Time Domains in Hybrid Systems Modeling

Albert Benveniste ${ }^{1} \quad$ Timothy Bourke ${ }^{1} \quad$ Benoît Caillaud ${ }^{1}$ Marc Pouzet ${ }^{3}$

\author{

1. INRIA
}
2. École normale supérieure

Lund, May 2015

From Dynamical to Hybrid Systems, informally

Dynamical system: smooth dynamics

$$
x: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

solution of the IVP

$$
\left\{\begin{array}{l}
f(\dot{x}, x, t)=0 \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

Can we capture Hybrid Systems trajectories as $x: \mathbb{R} \rightarrow \mathbb{R}^{n}$?

From Dynamical to Hybrid Systems, informally

> Simple Hybrid Systems: smooth dynamics almost all the time, except for state jumps $x^{+}=g\left(x^{-}\right)$ at some discrete t.

$x: \mathbb{R} \rightarrow \mathbb{R}^{n}$ still works.
How general is this?

From Dynamical to Hybrid Systems, informally

Non-Smooth
Dynamical Systems: right-hand of differential equations is non-smooth.

- Filippov Differential Inclusions
- Complementarity Systems

$$
\left\{\begin{array}{l}
\dot{x}=-\operatorname{sgn}(x)+2 \operatorname{sgn}(y) \\
\dot{y}=-2 \operatorname{sgn}(x)-\operatorname{sgn}(y) \\
\dot{z}=\operatorname{sgn}(x)+\operatorname{sgn}(y)
\end{array}\right.
$$

$x: \mathbb{R} \rightarrow \mathbb{R}^{n}$ still works.
However...

From Dynamical to Hybrid Systems, informally

In general, Hybrid Systems trajectory may have:

- Instantaneous cascades of state jumps
- Chattering

Can not be captured as:

$$
x: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

Need a Time Domain "denser" than \mathbb{R}

Semantics of Hybrid Systems Modelers

Instrumental to design:

1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Need for a precise mathematical semantics
Focus of this talk:

- Comparison of Time Domains used to the define the semantics of hybrid systems modelers
- Emphasis on compile-time analysis / simulation code generation

Background: Synchronous Languages

Syntax of a simple synchronous language (\approx Lustre)

$$
\begin{aligned}
& d::=\operatorname{let} x=e \mid \text { let } f(p)=e \text { where } E \mid d ; d \\
& e::=x|v| \text { op }(e) \mid \text { efby } e|\operatorname{pre}(e)| f(e) \mid(e, e) \\
& p::=(p, p) \mid x \\
& E::=() \mid E \text { and } E|x=e| \\
& \quad \mid \text { if } e \text { then } E \text { else } E
\end{aligned}
$$

Examples

let $\min _\max (x, y)=(a, b)$ where
if $x<y$
then $\mathrm{a}=\mathrm{x}$ and $\mathrm{b}=\mathrm{y}$
else $a=y$ and $b=x$
let $\operatorname{sum}(\mathrm{x})=\mathrm{cpt}$ where $\mathrm{cpt}=(0$ fby pre(cpt) $)+x$

Background: Semantics of Synhronous Languages

Chronograms

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	3
y	$=$	3	6	5	1	1	9
$\min _\max (x, y)$	$=$	$(2,3)$	$(4,6)$	$(2,5)$	$(1,1)$	$(1,2)$	$(3,9)$
pre (x)	$=$	nil	2	4	2	1	2
x fby y	$=$	2	6	5	1	1	9
$\operatorname{sum}(x)$	$=$	2	6	8	9	11	14

Examples
let min_max $(x, y)=(a, b)$ where
if $x<y$
let $\operatorname{sum}(\mathrm{x})=\mathrm{cpt}$ where
then $\mathrm{a}=\mathrm{x}$ and $\mathrm{b}=\mathrm{y}$
$\mathrm{cpt}=(0 \mathrm{fby}$ pre(cpt)$)+\mathrm{x}$
else $a=y$ and $b=x$

Background: Synchronous Languages

Chronograms

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	3
y	$=$	3	6	5	1	1	9
$\min _\max (x, y)$	$=$	$(2,3)$	$(4,6)$	$(2,5)$	$(1,1)$	$(1,2)$	$(3,9)$
pre (x)	$=$	nil	2	4	2	1	2
x fby y	$=$	2	6	5	1	1	9
$\operatorname{sum}(x)$	$=$	2	6	8	9	11	14

Main features

- A signal is a sequence of values or stream
- A system is function from streams to streams.
- Operations apply pointwise to their arguments.
- All streams progress synchronously.

