removed may transitions, some more states have possibly
become inconsistent. So, we repeat until fixpoint

4. At fixpoint, Q = Qcon]Qincon, collecting consistent and inconsistent states

5. Since Qincon is unreachable from Qcon, delete Qincon, thus obtaining [C]

Theorem:

1. M
[C]

=MC and E
[C]
⊇ EC

2. [C] offers the smallest set of environments with this property

3. C is consistent and compatible if and only if Qcon 3 q0

Modal Interfaces: Refinement and Conjunction

For C a Modal Interface and q∈Q a state of it:

may(q) = {α ∈ Σ | q α
99K }

must(q) = {α ∈ Σ | q α→ }

For Ci , i = 1, 2 and qi a state of Ci . Say that q2 � q1, if:{
may2(q2) ⊆ may1(q1)

must2(q2) ⊇ must1(q1)

and ∀α ∈ Σ :

{
q1

α
99K1 q′1

q2
α
99K2 q′2

=⇒ q′2 � q′1

Say that C2 � C1 if q2,0 � q1,0.

Theorem:

C2 � C1 iff

{
EC2

⊇ EC1

MC2
⊆ MC1

Modal Interfaces: Refinement and Conjunction

For C a Modal Interface and q∈Q a state of it:

may(q) = {α ∈ Σ | q α
99K }

must(q) = {α ∈ Σ | q α→ }

The pre-conjunction C1&C2 of two Modal Interfaces is only defined if
Σin

1 = Σin

2 and Σout

1 = Σout

2 and is given by:

Σin = Σin

1 ; Σout = Σout

1

Q = Q1×Q2 ; q0 = (q1,0, q2,0)

must(q1, q2) = must1(q1) ∪must2(q2)

may(q1, q2) = may1(q1) ∩may2(q2)

The conjunction is defined as

C1 ∧ C2 = [C1&C2]

and is the GLB for refinement order: specializes the meta-theory.

Modal Interfaces: Composition and Quotient

The composition C1⊗C2 of two Modal Interfaces is only defined if Σout

1 ∩Σout

2 = ∅

It is given by: Σout = Σout

1 ∪ Σout

2 , Q = Q1×Q2, q0 = (q1,0, q2,0), and:

must[0](q1, q2) = must1(q1) ∩must2(q2)

may [0](q1, q2) = may1(q1) ∩may2(q2)

Say that pair (q1, q2) is illegal if

may(q1) ∩ Σin

2 6⊆ must(q2)

or may(q2) ∩ Σin

1 6⊆ must(q1)

Illegal pairs of states cause harm to environments and must be pruned away.
Pruning illegal pairs of states until fixpoint (as above) yields

C1⊗C2

specializing the meta-theory

Modal Interfaces with variable alphabets

We consider Modal Interfaces with consistent states only

& :

{
must(q1, q2) = must1(q1) ∪must2(q2)
may(q1, q2) = may1(q1) ∩may2(q2)

⊗ :

{
must(q1, q2) = must1(q1) ∩must2(q2)
may(q1, q2) = may1(q1) ∩may2(q2)

Alphabet equalization should be neutral against all relations and operations

for & :

 α ∈ may1(q1) and α ∈ whatever 2(q2)
⇓

α ∈ whatever(q1, q2)


for ⊗ :

 α ∈ must1(q1) and α ∈ whatever 2(q2)
⇓

α ∈ whatever(q1, q2)


Neutral alphabet extension is by adding

I may self-loops for the conjunction and

I must+may self-loops for the composition

Modal Interfaces with variable alphabets

We consider Modal Interfaces with consistent states only
Define the weak extension of C to Σ′ ⊃ Σ, written C⇑Σ′

, as follows:

C⇑Σ′
:



(Σin)⇑Σ′
= Σin ∪ (Σ′ \ Σ)

(Σout)⇑Σ′
= Σout

Q⇑Σ′
= Q

q⇑Σ′

0 = q0

may⇑Σ′
= may ∪ (Σ′ \ Σ)

must⇑Σ′
= must

and the strong extension of C to Σ′ ⊃ Σ, written C↑Σ′

C↑Σ′
:

{
. . . = . . .

must↑Σ′
= must ∪ (Σ′ \ Σ)

Neutral alphabet extension is by adding

I may self-loops for the conjunction and

I must+may self-loops for the composition

Modal Interfaces with variable alphabets

We consider Modal Interfaces with consistent states only

M ′ |=M C ::= M ′ |=M C⇑Σ′

E ′ |=E C ::= E ′ |=E C↑Σ′

C1 ∧ C2 ::= C⇑Σ
1 ∧ C⇑Σ

2

C1 ⊗ C2 ::= C↑Σ1 ⊗ C
↑Σ
2

C1/C2 ::= C⇑Σ
1 /C↑Σ2

Neutral alphabet extension is by adding

I may self-loops for the conjunction and

I must+may self-loops for the composition

Bibliographical note

I Modal specifications and Modal automata

I Hennesy in the 80’s
I Kim Larsen 1987
I introducing variability in design at low cost

I Revitalized in the late 2000’s for use as interface models

I Kim Larsen, Nyman, Wasowski: modal automata (role of determinism
in the complexity of the theory), use for product lines

I Raclet, Caillaud, Benveniste: modal interfaces, full fledged theory
dealing with variable alphabets; correction to a mistake in
compatibility

A meta-theory of contracts

Details

Meta-theory 7→ Assume/Guarantee contracts

Details

Meta-theory 7→ Interface Automata

Details

Meta-theory 7→ Modal Interfaces

Details

Contract Based Requirement Engineering

Details

Concluding Remarks

Motivations

guarantee11

assumption11
assumption12
assumption13

guarantee12
guarantee13

assumption21
assumption22
assumption23

guarantee21
guarantee22
guarantee23

assumption31
assumption32
assumption33

guarantee31
guarantee32
guarantee33

∧ ∧
C

Requirements1 Requirements2 Requirements3

system architecture (SysML)

S1 S2

S3 S4

⇒
mapping C = R1∧R2∧R3

to architecture S = S1‖S2‖S3‖S4

in a best assisted way
to derive C1 ⊗ C2 ⊗ C3 ⊗ C4

(Benoît Caillaud MICA PoC tool)

