
Time Domains in Hybrid Systems Modeling

Albert Benveniste1 Timothy Bourke1 Benoît Caillaud1

Marc Pouzet3

1. INRIA
3. École normale supérieure

Lund, May 2015

1 / 18

From Dynamical to Hybrid Systems, informally

Dynamical system: smooth dynamics

x : R→ Rn

solution of the IVP{
f (ẋ , x , t) = 0
x(t0) = x0

Can we capture Hybrid Systems trajectories as x : R→ Rn?
2 / 18

From Dynamical to Hybrid Systems, informally
dom(x) = R

real time
x+(t2)

x(t)

t2t

x−(t2)

x+(t1)

t1

x−(t1)
Simple Hybrid Sys-
tems: smooth dynamics
almost all the time, except
for state jumps x+ = g(x−)
at some discrete t.

x : R→ Rn still works.

How general is this?

2 / 18

From Dynamical to Hybrid Systems, informally

-20
-15

-10
-5

 0
 5

 10
 15

 20

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

z

Square helical

"helical.dat" using 2:3:4

x
y

z

ẋ = −sgn(x) + 2sgn(y)
ẏ = −2sgn(x)− sgn(y)
ż = sgn(x) + sgn(y)

Non-Smooth Dynamical
Systems: right-hand of
differential equations is
non-smooth.

I Filippov Differential
Inclusions

I Complementarity
Systems

x : R→ Rn still works.

However...

2 / 18

From Dynamical to Hybrid Systems, informally

real time

dom(x) = Rn

t1 t2t

In general, Hybrid Sys-
tems trajectory may have:

I Instantaneous cascades
of state jumps

I Chattering

Can not be captured as:

x : R→ Rn

Need a Time Do-
main “denser” than R

2 / 18

Semantics of Hybrid Systems Modelers

Instrumental to design:

1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Need for a precise mathematical semantics

Focus of this talk:
I Comparison of Time Domains used to the define the semantics of

hybrid systems modelers
I Emphasis on compile-time analysis / simulation code generation

3 / 18

Background: Synchronous Languages
Syntax of a simple synchronous language (≈ Lustre)

d ::= let x = e | let f (p) = e whereE | d ; d

e ::= x | v | op(e) | e fby e | pre(e) | f (e) | (e, e)

p ::= (p, p) | x

E ::= () | E and E | x = e |
| if e thenE elseE

Examples
let min_max(x,y) = (a,b) where
if x<y
then a = x and b = y
else a = y and b = x

let sum(x) = cpt where
cpt = (0 fby pre(cpt)) + x

4 / 18

Background: Semantics of Synhronous Languages
Chronograms

time = 0 1 2 3 4 5
x = 2 4 2 1 2 3
y = 3 6 5 1 1 9
min_max(x , y) = (2, 3) (4, 6) (2, 5) (1, 1) (1, 2) (3, 9)
pre(x) = nil 2 4 2 1 2
x fby y = 2 6 5 1 1 9
sum(x) = 2 6 8 9 11 14

Examples
let min_max(x,y) = (a,b) where
if x<y
then a = x and b = y
else a = y and b = x

let sum(x) = cpt where
cpt = (0 fby pre(cpt)) + x

5 / 18

Background: Synchronous Languages
Chronograms

time = 0 1 2 3 4 5
x = 2 4 2 1 2 3
y = 3 6 5 1 1 9
min_max(x , y) = (2, 3) (4, 6) (2, 5) (1, 1) (1, 2) (3, 9)
pre(x) = nil 2 4 2 1 2
x fby y = 2 6 5 1 1 9
sum(x) = 2 6 8 9 11 14

Main features
I A signal is a sequence of values or stream
I A system is function from streams to streams.
I Operations apply pointwise to their arguments.
I All streams progress synchronously. 6 / 18

Background: Constructive Fixpoint Semantics
Define semantics as mutual least fixpoint of set of monotonous operators

(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
x = 2 4 2 ⊥ ⊥ ⊥
y = nil 2 6 ⊥ ⊥ ⊥
z = 0 2 6 ⊥ ⊥ ⊥
cpt = 2 6 8 ⊥ ⊥ ⊥

Program
let sum(x) = cpt where

y = pre(cpt)
and z = 0 fby y
and cpt = z + x

Extended domains and streams
I t ∈ N dicrete time
I v ∈ V] {⊥} : ⊥ if

undefined, ⊥ < v ∈ V
I S(V) = N→ (V] {⊥})