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	\perp	\perp	\perp
y	$=$	nil	2	6	\perp	\perp	\perp
z	$=$	0	2	6	\perp	\perp	\perp
$c p t$	$=$	2	6	8	\perp	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	\perp	\perp
y	$=$	nil	2	6	8	\perp	\perp
z	$=$	0	2	6	\perp	\perp	\perp
$c p t$	$=$	2	6	8	\perp	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	\perp	\perp
y	$=$	nil	2	6	8	\perp	\perp
z	$=$	0	2	6	8	\perp	\perp
$c p t$	$=$	2	6	8	\perp	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	\perp	\perp
y	$=$	$n i l$	2	6	8	\perp	\perp
z	$=$	0	2	6	8	\perp	\perp
$c p t$	$=$	2	6	8	9	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $z=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	\perp
y	$=$	$n i l$	2	6	8	9	\perp
z	$=$	0	2	6	8	\perp	\perp
$c p t$	$=$	2	6	8	9	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $z=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	\perp
y	$=$	$n i l$	2	6	8	9	\perp
z	$=$	0	2	6	8	9	\perp
$c p t$	$=$	2	6	8	9	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $z=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	\perp
y	$=$	nil	2	6	8	9	\perp
z	$=$	0	2	6	8	9	\perp
$c p t$	$=$	2	6	8	9	11	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	3
y	$=$	nil	2	6	8	9	11
z	$=$	0	2	6	8	9	\perp
$c p t$	$=$	2	6	8	9	11	\perp

Program
let $\operatorname{sum}(\mathrm{x})=\mathrm{cpt}$ where
$y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	3
y	$=$	nil	2	6	8	9	11
z	$=$	0	2	6	8	9	11
$c p t$	$=$	2	6	8	9	11	\perp

Program
let $\operatorname{sum}(\mathrm{x})=\mathrm{cpt}$ where
$y=\operatorname{pre}(c p t)$
and $z=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	3
y	$=$	nil	2	6	8	9	11
z	$=$	0	2	6	8	9	11
$c p t$	$=$	2	6	8	9	11	14

Program
let $\operatorname{sum}(\mathrm{x})=\mathrm{cpt}$ where
$y=\operatorname{pre}(c p t)$
and $z=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Requirements on Semantics

Recall, semantics to help designing:

1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Therefore:

- Every well-typed program E should have a semantics $\llbracket E \rrbracket$
- The semantics should be structural, i.e., roughly speaking:

- The alternative is informal "mytool" semantics

Requirements on Semantics

Recall, semantics to help designing:

1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Therefore:

- Every well-typed program E should have a semantics 【E』
- The semantics should be structural, i.e., roughly speaking:

$$
\begin{aligned}
\llbracket E_{1} \text { and } E_{2} \rrbracket & =\left\{\llbracket E_{1} \rrbracket ; \llbracket E_{2} \rrbracket\right\} \\
\llbracket \text { if } e \text { then } E_{1} \text { else } E_{2} \rrbracket & =\text { if } \llbracket e \rrbracket \text { then } \llbracket E_{1} \rrbracket \text { else } \llbracket E_{2} \rrbracket, \text { etc. }
\end{aligned}
$$

- The alternative is informal "mytool" semantics

Time Domains

Phases of continuous dynamics interleaved with cascades of instantaneous state-jumps

However:

- Cascades may be complex or even unbounded
- The Time Domain should be such that time may progress during cascades of state-jumps

Time Domains

> Superdense Model of Time:
> $\mathbb{T}=\mathbb{R}_{+} \times \mathbb{N}$
> $[$ Pnueli et al. 1992]
> $[$ Lee et al. 2005]
\mathbb{T} is equipped with lexicographic order (as shown on the figure).
Two approaches for capturing signals with finite cascades of changes:

1. $x(t, n)$ defined for $0 \leq n \leq m_{t}$ and undefined for $n>m_{t} \quad$ [the figure]
2. $x(t, n)$ defined for every n but $x(t, n)=x\left(t, m_{t}\right)$ for $n>m_{t}$ where m_{t} is the number of changes at time t.