⇓

The Parking Garage example
Top-level specification: assumptions & guarantees

viewpoint gate(x) where x ∈{entry, exit}
Rg.1(x): “vehicles shall not pass when x_gate is closed”,
Rg.2(x): after ?vehicle_pass ?vehicle_pass is forbidden
Rg.3 : after !x_gate_open !x_gate_open is forbidden and after !x_gate_close !x_gate_close is forbidden

viewpoint payment
Rp.1 : “user inserts a coin every time a ticket is inserted and only then”
Rp.2 : “user may insert a ticket only initially or after an exit ticket has been issued”
Rp.3 : “exit ticket is issued after ticket is inserted and payment is made and only then”

viewpoint supervisor
Rg.1(entry)
Rg.1(exit)
Rg.2(entry)
Rg.2(exit)
Rs.1 : initially and after !entry_gate close !entry_gate open is forbidden
Rs.2 : after !ticket_issued !entry_gate open must be enabled
Rs.3 : “at most one ticket is issued per vehicle entering the parking and tickets can be issued only if requested

and ticket is issued only if the parking is not full”
Rs.4 : “when the entry gate is closed, the entry gate may not open unless a ticket has been issued”
Rs.5 : “the entry gate must open when a ticket is issued”
Rs.6 : “exit gate must open after an exit ticket is inserted and only then”
Rs.7 : “exit gate closes only after vehicle has exited parking”

Each requirement is translated to a Modal Interface
The different Modal Interfaces are combined by using conjunction =⇒ viewpoints
The different viewpoints are combined using conjunction as well

The Parking Garage example
Top-level specification: C = Centry_gate ∧ Cexit_gate ∧ Cpayment ∧ Csupervisor

viewpoint entry_gate and exit_gate
viewpoint payment
viewpoint supervisor

Rg.1(entry)
Rg.1(exit)
Rg.2(entry)
Rg.2(exit)
Rs.1 : initially and after !entry_gate close !entry_gate open is forbidden
Rs.2 : after !ticket_issued !entry_gate open must be enabled
Rs.3 : “at most one ticket is issued per vehicle entering the parking and tickets can be issued only if requested

and ticket is issued only if the parking is not full”
Rs.4 : “when the entry gate is closed, the entry gate may not open unless a ticket has been issued”
Rs.5 : “the entry gate must open when a ticket is issued”
Rs.6 : “exit gate must open after an exit ticket is inserted and only then”
Rs.7 : “exit gate closes only after vehicle has exited parking”

The supervisor as a Modal Interface

Csupervisor =

0

!entry_gate_close

1

?exit_ticket_insert

7

?vehicle_enter
?vehicle_exit

44

?request_enter

!entry_gate_close
?exit_ticket_insert

2

!exit_gate_open

?vehicle_enter
?vehicle_exit

43

?request_enter

?exit_ticket_insert

!entry_gate_close
!exit_gate_open

3

?request_enter

?vehicle_enter

75

?vehicle_exit

?exit_ticket_insert
?request_enter

!entry_gate_close
!exit_gate_open

4

!ticket_issue

?vehicle_enter

72

?vehicle_exit

?exit_ticket_insert
?request_enter

!exit_gate_open

?vehicle_enter

5

?vehicle_exit

11

!entry_gate_open

!exit_gate_open,?exit_ticket_insert
!exit_gate_close,!entry_gate_close
?vehicle_enter,!entry_gate_open
?vehicle_exit,?request_enter