7 / 18

Background: Constructive Fixpoint Semantics
Define semantics as mutual least fixpoint of set of monotonous operators

(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
x = 2 4 2 1 ⊥ ⊥
y = nil 2 6 8 ⊥ ⊥
z = 0 2 6 ⊥ ⊥ ⊥
cpt = 2 6 8 ⊥ ⊥ ⊥

Program
let sum(x) = cpt where

y = pre(cpt)
and z = 0 fby y
and cpt = z + x

Extended domains and streams
I t ∈ N dicrete time
I v ∈ V] {⊥} : ⊥ if

undefined, ⊥ < v ∈ V
I S(V) = N→ (V] {⊥})

7 / 18

Background: Constructive Fixpoint Semantics
Define semantics as mutual least fixpoint of set of monotonous operators

(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
x = 2 4 2 1 ⊥ ⊥
y = nil 2 6 8 ⊥ ⊥
z = 0 2 6 8 ⊥ ⊥
cpt = 2 6 8 ⊥ ⊥ ⊥

Program
let sum(x) = cpt where

y = pre(cpt)
and z = 0 fby y
and cpt = z + x

Extended domains and streams
I t ∈ N dicrete time
I v ∈ V] {⊥} : ⊥ if

undefined, ⊥ < v ∈ V
I S(V) = N→ (V] {⊥})

7 / 18

Background: Constructive Fixpoint Semantics
Define semantics as mutual least fixpoint of set of monotonous operators

(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
x = 2 4 2 1 ⊥ ⊥
y = nil 2 6 8 ⊥ ⊥
z = 0 2 6 8 ⊥ ⊥
cpt = 2 6 8 9 ⊥ ⊥

Program
let sum(x) = cpt where

y = pre(cpt)
and z = 0 fby y
and cpt = z + x

Extended domains and streams
I t ∈ N dicrete time
I v ∈ V] {⊥} : ⊥ if

undefined, ⊥ < v ∈ V
I S(V) = N→ (V] {⊥})

7 / 18

Background: Constructive Fixpoint Semantics
Define semantics as mutual least fixpoint of set of monotonous operators

(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
x = 2 4 2 1 2 ⊥
y = nil 2 6 8 9 ⊥
z = 0 2 6 8 ⊥ ⊥
cpt = 2 6 8 9 ⊥ ⊥

Program
let sum(x) = cpt where

y = pre(cpt)
and z = 0 fby y
and cpt = z + x

Extended domains and streams
I t ∈ N dicrete time
I v ∈ V] {⊥} : ⊥ if

undefined, ⊥ < v ∈ V
I S(V) = N→ (V] {⊥})

7 / 18

Background: Constructive Fixpoint Semantics
Define semantics as mutual least fixpoint of set of monotonous operators

(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
x = 2 4 2 1 2 ⊥
y = nil 2 6 8 9 ⊥
z = 0 2 6 8 9 ⊥
cpt = 2 6 8 9 ⊥ ⊥

Program
let sum(x) = cpt where

y = pre(cpt)
and z = 0 fby y
and cpt = z + x

Extended domains and streams
I t ∈ N dicrete time
I v ∈ V] {⊥} : ⊥ if

undefined, ⊥ < v ∈ V
I S(V) = N→ (V] {⊥})

7 / 18

Background: Constructive Fixpoint Semantics
Define semantics as mutual least fixpoint of set of monotonous operators

(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
x = 2 4 2 1 2 ⊥
y = nil 2 6 8 9 ⊥
z = 0 2 6 8 9 ⊥
cpt = 2 6 8 9 11 ⊥

Program
let sum(x) = cpt where

y = pre(cpt)
and z = 0 fby y
and cpt = z + x

Extended domains and streams
I t ∈ N dicrete time
I v ∈ V] {⊥} : ⊥ if

undefined, ⊥ < v ∈ V
I S(V) = N→ (V] {⊥})

7 / 18

Background: Constructive Fixpoint Semantics
Define semantics as mutual least fixpoint of set of monotonous operators

(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
x = 2 4 2 1 2 3
y = nil 2 6 8 9 11
z = 0 2 6 8 9 ⊥
cpt = 2 6 8 9 11 ⊥

Program
let sum(x) = cpt where

y = pre(cpt)
and z = 0 fby y
and cpt = z + x

Extended domains and streams
I t ∈ N dicrete time
I v ∈ V] {⊥} : ⊥ if

undefined, ⊥ < v ∈ V
I S(V) = N→ (V] {⊥})