In the figure: $m_{t}=2, m_{u}=0, m_{v}=3$.

Time Domains

> Superdense Model of Time:
> $\mathbb{T}=\mathbb{R}_{+} \times \mathbb{N}$
> $[$ Pnueli et al. 1992]
> $[$ Lee et al. 2005]
[Lee 2014]:
Such piecewise-continuous signals coexist nicely with standard ODE solvers. At the time of discontinuity or discrete event, the final value signal provides the initial boundary condition for the solver. [...]

Time Domains

Superdense Model of Time $\mathbb{T}=\mathbb{R}_{+} \times \mathbb{N}$
[Pnueli et al. 1992]
[Lee et al. 2005]

Nonstandard Model of Time $\mathbb{T}=\{n \partial \mid n \in \star \mathbb{N}\}$
[Benveniste et al. 2012]

Time Domains

Aim:

- getting rid of the burden of smoothness assumptions
- making hybrid systems discrete
- getting the semantics by reusing techniques from discrete systems

Nonstandard Model of Time $\mathbb{T}=\{n \partial \mid n \in \mathbb{N}\}$
[Benveniste et al. 2012]

A Toy Hybrid Systems Language

Syntax \approx Zélus [Bourke et al. 2013]

$$
\begin{aligned}
& d::=\operatorname{let} x=e \mid \text { let } f(p)=e \text { where } E \mid d ; d \\
& e::=x|v| \text { op }(e) \mid e \text { fby } e|\operatorname{pre}(e)| f(e) \mid(e, e) \\
& p::=(p, p) \mid x \\
& E::=() \mid E \text { and } E|x=e| \\
& \mid \text { init } x=e \mid \text { der } x=e \mid \\
& \mid \text { if ethen } E \text { else } E \\
& \mid \text { der } x=e \mid \\
& \mid \text { init } x=e \mid \text { reinit } x=e \mid \\
& \mid \text { when } e \text { do } E
\end{aligned}
$$

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{\times}$

when z do
reinit $x=b$

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{\times}$

equation	semantics
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=e \tag{1} \end{align*}$	$m_{t}^{u}=m_{t}^{\times}=0$ and $\dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right)$ and $x_{0}=\llbracket e \rrbracket_{0}$
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=a ; \\ & \text { when } x \geq 1 \text { do } \\ & \text { reinit } x=b \tag{2} \end{align*}$	$\begin{aligned} t_{0}= & 0 \text { and } t_{n+1}= \\ & \inf \left\{s>t_{n} \mid \forall r \in(s-\varepsilon ; s), x_{r}<1 \wedge x_{s} \geq 1\right\} \end{aligned}$ reset effective at $\left(t_{n}, 1\right)$, hence $m_{t_{n}}^{\times}=1$ $\begin{align*} & \dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right), \text { for } t_{n}<t \leq t_{n+1}, \\ & x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}, x_{\left(t_{n}, 1\right)}=\llbracket b \rrbracket_{\left(t_{n}, 1\right)}, n \geq 1 \tag{1} \end{align*}$

when z do
reinit $x=b$

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{\times}$

equation	semantics
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=e \tag{1} \end{align*}$	$m_{t}^{u}=m_{t}^{\times}=0$ and $\dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right)$ and $x_{0}=\llbracket e \rrbracket_{0}$
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=a ; \\ & \text { when } x \geq 1 \text { do } \\ & \text { reinit } x=b \tag{2} \end{align*}$	$\begin{aligned} t_{0}= & 0 \text { and } t_{n+1}= \\ & \inf \left\{s>t_{n} \mid \forall r \in(s-\varepsilon ; s), x_{r}<1 \wedge x_{s} \geq 1\right\} \end{aligned}$ reset effective at $\left(t_{n}, 1\right)$, hence $m_{t_{n}}^{\times}=1$ $\begin{align*} & \dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right), \text { for } t_{n}<t \leq t_{n+1}, \\ & x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}, x_{\left(t_{n}, 1\right)}=\llbracket b \rrbracket_{\left(t_{n}, 1\right)}, n \geq 1 \tag{1} \end{align*}$