!ticket_issue

?vehicle_enter
?vehicle_exit

?exit_ticket_insert
?request_enter

6

!exit_gate_open

8

!exit_gate_close

59

!entry_gate_open

?vehicle_enter

?vehicle_exit ?exit_ticket_insert
?request_enter

!exit_gate_open

!exit_gate_close

58

!entry_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

9

?exit_ticket_insert

45

!entry_gate_open

!exit_gate_open

?vehicle_enter
?vehicle_exit?exit_ticket_insert

?request_enter

10

!entry_gate_open

?vehicle_exit

!entry_gate_open
?exit_ticket_insert
?request_enter

!exit_gate_open

!entry_gate_close

47

!ticket_issue

68

?vehicle_enter

!entry_gate_close

!entry_gate_open
!exit_gate_open
?exit_ticket_insert
?request_enter

12

!ticket_issue

69

?vehicle_enter

?vehicle_exit

!entry_gate_open

!exit_gate_open
?exit_ticket_insert
?request_enter

49

?vehicle_enter

13

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
!exit_gate_open

19

?request_enter

77

!entry_gate_open

50

?vehicle_exit

?vehicle_enter

?vehicle_exit

?exit_ticket_insert
?request_enter

!exit_gate_open

20

!entry_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

21

!ticket_issue

34

?vehicle_enter

71

!entry_gate_close

?vehicle_exit

!entry_gate_open

?exit_ticket_insert
?request_enter

!exit_gate_open

22

?vehicle_enter

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
!exit_gate_open

23?request_enter

84

!entry_gate_open

127

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
?request_enter

!exit_gate_open

24

?vehicle_exit

33

!entry_gate_open

?vehicle_enter
?vehicle_exit

?exit_ticket_insert
?request_enter

16

!exit_gate_open

17

!exit_gate_close

25

!entry_gate_open

?vehicle_enter

?vehicle_exit

!exit_gate_open
?exit_ticket_insert
?request_enter

!exit_gate_close

26

!entry_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

18

?exit_ticket_insert

114

!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_open

?exit_ticket_insert
?request_enter

80

!entry_gate_open

?vehicle_exit

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_open

81!ticket_issue

79

!entry_gate_close

99

?vehicle_enter

?vehicle_exit

!exit_gate_open

!entry_gate_open

?exit_ticket_insert
?request_enter

82?vehicle_enter

?vehicle_enter
?vehicle_exit!exit_gate_open

?exit_ticket_insert

31

?request_enter

83

!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_open

?exit_ticket_insert
?request_enter

32

!entry_gate_open

?vehicle_exit
?exit_ticket_insert
?request_enter

!entry_gate_open

!exit_gate_open

?vehicle_enter

91

!entry_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

?vehicle_enter

92

!entry_gate_close

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
!exit_gate_open

35

?request_enter

101

!entry_gate_close

!entry_gate_open

60

?vehicle_exit

?vehicle_enter

!entry_gate_open

?exit_ticket_insert
?request_enter

!exit_gate_open

36

?vehicle_exit

!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert
?request_enter

37

!exit_gate_open

125

!exit_gate_close

93

!entry_gate_close

!entry_gate_open

?vehicle_enter

!ticket_issue

?exit_ticket_insert
?request_enter

!exit_gate_open

38

?vehicle_exit

!exit_gate_close

94

!entry_gate_close

!entry_gate_open

?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert
?request_enter

39

!exit_gate_open

40

!exit_gate_close

!entry_gate_close

!entry_gate_open

?vehicle_enter

!ticket_issue

?vehicle_exit
?exit_ticket_insert
?request_enter

!exit_gate_open

!exit_gate_close

!entry_gate_open

73!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

?request_enter

41

?exit_ticket_insert

!entry_gate_close

!entry_gate_open

?vehicle_enter
?vehicle_exit

!ticket_issue

!entry_gate_open

?exit_ticket_insert
?request_enter

42

!exit_gate_open

!entry_gate_close

!entry_gate_close

!ticket_issue

?vehicle_enter

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
?request_enter

!exit_gate_open

!exit_gate_open ?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert

?request_enter
!entry_gate_close

?vehicle_exit

?exit_ticket_insert

!entry_gate_close

?request_enter
!entry_gate_open

46

!ticket_issue

124

?vehicle_enter

?vehicle_exit

!entry_gate_open

?request_enter

?exit_ticket_insert

126

?vehicle_enter

?vehicle_exit

!entry_gate_open

!exit_gate_open

?exit_ticket_insert
?request_enter

48

?vehicle_enter

?vehicle_enter
?vehicle_exit

!exit_gate_open

?request_enter?exit_ticket_insert

113

!entry_gate_open

?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_open

!exit_gate_open

105

!entry_gate_close

?vehicle_enter

?request_enter

?vehicle_enter

?exit_ticket_insert

!entry_gate_open
!exit_gate_open

56

?vehicle_exit

74!entry_gate_close

?vehicle_exit

?exit_ticket_insert
!entry_gate_open

57

!exit_gate_open

!entry_gate_close

123

!exit_gate_close

?vehicle_enter

?request_enter

?vehicle_exit

?exit_ticket_insert

!entry_gate_open
!exit_gate_open

?request_enter

76

!entry_gate_close

!exit_gate_close

61

?vehicle_enter

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

14

!ticket_issue

!entry_gate_close

?vehicle_enter

?vehicle_exit

!exit_gate_close!entry_gate_open

!exit_gate_open
?exit_ticket_insert
?request_enter

15

?vehicle_enter

?vehicle_exit

?vehicle_enter

?request_enter

!exit_gate_open
?exit_ticket_insert

?vehicle_exit

86

!entry_gate_open

!exit_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

!entry_gate_open?exit_ticket_insert

51

!exit_gate_open

52

!exit_gate_close

?vehicle_enter

?request_enter

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
!exit_gate_open !exit_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

53

?exit_ticket_insert

!entry_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert

54

!exit_gate_open

67
!entry_gate_open

?request_enter

?vehicle_enter

?vehicle_exit

?exit_ticket_insert
!exit_gate_open

55

!entry_gate_open

!entry_gate_close

?request_enter

?vehicle_exit

?exit_ticket_insert

!entry_gate_open
!exit_gate_open

?vehicle_enter

?vehicle_enter

!entry_gate_open

?exit_ticket_insert
!exit_gate_open

70

?request_enter

62

?vehicle_exit

!entry_gate_close

?vehicle_enter

!ticket_issue

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
?request_enter

!exit_gate_open

!entry_gate_close

?vehicle_enter

!ticket_issue

?exit_ticket_insert
?request_enter

!entry_gate_close
!exit_gate_open

?vehicle_exit

?vehicle_enter
?vehicle_exit

!ticket_issue

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_close

!exit_gate_open

?vehicle_enter

!ticket_issue

!exit_gate_close

?vehicle_exit ?exit_ticket_insert
?request_enter

!entry_gate_close
!exit_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

!entry_gate_open

?exit_ticket_insert

63

!exit_gate_open

64
!exit_gate_close

!entry_gate_close

?vehicle_enter

?request_enter

!entry_gate_open

?vehicle_exit ?exit_ticket_insert
!exit_gate_open

!exit_gate_close

!entry_gate_close

!entry_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

65

?exit_ticket_insert

!entry_gate_open

!entry_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert

66!exit_gate_open

!entry_gate_open

!entry_gate_close

?vehicle_enter

?request_enter

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
!exit_gate_open

!entry_gate_close

?vehicle_exit

?request_enter

!exit_gate_open

?exit_ticket_insert
!entry_gate_open

?vehicle_enter

?vehicle_enter
?vehicle_exit

!entry_gate_open

!exit_gate_open

?exit_ticket_insert

78

?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

!entry_gate_open

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

!exit_gate_open

?vehicle_enter

?request_enter

?exit_ticket_insert

!entry_gate_close
!exit_gate_open

?vehicle_exit

!exit_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

!exit_gate_open

!exit_gate_close

?vehicle_enter

?request_enter

?vehicle_exit

!entry_gate_close
!exit_gate_open
?exit_ticket_insert

!entry_gate_close

?vehicle_exit

?request_enter

?exit_ticket_insert

!entry_gate_open

?vehicle_enter

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

?request_enter

104
!entry_gate_close

112
!entry_gate_open

?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert

?request_enter

95!entry_gate_close

!entry_gate_open
?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert

?request_enter
!entry_gate_close

?vehicle_exit

?exit_ticket_insert

!entry_gate_close

?request_enter
!entry_gate_open

115

!ticket_issue

98

?vehicle_enter

?vehicle_exit

?exit_ticket_insert

!entry_gate_open

?request_enter

116

?vehicle_enter

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

30

?request_enter

107

!entry_gate_open

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

?request_enter
97!entry_gate_open

?vehicle_exit

?exit_ticket_insert

?request_enter
!entry_gate_open

?vehicle_enter

96!entry_gate_close

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

89

?request_enter

106

!entry_gate_close!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_open

?exit_ticket_insert

90

?request_enter

100

!entry_gate_close

!entry_gate_open

?vehicle_enter
?vehicle_exit

!entry_gate_open

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!entry_gate_close
?exit_ticket_insert
?request_enter