7 / 18

Background: Constructive Fixpoint Semantics
Define semantics as mutual least fixpoint of set of monotonous operators

(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
x = 2 4 2 1 2 3
y = nil 2 6 8 9 11
z = 0 2 6 8 9 11
cpt = 2 6 8 9 11 ⊥

Program
let sum(x) = cpt where

y = pre(cpt)
and z = 0 fby y
and cpt = z + x

Extended domains and streams
I t ∈ N dicrete time
I v ∈ V] {⊥} : ⊥ if

undefined, ⊥ < v ∈ V
I S(V) = N→ (V] {⊥})

7 / 18

Background: Constructive Fixpoint Semantics
Define semantics as mutual least fixpoint of set of monotonous operators

(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
x = 2 4 2 1 2 3
y = nil 2 6 8 9 11
z = 0 2 6 8 9 11
cpt = 2 6 8 9 11 14

Program
let sum(x) = cpt where

y = pre(cpt)
and z = 0 fby y
and cpt = z + x

Extended domains and streams
I t ∈ N dicrete time
I v ∈ V] {⊥} : ⊥ if

undefined, ⊥ < v ∈ V
I S(V) = N→ (V] {⊥})

7 / 18

Requirements on Semantics

Recall, semantics to help designing:
1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Therefore:
I Every well-typed program E should have a semantics [[E]]
I The semantics should be structural, i.e., roughly speaking:

[[E1 and E2]] = {[[E1]]; [[E2]]}
[[if e thenE1 elseE2]] = if [[e]] then [[E1]] else [[E2]], etc.

I The alternative is informal “mytool” semantics

8 / 18

Requirements on Semantics

Recall, semantics to help designing:
1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Therefore:
I Every well-typed program E should have a semantics [[E]]
I The semantics should be structural, i.e., roughly speaking:

[[E1 and E2]] = {[[E1]]; [[E2]]}
[[if e thenE1 elseE2]] = if [[e]] then [[E1]] else [[E2]], etc.

I The alternative is informal “mytool” semantics

8 / 18

Time Domains

real time

dom(x) = Rn

t1 t2t

Phases of continuous dy-
namics interleaved with
cascades of instantaneous
state-jumps

However:

I Cascades may be
complex or even
unbounded

I The Time Domain
should be such that
time may progress
during cascades of
state-jumps

9 / 18

Time Domains
dom(x) = R

real time
t

(t, 1)

(t, 0)

(t, 2)

(v , 0)
(v , 1)

(v , 3)

(u, 0)

v
(v , 2)

u

Superdense Model of Time:
T = R+ × N
[Pnueli et al. 1992]
[Lee et al. 2005]

T is equipped with lexicographic order (as shown on the figure).

Two approaches for capturing signals with finite cascades of changes:

1. x(t, n) defined for 0≤n≤mt and undefined for n>mt [the figure]

2. x(t, n) defined for every n but x(t, n)=x(t,mt) for n>mt [Lee]

where mt is the number of changes at time t.

In the figure: mt=2,mu=0,mv =3.

9 / 18

Time Domains
dom(x) = R

real time
t

(t, 1)

(t, 0)

(t, 2)

(v , 0)
(v , 1)

(v , 3)

(u, 0)

v
(v , 2)

u

Superdense Model of Time:
T = R+ × N
[Pnueli et al. 1992]
[Lee et al. 2005]

[Lee 2014]:
Such piecewise-continuous signals coexist nicely with standard
ODE solvers. At the time of discontinuity or discrete event, the
final value signal provides the initial boundary condition for the
solver. [. . .]

9 / 18

Time Domains
dom(x) = R

real time
t

(t, 1)

(t, 0)

(t, 2)

(v , 0)
(v , 1)

(v , 3)

(u, 0)

v
(v , 2)

u

NS time

dom(x) = ?R

u

∂ ∂ ∂

t

t + 2∂

v
v + ∂

v + 3∂

v
v + 2∂

ut

t + ∂

Superdense Model of Time
T = R+ × N
[Pnueli et al. 1992]
[Lee et al. 2005]

Nonstandard Model of Time
T = {n∂ | n ∈ ?N}
[Benveniste et al. 2012]

9 / 18

Time Domains
Aim:

I getting rid of the burden of smoothness assumptions
I making hybrid systems discrete
I getting the semantics by reusing techniques from discrete systems