when z do

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{x}$

equation	semantics
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=e \tag{1} \end{align*}$	$m_{t}^{u}=m_{t}^{\times}=0$ and $\dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right)$ and $x_{0}=\llbracket e \rrbracket_{0}$
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=a ; \\ & \text { when } x \geq 1 \text { do } \\ & \text { reinit } x=b \tag{2} \end{align*}$	$\begin{aligned} t_{0}= & 0 \text { and } t_{n+1}= \\ & \inf \left\{s>t_{n} \mid \forall r \in(s-\varepsilon ; s), x_{r}<1 \wedge x_{s} \geq 1\right\} \end{aligned}$ reset effective at $\left(t_{n}, 1\right)$, hence $m_{t_{n}}^{\times}=1$ $\begin{align*} & \dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right), \text { for } t_{n}<t \leq t_{n+1}, \\ & x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}, x_{\left(t_{n}, 1\right)}=\llbracket b \rrbracket_{\left(t_{n}, 1\right)}, n \geq 1 \tag{1} \end{align*}$

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{x}$

equation	semantics
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=e \tag{1} \end{align*}$	$m_{t}^{u}=m_{t}^{\times}=0$ and $\dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right)$ and $x_{0}=\llbracket e \rrbracket_{0}$
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=a ; \\ & \text { when } x \geq 1 \text { do } \\ & \text { reinit } x=b \tag{2} \end{align*}$	$\begin{aligned} t_{0}= & 0 \text { and } t_{n+1}= \\ & \inf \left\{s>t_{n} \mid \forall r \in(s-\varepsilon ; s), x_{r}<1 \wedge x_{s} \geq 1\right\} \end{aligned}$ reset effective at $\left(t_{n}, 1\right)$, hence $m_{t_{n}}^{\times}=1$ $\begin{align*} & \dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right), \text { for } t_{n}<t \leq t_{n+1}, \\ & x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}, x_{\left(t_{n}, 1\right)}=\llbracket b \rrbracket_{\left(t_{n}, 1\right)}, n \geq 1 \tag{1} \end{align*}$
when z do $\text { reinit } x=b$	reuse of (2) not possible since $m_{t_{n}}^{z} \neq 0$

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{x}$

equation	semantics
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=e \tag{1} \end{align*}$	$\begin{aligned} & m_{t}^{u}=m_{t}^{\times}=0 \text { and } \dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right) \text { and } \\ & x_{0}=\llbracket e \rrbracket_{0} \end{aligned}$
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=a ; \\ & \text { when } x \geq 1 \text { do } \\ & \text { reinit } x=b \tag{2} \end{align*}$	$\begin{aligned} t_{0}= & 0 \text { and } t_{n+1}= \\ & \inf \left\{s>t_{n} \mid \forall r \in(s-\varepsilon ; s), x_{r}<1 \wedge x_{s} \geq 1\right\} \end{aligned}$ reset effective at $\left(t_{n}, 1\right)$, hence $m_{t_{n}}^{\times}=1$ $\begin{align*} & \dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right), \text { for } t_{n}<t \leq t_{n+1}, \\ & x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}, x_{\left(t_{n}, 1\right)}=\llbracket b \rrbracket_{\left(t_{n}, 1\right)}, n \geq 1 \tag{1} \end{align*}$
when z do reinit $x=b$	reuse of (2) not possible since $m_{t_{n}}^{z} \neq 0$

The Superdense Model of Time as a semantic domain

Such piecewise-continuous signals coexist nicely with standard ODE solvers. At the time of discontinuity or discrete event, the final value signal provides the initial boundary condition for the solver. [...]