!exit_gate_open

?vehicle_enter

!entry_gate_close
!exit_gate_open
?exit_ticket_insert
?request_enter

?vehicle_exit

?vehicle_enter
?vehicle_exit

!ticket_issue

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_close

!exit_gate_open

?vehicle_enter

!ticket_issue

?vehicle_exit

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_close
!exit_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

!exit_gate_open

?vehicle_enter

?request_enter

?exit_ticket_insert

!entry_gate_close
!exit_gate_open

102

?vehicle_exit

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

103

!exit_gate_open

!exit_gate_close

?vehicle_enter

?vehicle_exit

?request_enter?exit_ticket_insert

!entry_gate_close
!exit_gate_open

!exit_gate_close

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

?request_enter
!entry_gate_close

?vehicle_exit

?request_enter?vehicle_enter

!entry_gate_close
?exit_ticket_insert
!entry_gate_open

!exit_gate_open

?request_enter

?vehicle_enter

!entry_gate_close

!entry_gate_open
!exit_gate_open
?exit_ticket_insert

85

?vehicle_exit

?vehicle_exit

!entry_gate_close

!entry_gate_open
?exit_ticket_insert

!exit_gate_open

?request_enter

117

?vehicle_enter

!exit_gate_close

?vehicle_exit

!entry_gate_close

!entry_gate_open
!exit_gate_open
?exit_ticket_insert

?request_enter

87

?vehicle_enter

!exit_gate_close

!exit_gate_close

!entry_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

27

!ticket_issue

?vehicle_enter

?vehicle_exit

!exit_gate_close

!entry_gate_open

?exit_ticket_insert
?request_enter

!exit_gate_open

28

?vehicle_enter

?vehicle_exit

?vehicle_enter

!exit_gate_close

?exit_ticket_insert
!exit_gate_open

29
?request_enter

111

!entry_gate_open

?vehicle_exit

?vehicle_enter

?vehicle_exit

!exit_gate_close

?exit_ticket_insert
?request_enter

!exit_gate_open

109

!entry_gate_open

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

?vehicle_enter

108

!entry_gate_close

?vehicle_exit

?vehicle_enter

!exit_gate_close

!exit_gate_open
?exit_ticket_insert

88

?request_enter

?vehicle_exit

110

!entry_gate_close

!entry_gate_open

?vehicle_enter

?vehicle_exit

!entry_gate_open

!exit_gate_open
?exit_ticket_insert
?request_enter

!exit_gate_close

!entry_gate_close

?vehicle_enter
?vehicle_exit

!entry_gate_open

?exit_ticket_insert

?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

?request_enter
!entry_gate_close

?vehicle_enter

?vehicle_exit

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_close
!exit_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

!exit_gate_close

!entry_gate_close

!entry_gate_open

?exit_ticket_insert

!exit_gate_open

?vehicle_enter

?request_enter

?vehicle_exit

!exit_gate_close

!entry_gate_close

!entry_gate_open

?exit_ticket_insert
!exit_gate_open

?vehicle_enter

?vehicle_exit

?request_enter

?exit_ticket_insert

!entry_gate_close
!exit_gate_open

!exit_gate_close

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

?request_enter

!entry_gate_close

?vehicle_exit

?request_enter

?vehicle_enter
!entry_gate_close

?exit_ticket_insert

!entry_gate_open
!exit_gate_open

!exit_gate_close

?vehicle_exit

?request_enter

?vehicle_enter

?exit_ticket_insert

!entry_gate_close

!entry_gate_open

?vehicle_exit

!exit_gate_close

!entry_gate_close

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_open

128!ticket_issue

?vehicle_enter

?vehicle_exit

!exit_gate_close

!exit_gate_open

!entry_gate_open

?exit_ticket_insert
?request_enter

129?vehicle_enter

?vehicle_enter
?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert

130

?request_enter

122!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert
?request_enter

120

!entry_gate_open

?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_open

?vehicle_enter

119
!entry_gate_close

?vehicle_enter
?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert

118

?request_enter

121

!entry_gate_close

!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_open

!exit_gate_close

!entry_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!exit_gate_close!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!exit_gate_open

!exit_gate_close

?request_enter

?exit_ticket_insert
!entry_gate_close

?vehicle_exit

!exit_gate_open

!exit_gate_close

?request_enter

?vehicle_enter

!entry_gate_close

?exit_ticket_insert
!entry_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

!exit_gate_open

!entry_gate_open

?exit_ticket_insert

!exit_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert

!entry_gate_open

?vehicle_exit

?exit_ticket_insert

?request_enter

?vehicle_enter

!entry_gate_close
!entry_gate_open

?vehicle_exit

!exit_gate_close

!exit_gate_open

?vehicle_enter

?exit_ticket_insert
?request_enter

!entry_gate_open

?vehicle_exit

!exit_gate_close

!exit_gate_open

!entry_gate_close

?vehicle_enter

!ticket_issue

?exit_ticket_insert
?request_enter

!entry_gate_open

The Parking Garage example
Architecture for sub-contracting C as a ⊗-composition of sub-systems

I this is the duty of the designer

I note the change in architecture: supervision performed by the entry gate

C =


Centry_gate

∧ Cexit_gate

∧ Cpayment

∧ Csupervisor

 ExitGate

EntryGate

PaymentMachine

!entry gate close

!exit gate close

!entry gate open

!exit gate open

!exit ticket issue

?request enter

?vehicle enter

?vehicle exit

?exit ticket insert

?ticket insert payment

?coin insert payment

!ticket issue

The Parking Garage example
The following ⊗-decomposition of C into three sub-contracts was
automatically generated (note the reduction in size)

0

!entry_gate_close

1

?exit_ticket_insert

7

?vehicle_enter?vehicle_exit

44

?request_enter

!entry_gate_close
?exit_ticket_insert

2

!exit_gate_open

?vehicle_enter?vehicle_exit

43

?request_enter

?exit_ticket_insert

!entry_gate_close!exit_gate_open

3

?request_enter

?vehicle_enter

75

?vehicle_exit

?exit_ticket_insert?request_enter

!entry_gate_close!exit_gate_open

4

!ticket_issue

?vehicle_enter

72

?vehicle_exit

?exit_ticket_insert?request_enter

!exit_gate_open

?vehicle_enter

5

?vehicle_exit

11

!entry_gate_open

!exit_gate_open,?exit_ticket_insert!exit_gate_close,!entry_gate_close?vehicle_enter,!entry_gate_open?vehicle_exit,?request_enter!ticket_issue