NS time

dom(x) = ?R

u

∂ ∂ ∂

t

t + 2∂

v
v + ∂

v + 3∂

v
v + 2∂

ut

t + ∂

Nonstandard Model of Time
T = {n∂ | n ∈ ?N}
[Benveniste et al. 2012]

9 / 18

A Toy Hybrid Systems Language

Syntax ≈ Zélus [Bourke et al. 2013]

d ::= let x = e | let f (p) = e whereE | d ; d

e ::= x | v | op(e) | e fby e | pre(e) | f (e) | (e, e)

p ::= (p, p) | x

E ::= () | E and E | x = e |
| init x = e | der x = e |
| if e thenE elseE
| der x = e |
| init x = e | reinit x = e |
| when e do E

10 / 18

The Superdense Model of Time as a semantic domain
I T =def R+×N; we identify (t, 0) ∈ T with t ∈ R+
I x(t,n) remains constant for n ≥ mx

t

equation semantics

der x = f (x , u);
init x = e

mu
t =mx

t =0 and ẋt = [[f]]t(xt , ut) and
x0 = [[e]]0 (1)

der x = f (x , u);
init x = a;
when x ≥ 1 do
reinit x = b

t0 = 0 and tn+1 =
inf{s > tn | ∀r ∈ (s − ε; s), xr < 1 ∧ xs ≥ 1}

reset effective at (tn, 1), hence mx
tn = 1

ẋt = [[f]]t(xt , ut), for tn < t ≤ tn+1, (2)
xt0 = [[a]]t0

, x(tn,1) = [[b]](tn,1), n ≥ 1 6= (1)

when z do
reinit x = b reuse of (2) not possible since mz

tn 6= 0

11 / 18

The Superdense Model of Time as a semantic domain
I T =def R+×N; we identify (t, 0) ∈ T with t ∈ R+
I x(t,n) remains constant for n ≥ mx

t

equation semantics

der x = f (x , u);
init x = e

mu
t =mx

t =0 and ẋt = [[f]]t(xt , ut) and
x0 = [[e]]0 (1)

der x = f (x , u);
init x = a;
when x ≥ 1 do
reinit x = b

t0 = 0 and tn+1 =
inf{s > tn | ∀r ∈ (s − ε; s), xr < 1 ∧ xs ≥ 1}

reset effective at (tn, 1), hence mx
tn = 1

ẋt = [[f]]t(xt , ut), for tn < t ≤ tn+1, (2)
xt0 = [[a]]t0

, x(tn,1) = [[b]](tn,1), n ≥ 1 6= (1)

when z do
reinit x = b reuse of (2) not possible since mz

tn 6= 0

11 / 18

The Superdense Model of Time as a semantic domain
I T =def R+×N; we identify (t, 0) ∈ T with t ∈ R+
I x(t,n) remains constant for n ≥ mx

t

equation semantics

der x = f (x , u);
init x = e

mu
t =mx

t =0 and ẋt = [[f]]t(xt , ut) and
x0 = [[e]]0 (1)

der x = f (x , u);
init x = a;
when x ≥ 1 do
reinit x = b

t0 = 0 and tn+1 =
inf{s > tn | ∀r ∈ (s − ε; s), xr < 1 ∧ xs ≥ 1}

reset effective at (tn, 1), hence mx
tn = 1

ẋt = [[f]]t(xt , ut), for tn < t ≤ tn+1, (2)
xt0 = [[a]]t0

, x(tn,1) = [[b]](tn,1), n ≥ 1 6= (1)

when z do
reinit x = b reuse of (2) not possible since mz

tn 6= 0

11 / 18

The Superdense Model of Time as a semantic domain
I T =def R+×N; we identify (t, 0) ∈ T with t ∈ R+
I x(t,n) remains constant for n ≥ mx

t

equation semantics

der x = f (x , u);
init x = e

mu
t =mx

t =0 and ẋt = [[f]]t(xt , ut) and
x0 = [[e]]0 (1)

der x = f (x , u);
init x = a;
when x ≥ 1 do
reinit x = b

t0 = 0 and tn+1 =
inf{s > tn | ∀r ∈ (s − ε; s), xr < 1 ∧ xs ≥ 1}

reset effective at (tn, 1), hence mx
tn = 1

ẋt = [[f]]t(xt , ut), for tn < t ≤ tn+1, (2)
xt0 = [[a]]t0

, x(tn,1) = [[b]](tn,1), n ≥ 1 6= (1)

when z do
reinit x = b reuse of (2) not possible since mz

tn 6= 0

11 / 18

The Superdense Model of Time as a semantic domain
I T =def R+×N; we identify (t, 0) ∈ T with t ∈ R+
I x(t,n) remains constant for n ≥ mx