Lessons:

- Superdense time semantics seems simple as long as you keep it informal
- Actually, it is hard to formalize
- In addition to the problems shown:
- Smoothness assumptions are needed, and
- Must be stated on the global system
- Can not capture chattering (sliding modes).
- [Lee 2014]: getting rid of the above difficulties by moving to constructive semantics?

The Superdense Model of Time as a semantic domain

Moving to constructive semantics

- [Berry 1999] The constructive semantics gives a meaning to fixpoint problems specified via sets of equations
- does not rely on arguments of numerical analysis (convergence of approximation schemes)
- uses instead fixpoint theorems where the distance between signals is defined as the largest prefix of time in which the two signals coincide
- constructive \Rightarrow helps understanding causality issues
- No constructive semantics exists for continuous-time systems $\left(\mathbb{T}=\mathbb{R}_{+}\right)$[Matsikoudis and Lee 2014]
- [Lee 20141 invokes constructive semantics as given by the solver (which works by steps)
- Non compositional, not structural
- Depends on munerical convergence properties of discretization scheme

The Superdense Model of Time as a semantic domain

Moving to constructive semantics

- [Berry 1999] The constructive semantics gives a meaning to fixpoint problems specified via sets of equations
- does not rely on arguments of numerical analysis (convergence of approximation schemes)
- uses instead fixpoint theorems where the distance between signals is defined as the largest prefix of time in which the two signals coincide
- constructive \Rightarrow helps understanding causality issues
- No constructive semantics exists for continuous-time systems $\left(\mathbb{T}=\mathbb{R}_{+}\right)$[Matsikoudis and Lee 2014]
- [Lee 2014] invokes constructive semantics as given by the solver (which works by steps)
- Non compositional, not structural
- Depends on munerical convergence properties of discretization scheme

The Nonstandard Time Domain

$$
\begin{aligned}
& { }^{*} \mathbb{N},{ }^{*} \mathbb{R}={ }_{\text {def }} \text { non-standard extensions of } \mathbb{N}, \mathbb{R} \\
& { }^{\star} \mathbb{R} \supseteq \mathbb{T}={ }_{\text {def }} \quad\left\{t_{n}=n \partial \mid n \in{ }^{\star} \mathbb{N}\right\} \quad \text { where } \partial \text { is an infinitesimal time step } \\
& { }^{\bullet} t \quad=_{\text {def }} \max \{s \mid s \in \mathbb{T}, s<t\}=t-\partial \\
& t^{\bullet}={ }_{\text {def }} \min \{s \mid s \in \mathbb{T}, s>t\}=t+\partial \\
& \dot{x}_{t}=\operatorname{def} \frac{x_{t} \bullet-x_{t}}{\partial}(\text { explicit scheme }) \quad \text { or } \frac{x_{t}-x_{\bullet} t}{\partial} \text { (implicit scheme) }
\end{aligned}
$$

- with the non-standard interpretation, hybrid systems become "discrete time" and inherit a non-standard semantics
- no more difficult than Lustre semantics
- every syntactically correct program has a semantics
- the non-standard semantics is structural and compositional
- does not depend on the particular choice for the time base ∂

Nonstandard Semantics

Set ${ }^{\bullet} x_{t}=x_{\bullet}, \quad x_{t}^{\bullet}=x_{t} \bullet$, and $\dot{x}_{t}=\frac{x_{t}^{\bullet}-x_{t}}{\partial}$ in:

equation	semantics
der $x=e ;$ init $x=f$	$x_{t_{0}}=\llbracket f \rrbracket_{t_{0}}$ and $x_{t}^{\bullet}=x_{t}+\partial \llbracket e \rrbracket_{t}$ forall $t \in \mathbb{T}, t \geq t_{0}$
$\operatorname{der} x=e ;$ init $x=a ;$ when $x \geq 1$ do reinit $x=b$	$z=\bullet x_{t}<1 \wedge x_{t} \geq 1$ $x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}$ $x_{t}^{\bullet}=$ if z then $\llbracket b \rrbracket_{t} \bullet$ else $x_{t}+\partial \llbracket e \rrbracket_{t}, t \geq t_{0}$