?vehicle_enter?vehicle_exit

?exit_ticket_insert?request_enter

6

!exit_gate_open

8

!exit_gate_close

59

!entry_gate_open

?vehicle_enter

?vehicle_exit ?exit_ticket_insert?request_enter

!exit_gate_open

!exit_gate_close

58

!entry_gate_open

?vehicle_enter?vehicle_exit

?request_enter

9

?exit_ticket_insert

45

!entry_gate_open

!exit_gate_open

?vehicle_enter?vehicle_exit?exit_ticket_insert?request_enter

10

!entry_gate_open

?vehicle_exit

!entry_gate_open?exit_ticket_insert?request_enter

!exit_gate_open

!entry_gate_close

47

!ticket_issue

68

?vehicle_enter

!entry_gate_close

!entry_gate_open!exit_gate_open?exit_ticket_insert?request_enter

12

!ticket_issue

69

?vehicle_enter

?vehicle_exit

!entry_gate_open

!exit_gate_open?exit_ticket_insert?request_enter

49

?vehicle_enter

13

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
!exit_gate_open

19

?request_enter

77

!entry_gate_open

50

?vehicle_exit

?vehicle_enter

?vehicle_exit

?exit_ticket_insert?request_enter

!exit_gate_open

20

!entry_gate_open

?exit_ticket_insert?request_enter

!entry_gate_open!exit_gate_open

21

!ticket_issue

34

?vehicle_enter

71

!entry_gate_close

?vehicle_exit

!entry_gate_open

?exit_ticket_insert?request_enter

!exit_gate_open

22

?vehicle_enter

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
!exit_gate_open

23?request_enter

84

!entry_gate_open

127

?vehicle_exit

?vehicle_enter

?exit_ticket_insert?request_enter

!exit_gate_open

24

?vehicle_exit

33

!entry_gate_open

?vehicle_enter?vehicle_exit

?exit_ticket_insert?request_enter

16

!exit_gate_open

17

!exit_gate_close

25

!entry_gate_open

?vehicle_enter

?vehicle_exit

!exit_gate_open?exit_ticket_insert?request_enter

!exit_gate_close

26

!entry_gate_open

?vehicle_enter?vehicle_exit

?request_enter

18

?exit_ticket_insert

114

!entry_gate_open

?vehicle_enter?vehicle_exit

!exit_gate_open

?exit_ticket_insert?request_enter

80

!entry_gate_open

?vehicle_exit

!exit_gate_open

?exit_ticket_insert?request_enter

!entry_gate_open

81!ticket_issue

79

!entry_gate_close

99

?vehicle_enter

?vehicle_exit

!exit_gate_open

!entry_gate_open

?exit_ticket_insert?request_enter

82?vehicle_enter

?vehicle_enter?vehicle_exit!exit_gate_open

?exit_ticket_insert

31

?request_enter

83

!entry_gate_open

?vehicle_enter?vehicle_exit

!exit_gate_open

?exit_ticket_insert?request_enter

32

!entry_gate_open

?vehicle_exit
?exit_ticket_insert?request_enter

!entry_gate_open

!exit_gate_open

?vehicle_enter

91

!entry_gate_close

?exit_ticket_insert?request_enter

!entry_gate_open!exit_gate_open

?vehicle_enter

92

!entry_gate_close

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
!exit_gate_open

35

?request_enter

101

!entry_gate_close

!entry_gate_open

60

?vehicle_exit

?vehicle_enter

!entry_gate_open

?exit_ticket_insert?request_enter

!exit_gate_open

36

?vehicle_exit

!entry_gate_close

?vehicle_enter?vehicle_exit

!ticket_issue

?exit_ticket_insert?request_enter

37

!exit_gate_open

125

!exit_gate_close

93

!entry_gate_close

!entry_gate_open

?vehicle_enter

!ticket_issue

?exit_ticket_insert?request_enter

!exit_gate_open

38

?vehicle_exit

!exit_gate_close

94

!entry_gate_close

!entry_gate_open

?vehicle_enter?vehicle_exit

!ticket_issue

?exit_ticket_insert?request_enter

39

!exit_gate_open

40

!exit_gate_close

!entry_gate_close

!entry_gate_open

?vehicle_enter

!ticket_issue

?vehicle_exit ?exit_ticket_insert?request_enter

!exit_gate_open

!exit_gate_close

!entry_gate_open

73!entry_gate_close

?vehicle_enter?vehicle_exit

!ticket_issue

?request_enter

41

?exit_ticket_insert

!entry_gate_close

!entry_gate_open

?vehicle_enter?vehicle_exit

!ticket_issue

!entry_gate_open

?exit_ticket_insert?request_enter

42

!exit_gate_open

!entry_gate_close

!entry_gate_close

!ticket_issue

?vehicle_enter

!entry_gate_open

?vehicle_exit

?exit_ticket_insert?request_enter

!exit_gate_open

!exit_gate_open ?vehicle_enter?vehicle_exit

!ticket_issue

?exit_ticket_insert?request_enter

!entry_gate_close

?vehicle_enter?vehicle_exit
!ticket_issue

?exit_ticket_insert

?request_enter
!entry_gate_close

?vehicle_exit

?exit_ticket_insert

!entry_gate_close

?request_enter
!entry_gate_open

46

!ticket_issue

124

?vehicle_enter

?vehicle_exit

!entry_gate_open

?request_enter

?exit_ticket_insert

126

?vehicle_enter

?vehicle_exit

!entry_gate_open

!exit_gate_open

?exit_ticket_insert?request_enter

48

?vehicle_enter

?vehicle_enter?vehicle_exit

!exit_gate_open

?request_enter?exit_ticket_insert

113

!entry_gate_open

?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_open

!exit_gate_open

105

!entry_gate_close

?vehicle_enter

?request_enter

?vehicle_enter

?exit_ticket_insert

!entry_gate_open!exit_gate_open

56

?vehicle_exit

74!entry_gate_close

?vehicle_exit

?exit_ticket_insert
!entry_gate_open

57

!exit_gate_open

!entry_gate_close

123

!exit_gate_close

?vehicle_enter

?request_enter

?vehicle_exit

?exit_ticket_insert

!entry_gate_open!exit_gate_open

?request_enter

76

!entry_gate_close

!exit_gate_close

61

?vehicle_enter

!exit_gate_close

?exit_ticket_insert?request_enter

!entry_gate_open!exit_gate_open

14

!ticket_issue

!entry_gate_close

?vehicle_enter

?vehicle_exit

!exit_gate_close!entry_gate_open

!exit_gate_open?exit_ticket_insert?request_enter

15

?vehicle_enter

?vehicle_exit

?vehicle_enter

?request_enter

!exit_gate_open
?exit_ticket_insert

?vehicle_exit

86

!entry_gate_open

!exit_gate_close

?vehicle_enter?vehicle_exit

?request_enter

!entry_gate_open?exit_ticket_insert

51

!exit_gate_open

52

!exit_gate_close

?vehicle_enter

?request_enter

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
!exit_gate_open !exit_gate_close