t

equation semantics

der x = f (x , u);
init x = e

mu
t =mx

t =0 and ẋt = [[f]]t(xt , ut) and
x0 = [[e]]0 (1)

der x = f (x , u);
init x = a;
when x ≥ 1 do
reinit x = b

t0 = 0 and tn+1 =
inf{s > tn | ∀r ∈ (s − ε; s), xr < 1 ∧ xs ≥ 1}

reset effective at (tn, 1), hence mx
tn = 1

ẋt = [[f]]t(xt , ut), for tn < t ≤ tn+1, (2)
xt0 = [[a]]t0

, x(tn,1) = [[b]](tn,1), n ≥ 1 6= (1)

when z do
reinit x = b reuse of (2) not possible since mz

tn 6= 0

11 / 18

The Superdense Model of Time as a semantic domain
I T =def R+×N; we identify (t, 0) ∈ T with t ∈ R+
I x(t,n) remains constant for n ≥ mx

t

equation semantics

der x = f (x , u);
init x = e

mu
t =mx

t =0 and ẋt = [[f]]t(xt , ut) and
x0 = [[e]]0 (1)

der x = f (x , u);
init x = a;
when x ≥ 1 do
reinit x = b

t0 = 0 and tn+1 =
inf{s > tn | ∀r ∈ (s − ε; s), xr < 1 ∧ xs ≥ 1}

reset effective at (tn, 1), hence mx
tn = 1

ẋt = [[f]]t(xt , ut), for tn < t ≤ tn+1, (2)
xt0 = [[a]]t0

, x(tn,1) = [[b]](tn,1), n ≥ 1 6= (1)

when z do
reinit x = b reuse of (2) not possible since mz

tn 6= 0

11 / 18

The Superdense Model of Time as a semantic domain

Such piecewise-continuous signals coexist nicely with standard
ODE solvers. At the time of discontinuity or discrete event, the
final value signal provides the initial boundary condition for the
solver. [. . .]

Lessons:
I Superdense time semantics seems simple as long as you keep it

informal
I Actually, it is hard to formalize
I In addition to the problems shown:

I Smoothness assumptions are needed, and
I Must be stated on the global system
I Can not capture chattering (sliding modes).

I [Lee 2014]: getting rid of the above difficulties by moving to
constructive semantics?

12 / 18

The Superdense Model of Time as a semantic domain

Moving to constructive semantics
I [Berry 1999] The constructive semantics gives a meaning to fixpoint

problems specified via sets of equations
I does not rely on arguments of numerical analysis (convergence of

approximation schemes)
I uses instead fixpoint theorems where the distance between signals is

defined as the largest prefix of time in which the two signals coincide
I constructive ⇒ helps understanding causality issues

I No constructive semantics exists for continuous-time systems
(T = R+) [Matsikoudis and Lee 2014]

I [Lee 2014] invokes constructive semantics as given by the solver
(which works by steps)

I Non compositional, not structural
I Depends on munerical convergence properties of discretization scheme

13 / 18

The Superdense Model of Time as a semantic domain

Moving to constructive semantics
I [Berry 1999] The constructive semantics gives a meaning to fixpoint

problems specified via sets of equations
I does not rely on arguments of numerical analysis (convergence of

approximation schemes)
I uses instead fixpoint theorems where the distance between signals is

defined as the largest prefix of time in which the two signals coincide
I constructive ⇒ helps understanding causality issues

I No constructive semantics exists for continuous-time systems
(T = R+) [Matsikoudis and Lee 2014]

I [Lee 2014] invokes constructive semantics as given by the solver
(which works by steps)

I Non compositional, not structural
I Depends on munerical convergence properties of discretization scheme

13 / 18

The Nonstandard Time Domain

?N, ?R =def non-standard extensions of N,R
?R ⊇ T =def {tn = n∂ | n ∈ ?N} where ∂ is an infinitesimal time step

•t• =def max{s | s ∈ T, s < t} = t − ∂

t• =def min{s | s ∈ T, s > t} = t + ∂

ẋt =def
xt• − xt

∂
(explicit scheme) or xt − x•t

∂
(implicit scheme)

I with the non-standard interpretation, hybrid systems become
“discrete time” and inherit a non-standard semantics

I no more difficult than Lustre semantics
I every syntactically correct program has a semantics
I the non-standard semantics is structural and compositional