- Just as for Lustre
- Since the non-standard semantics is step-based, constructive semantics exists [Benveniste et al. 2012]
- Having ${ }^{\mathbb{N}}$ many steps instead of \mathbb{N} many ones is not an issue
- Of course, this semantics can not be used for simulation (\neq
programming languages)

Nonstandard Semantics

Set ${ }^{\bullet} x_{t}=x_{\bullet}, \quad x_{t}^{\bullet}=x_{t} \bullet$, and $\dot{x}_{t}=\frac{x_{t}^{\bullet}-x_{t}}{\partial}$ in:

equation	semantics
der $x=e ;$ init $x=f$	$x_{t_{0}}=\llbracket f \rrbracket_{t_{0}}$ and $x_{t}^{\bullet}=x_{t}+\partial \llbracket e \rrbracket_{t}$ forall $t \in \mathbb{T}, t \geq t_{0}$
der $x=e ;$ init $x=a ;$ when $x \geq 1$ do reinit $x=b$	$z=\bullet x_{t}<1 \wedge x_{t} \geq 1$ $x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}$ $x_{t}^{\bullet}=$ if z then $\llbracket b \rrbracket_{t} \bullet$ else $x_{t}+\partial \llbracket e \rrbracket_{t}, t \geq t_{0}$

- Just as for Lustre
- Since the non-standard semantics is step-based, constructive semantics exists [Benveniste et al. 2012]
- Having ${ }^{\star} \mathbb{N}$ many steps instead of \mathbb{N} many ones is not an issue
- Of course, this semantics can not be used for simulation $(\neq$ programming languages)

There is no free lunch

Theorem [Benveniste et al. 2014]
The nonstandard semantics of every causally-correct program is:

1. standardizable,
2. independent of ∂,
3. continuous
on every compact set of dates not containing:

4. an event, or
5. an undefined value (\perp)

- When defined, the superdense semantics coincides with the nonstandard semantics
- The nonstandard semantics is not effective (cannot be executed)

There is no free lunch

DAE Hybrid Systems: index theory \& reduction

- With non-standard semantics, DAE become dAE (difference Algebraic Equations); define $x^{\bullet}=$ next x
- dAE may involve more equations than specified

$$
\begin{align*}
\begin{cases}x^{\bullet}=f(x, u) \\
0 & =g(x)\end{cases} & \stackrel{\text { shifting }}{\Longrightarrow}
\end{align*}\left\{\begin{array}{lll}
x^{\bullet} & =f(x, u) \\
0 & = & g(x) \tag{1}\\
0 & =g\left(x^{\bullet}\right)
\end{array}\right]
$$

Whence the constructive semantics (\sim execution scheme):

1. Given x such that $g(x)=0$
2. Use (3) to evaluate u (constraint solver needed)
3. Use (1) to evaluate x^{\bullet}, which satisfies $g\left(x^{\bullet}\right)=0$, and repeat

DAE Hybrid Systems: index theory \& reduction

- With non-standard semantics, DAE become dAE (difference Algebraic Equations); define $x^{\bullet}=$ next x
- dAE may involve more equations than specified

$$
\begin{align*}
\begin{cases}x^{\bullet}=f(x, u) \\
0 & =g(x)\end{cases} & \stackrel{\text { shifting }}{\Longrightarrow}
\end{align*}\left\{\begin{array}{lll}
x^{\bullet} & =f(x, u) \\
0 & =g(x) \tag{1}\\
0 & =g\left(x^{\bullet}\right)
\end{array}\right]
$$

Thm: the diff. index of a DAE coincides with the index of the dAE obtained with the non-standard semantics
Cor: Defining the index of DAE Hybrid Systems as the index of its non-standard semantics yields a conservative extension of DAE and dAE indexes

Conclusion

- The superdense model of time is useful as a simulation semantics:
- Even from this point of view it has limits
- No support for nonsmooth dynamical systems simulation (with possible chattering)
- More is needed for supporting compilation:
- Structural semantics
- Getting rid of smoothness assumptions
- The nonstandard model of time is a good candidate:
- Yields a structural semantics
- No smoothness assumption
- Coincides with superdense semantics, when defined
- Supports the slicing of execution engine into
- an event handler and
- a ODE/DAE/nonsmooth solver