?vehicle_enter?vehicle_exit

?request_enter

53

?exit_ticket_insert

!entry_gate_open

?vehicle_enter?vehicle_exit

?request_enter

?exit_ticket_insert

54

!exit_gate_open

67!entry_gate_open

?request_enter

?vehicle_enter

?vehicle_exit

?exit_ticket_insert
!exit_gate_open

55

!entry_gate_open

!entry_gate_close

?request_enter

?vehicle_exit

?exit_ticket_insert

!entry_gate_open!exit_gate_open

?vehicle_enter

?vehicle_enter

!entry_gate_open

?exit_ticket_insert
!exit_gate_open

70

?request_enter

62

?vehicle_exit

!entry_gate_close

?vehicle_enter

!ticket_issue

!entry_gate_open

?vehicle_exit

?exit_ticket_insert?request_enter

!exit_gate_open

!entry_gate_close

?vehicle_enter

!ticket_issue

?exit_ticket_insert?request_enter

!entry_gate_close!exit_gate_open

?vehicle_exit

?vehicle_enter?vehicle_exit

!ticket_issue

!exit_gate_close

?exit_ticket_insert?request_enter

!entry_gate_close

!exit_gate_open

?vehicle_enter

!ticket_issue

!exit_gate_close

?vehicle_exit ?exit_ticket_insert?request_enter

!entry_gate_close!exit_gate_open

?vehicle_enter?vehicle_exit

?request_enter

!entry_gate_open

?exit_ticket_insert

63

!exit_gate_open

64!exit_gate_close

!entry_gate_close

?vehicle_enter

?request_enter

!entry_gate_open

?vehicle_exit ?exit_ticket_insert
!exit_gate_open

!exit_gate_close

!entry_gate_close

!entry_gate_close

?vehicle_enter?vehicle_exit

?request_enter

65

?exit_ticket_insert

!entry_gate_open

!entry_gate_close

?vehicle_enter?vehicle_exit

?request_enter

?exit_ticket_insert

66!exit_gate_open

!entry_gate_open

!entry_gate_close

?vehicle_enter

?request_enter

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
!exit_gate_open

!entry_gate_close

?vehicle_exit

?request_enter

!exit_gate_open

?exit_ticket_insert
!entry_gate_open

?vehicle_enter

?vehicle_enter?vehicle_exit

!entry_gate_open

!exit_gate_open

?exit_ticket_insert

78

?request_enter

!entry_gate_close

?vehicle_enter?vehicle_exit

!ticket_issue

!entry_gate_open

!exit_gate_open

?exit_ticket_insert?request_enter

!entry_gate_close

?vehicle_enter?vehicle_exit

!ticket_issue

!exit_gate_open

?exit_ticket_insert?request_enter

!entry_gate_close

?vehicle_enter?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

!exit_gate_open

?vehicle_enter

?request_enter

?exit_ticket_insert

!entry_gate_close!exit_gate_open

?vehicle_exit

!exit_gate_close

?vehicle_enter?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

!exit_gate_open

!exit_gate_close

?vehicle_enter

?request_enter

?vehicle_exit

!entry_gate_close!exit_gate_open
?exit_ticket_insert

!entry_gate_close

?vehicle_exit

?request_enter

?exit_ticket_insert

!entry_gate_open

?vehicle_enter

?vehicle_enter?vehicle_exit

?exit_ticket_insert

?request_enter

104
!entry_gate_close

112
!entry_gate_open

?vehicle_enter?vehicle_exit

!ticket_issue

?exit_ticket_insert

?request_enter

95!entry_gate_close

!entry_gate_open
?vehicle_enter?vehicle_exit

!ticket_issue

?exit_ticket_insert

?request_enter
!entry_gate_close

?vehicle_exit

?exit_ticket_insert

!entry_gate_close

?request_enter
!entry_gate_open

115

!ticket_issue

98

?vehicle_enter

?vehicle_exit

?exit_ticket_insert

!entry_gate_open

?request_enter

116

?vehicle_enter

?vehicle_enter?vehicle_exit

?exit_ticket_insert

30

?request_enter

107

!entry_gate_open

?vehicle_enter?vehicle_exit

?exit_ticket_insert

?request_enter
97!entry_gate_open

?vehicle_exit

?exit_ticket_insert

?request_enter
!entry_gate_open

?vehicle_enter

96!entry_gate_close

?vehicle_enter?vehicle_exit

?exit_ticket_insert

89

?request_enter

106

!entry_gate_close!entry_gate_open

?vehicle_enter?vehicle_exit

!exit_gate_open

?exit_ticket_insert

90

?request_enter

100

!entry_gate_close

!entry_gate_open

?vehicle_enter?vehicle_exit

!entry_gate_open

!exit_gate_open

?exit_ticket_insert?request_enter

!entry_gate_close

?vehicle_enter?vehicle_exit