I does not depend on the particular choice for the time base ∂

14 / 18

Nonstandard Semantics
Set •xt = x•t , x•t = xt• , and ẋt = x•t − xt

∂
in:

equation semantics

der x = e;
init x = f

xt0 = [[f]]t0
and

x•t = xt + ∂[[e]]t forall t ∈ T, t ≥ t0

der x = e;
init x = a;
when x ≥ 1 do
reinit x = b

z = •x t<1 ∧ xt≥1
xt0 = [[a]]t0

x•t = if z then [[b]]t• else xt + ∂[[e]]t , t ≥ t0

I Just as for Lustre
I Since the non-standard semantics is step-based, constructive

semantics exists [Benveniste et al. 2012]
I Having ?N many steps instead of N many ones is not an issue
I Of course, this semantics can not be used for simulation (6=

programming languages)
15 / 18

Nonstandard Semantics
Set •xt = x•t , x•t = xt• , and ẋt = x•t − xt

∂
in:

equation semantics

der x = e;
init x = f

xt0 = [[f]]t0
and

x•t = xt + ∂[[e]]t forall t ∈ T, t ≥ t0

der x = e;
init x = a;
when x ≥ 1 do
reinit x = b

z = •x t<1 ∧ xt≥1
xt0 = [[a]]t0

x•t = if z then [[b]]t• else xt + ∂[[e]]t , t ≥ t0

I Just as for Lustre
I Since the non-standard semantics is step-based, constructive

semantics exists [Benveniste et al. 2012]
I Having ?N many steps instead of N many ones is not an issue
I Of course, this semantics can not be used for simulation (6=

programming languages)
15 / 18

There is no free lunch
Theorem [Benveniste et al. 2014]
The nonstandard semantics of every
causally-correct program is:
1. standardizable,
2. independent of ∂,
3. continuous

on every compact set of dates not
containing:
1. an event, or
2. an undefined value (⊥)

⊥⊥⊥

t

z

I When defined, the superdense semantics coincides with the
nonstandard semantics

I The nonstandard semantics is not effective (cannot be executed)

16 / 18

There is no free lunch

run-time

Nonstandard
Semantics

Program
Superdense
Semantics

structural standardization

assumptions:

no chattering
smoothness

compile-time

16 / 18

DAE Hybrid Systems: index theory & reduction
I With non-standard semantics, DAE become dAE

(difference Algebraic Equations); define x• = next x
I dAE may involve more equations than specified{

x• = f (x , u)
0 = g(x)

shifting=⇒

x• = f (x , u)
0 = g(x)
0 = g(x•)

substituting=⇒

x• = f (x , u) (1)
0 = g(x) (2)
0 = g(f (x , u)) (3)

Whence the constructive semantics (∼ execution scheme):
1. Given x such that g(x) = 0
2. Use (3) to evaluate u (constraint solver needed)
3. Use (1) to evaluate x•, which satisfies g(x•) = 0, and repeat

17 / 18

DAE Hybrid Systems: index theory & reduction
I With non-standard semantics, DAE become dAE

(difference Algebraic Equations); define x• = next x
I dAE may involve more equations than specified{

x• = f (x , u)
0 = g(x)

shifting=⇒

x• = f (x , u)
0 = g(x)
0 = g(x•)

substituting=⇒

x• = f (x , u) (1)
0 = g(x) (2)
0 = g(f (x , u)) (3)

Thm: the diff. index of a DAE coincides with the index of the dAE obtained
with the non-standard semantics

Cor: Defining the index of DAE Hybrid Systems as the index of its
non-standard semantics yields a conservative extension of DAE and
dAE indexes

17 / 18

Conclusion

I The superdense model of time is useful as a simulation semantics:
I Even from this point of view it has limits
I No support for nonsmooth dynamical systems simulation (with possible

chattering)

I More is needed for supporting compilation:
I Structural semantics
I Getting rid of smoothness assumptions

I The nonstandard model of time is a good candidate:
I Yields a structural semantics
I No smoothness assumption
I Coincides with superdense semantics, when defined
I Supports the slicing of execution engine into

I an event handler and
I a ODE/DAE/nonsmooth solver

18 / 18

	Motivation
	Semantics: what for?
	Core Synchronous Language
	Background: Semantics of Synchronous Languages
	Requirements on Semantic Models of Time
	Time Domains
	A Toy Hybrid Systems Language
	The Superdense Model of Time as a semantic domain
	The Nonstandard Time Domain
	What about DAE Hybrid Systems?
	Conclusion