!entry_gate_close?exit_ticket_insert?request_enter

!exit_gate_open

?vehicle_enter

!entry_gate_close!exit_gate_open?exit_ticket_insert?request_enter

?vehicle_exit

?vehicle_enter?vehicle_exit

!ticket_issue

!exit_gate_close

?exit_ticket_insert?request_enter

!entry_gate_close

!exit_gate_open

?vehicle_enter

!ticket_issue

?vehicle_exit

!exit_gate_close

?exit_ticket_insert?request_enter

!entry_gate_close!exit_gate_open

?vehicle_enter?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

!exit_gate_open

?vehicle_enter

?request_enter

?exit_ticket_insert

!entry_gate_close!exit_gate_open

102

?vehicle_exit

?vehicle_enter?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

103

!exit_gate_open

!exit_gate_close

?vehicle_enter

?vehicle_exit

?request_enter?exit_ticket_insert

!entry_gate_close!exit_gate_open

!exit_gate_close

?vehicle_enter?vehicle_exit

?exit_ticket_insert

?request_enter!entry_gate_close

?vehicle_exit

?request_enter?vehicle_enter

!entry_gate_close?exit_ticket_insert
!entry_gate_open

!exit_gate_open

?request_enter

?vehicle_enter

!entry_gate_close

!entry_gate_open!exit_gate_open
?exit_ticket_insert

85

?vehicle_exit

?vehicle_exit

!entry_gate_close

!entry_gate_open
?exit_ticket_insert

!exit_gate_open

?request_enter

117

?vehicle_enter

!exit_gate_close

?vehicle_exit

!entry_gate_close

!entry_gate_open!exit_gate_open
?exit_ticket_insert?request_enter

87

?vehicle_enter

!exit_gate_close

!exit_gate_close

!entry_gate_close

?exit_ticket_insert?request_enter

!entry_gate_open!exit_gate_open

27

!ticket_issue

?vehicle_enter

?vehicle_exit

!exit_gate_close

!entry_gate_open

?exit_ticket_insert?request_enter

!exit_gate_open

28

?vehicle_enter

?vehicle_exit

?vehicle_enter

!exit_gate_close

?exit_ticket_insert
!exit_gate_open

29
?request_enter

111

!entry_gate_open

?vehicle_exit

?vehicle_enter

?vehicle_exit

!exit_gate_close

?exit_ticket_insert?request_enter

!exit_gate_open

109

!entry_gate_open

!exit_gate_close

?exit_ticket_insert?request_enter

!entry_gate_open!exit_gate_open

?vehicle_enter

108

!entry_gate_close

?vehicle_exit

?vehicle_enter

!exit_gate_close

!exit_gate_open
?exit_ticket_insert

88

?request_enter

?vehicle_exit

110

!entry_gate_close

!entry_gate_open

?vehicle_enter

?vehicle_exit

!entry_gate_open

!exit_gate_open?exit_ticket_insert?request_enter

!exit_gate_close

!entry_gate_close

?vehicle_enter?vehicle_exit

!entry_gate_open

?exit_ticket_insert

?request_enter

!entry_gate_close

?vehicle_enter?vehicle_exit

?exit_ticket_insert

?request_enter
!entry_gate_close

?vehicle_enter

?vehicle_exit

!exit_gate_close

?exit_ticket_insert?request_enter

!entry_gate_close!exit_gate_open

?vehicle_enter?vehicle_exit

?request_enter

!exit_gate_close

!entry_gate_close

!entry_gate_open

?exit_ticket_insert

!exit_gate_open

?vehicle_enter

?request_enter

?vehicle_exit

!exit_gate_close

!entry_gate_close

!entry_gate_open

?exit_ticket_insert
!exit_gate_open

?vehicle_enter

?vehicle_exit

?request_enter

?exit_ticket_insert

!entry_gate_close!exit_gate_open

!exit_gate_close

?vehicle_enter?vehicle_exit

?exit_ticket_insert

?request_enter

!entry_gate_close

?vehicle_exit

?request_enter

?vehicle_enter !entry_gate_close

?exit_ticket_insert

!entry_gate_open!exit_gate_open

!exit_gate_close

?vehicle_exit

?request_enter

?vehicle_enter

?exit_ticket_insert

!entry_gate_close

!entry_gate_open

?vehicle_exit

!exit_gate_close

!entry_gate_close

!exit_gate_open

?exit_ticket_insert?request_enter

!entry_gate_open

128!ticket_issue

?vehicle_enter

?vehicle_exit

!exit_gate_close

!exit_gate_open

!entry_gate_open

?exit_ticket_insert?request_enter

129?vehicle_enter

?vehicle_enter?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert

130

?request_enter

122!entry_gate_open

?vehicle_enter?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert?request_enter

120

!entry_gate_open

?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert?request_enter

!entry_gate_open

?vehicle_enter

119!entry_gate_close

?vehicle_enter?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert

118

?request_enter

121

!entry_gate_close

!entry_gate_open

?vehicle_enter?vehicle_exit

!exit_gate_open

!exit_gate_close

!entry_gate_open

?exit_ticket_insert?request_enter

!entry_gate_close

?vehicle_enter?vehicle_exit

!exit_gate_close!exit_gate_open

?exit_ticket_insert?request_enter

!entry_gate_close

?vehicle_enter?vehicle_exit

!exit_gate_open

!exit_gate_close

?request_enter

?exit_ticket_insert
!entry_gate_close

?vehicle_exit

!exit_gate_open

!exit_gate_close

?request_enter

?vehicle_enter

!entry_gate_close

?exit_ticket_insert
!entry_gate_open

?vehicle_enter?vehicle_exit

?request_enter

!exit_gate_open

!entry_gate_open

?exit_ticket_insert

!exit_gate_close

?vehicle_enter?vehicle_exit

?request_enter

?exit_ticket_insert

!entry_gate_open

?vehicle_exit

?exit_ticket_insert

?request_enter

?vehicle_enter

!entry_gate_close!entry_gate_open

?vehicle_exit

!exit_gate_close

!exit_gate_open

?vehicle_enter

?exit_ticket_insert?request_enter

!entry_gate_open

?vehicle_exit

!exit_gate_close

!exit_gate_open

!entry_gate_close

?vehicle_enter

!ticket_issue

?exit_ticket_insert?request_enter

!entry_gate_open

Csupervisor

0

?vehicle_exit

1

?request_enter

3

?vehicle_enter

?request_enter
?vehicle_exit

2!ticket_issue

?vehicle_enter

?request_enter
?vehicle_exit

?vehicle_enter

4

!entry_gate_open

!entry_gate_close
!entry_gate_open

!ticket_issue,?vehicle_enter
?request_enter
?vehicle_exit

!entry_gate_close

?request_enter
?vehicle_exit

5
?vehicle_enter

?vehicle_enter

6

?request_enter

15

!entry_gate_close

16

?vehicle_exit ?vehicle_enter

?request_enter

7

?vehicle_exit

8

!entry_gate_close

!entry_gate_close
?vehicle_enter

?request_enter
?vehicle_exit

?vehicle_exit

?vehicle_enter

?request_enter

9!ticket_issue

?vehicle_exit

?vehicle_enter

?request_enter

10

!entry_gate_open

?vehicle_exit

!entry_gate_close
?request_enter

11

?vehicle_enter

?vehicle_enter

?vehicle_exit
12

?request_enter

14!entry_gate_close

?vehicle_enter

?vehicle_exit

?request_enter

13
!entry_gate_close

?vehicle_enter

?vehicle_exit ?request_enter

?vehicle_enter

?request_enter

?vehicle_exit

?vehicle_exit

?vehicle_enter

?request_enter

!entry_gate_close

?vehicle_enter

?request_enter?vehicle_exit

Centry gate

0 1?exit_ticket_insert

4

?vehicle_exit

?exit_ticket_insert

2

!exit_gate_open

?vehicle_exit

?exit_ticket_insert

3?vehicle_exit
!exit_gate_close

?exit_ticket_insert
?vehicle_exit

?exit_ticket_insert
!exit_gate_close

?vehicle_exit,!exit_gate_open

Cexit gate

0 1?ticket_insert_payment 2

?coin_insert_payment
?ticket_insert_payment

3

?coin_insert_payment

?ticket_insert_payment
?coin_insert_payment
!exit_ticket_issue

!exit_ticket_issue
?ticket_insert_payment
?coin_insert_payment

Cpayment

A meta-theory of contracts

Details

Meta-theory 7→ Assume/Guarantee contracts

Details

Meta-theory 7→ Interface Automata

Details

Meta-theory 7→ Modal Interfaces

Details

Contract Based Requirement Engineering

Details

Concluding Remarks

Translating Assumptions and Guarantees into Modal
Interfaces

Top-level specification

gate(x) where x ∈{entry, exit}
Rg.1(x): “vehicles shall not pass when x_gate is closed”,
Rg.2(x): after ?vehicle_pass ?vehicle_pass is forbidden
Rg.3 : after !x_gate_open !x_gate_open is forbidden and after !x_gate_close !x_gate_close is forbidden

Translating the guarantees:

Rg.3 as an i/o-automaton: 0 1!gate_open
!gate_close

Rg.3 as a Modal Interface: 0 1!gate_open
!gate_close

Note the may transitions for outputs

Translating Assumptions and Guarantees into Modal
Interfaces

Top-level specification

gate(x) where x ∈{entry, exit}
Rg.1(x): “vehicles shall not pass when x_gate is closed”,
Rg.2(x): after ?vehicle_pass ?vehicle_pass is forbidden
Rg.3 : after !x_gate_open !x_gate_open is forbidden and after !x_gate_close !x_gate_close is forbidden

Translating the assumptions:

Rg.1(x): 0

!gate_close

1!gate_open
!gate_close

!gate_open
?vehicle_pass

Note the must transitions for outputs and the may transitions for inputs
Finally the contract for the gate viewpoint is:

Cgate = ((Rg.1 ∧ Rg.2)⊗ Rg.3)/(Rg.1 ∧ Rg.2)

A meta-theory of contracts

Details

Meta-theory 7→ Assume/Guarantee contracts

Details

Meta-theory 7→ Interface Automata

Details

Meta-theory 7→ Modal Interfaces

Details

Contract Based Requirement Engineering

Details

Concluding Remarks

Concluding Remarks

I Contracts: large system design by distributed OEM/supplier chains

I Contracts support both formal and semi-formal use:
I formal: possible for specific contract formalisms
I semi-formal: manual “local reasoning”→ system-wide properties

I Extending the formal scope of contracts:
I abstractions
I observers

I The meta-theory clarifies the unique features

I of contract-based reasoning, versus
I other techniques of compositional reasoning

I Meta-theory specializes to various formalisms (more than shown)

Concluding Remarks

I Contracts: large system design by distributed OEM/supplier chains

I Contracts support both formal and semi-formal use:
I formal: possible for specific contract formalisms
I semi-formal: manual “local reasoning”→ system-wide properties

I Extending the formal scope of contracts:
I abstractions
I observers

I The meta-theory clarifies the unique features

I of contract-based reasoning, versus
I other techniques of compositional reasoning

I Meta-theory specializes to various formalisms (more than shown)

Concluding Remarks

I Contracts: large system design by distributed OEM/supplier chains

I Contracts support both formal and semi-formal use:
I formal: possible for specific contract formalisms
I semi-formal: manual “local reasoning”→ system-wide properties

I Extending the formal scope of contracts:
I abstractions
I observers

I The meta-theory clarifies the unique features

I of contract-based reasoning, versus
I other techniques of compositional reasoning

I Meta-theory specializes to various formalisms (more than shown)

Concluding Remarks

I Contracts: large system design by distributed OEM/supplier chains

I Contracts support both formal and semi-formal use:
I formal: possible for specific contract formalisms
I semi-formal: manual “local reasoning”→ system-wide properties

I Extending the formal scope of contracts:
I abstractions
I observers

I The meta-theory clarifies the unique features

I of contract-based reasoning, versus
I other techniques of compositional reasoning

I Meta-theory specializes to various formalisms (more than shown)

More. . .

I Use of Modal Interfaces for the separate compilation of
multiple-clocked synchronous programs, showing that contracts
yield useful and non trivial theories of interfaces [Benven. & al. 2012]

I Perspective: meta-theory to support heterogeneity

I Perspective: synchronizing safety with {function+physics}:

I safety analysis: abstract reliability or fault tree models
I {function+physics+faults}: too complex for being analysable

=⇒ for use as observers for safety analysis models

	A meta-theory of contracts
	 Details
	Meta-theory Assume/Guarantee contracts
	 Details
	Meta-theory Interface Automata
	 Details
	Meta-theory Modal Interfaces
	 Details
	Contract Based Requirement Engineering
	 Details
	Concluding Remarks

