Outline

- Integral Quadratic Constraints
- Jump Dynamic Systems
- Numerical Rate Bounds for Stochastic Algorithms
- Analytical Rate Bounds
- Conclusions

Empirical Risk Minimization

Many machine learning problems require optimizing an average loss over a finite training set:

$$
\min _{x \in \mathbb{R}^{p}} g(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

- Ridge regression:
$f_{i}(x)=\left(a_{i}^{T} x-b_{i}\right)^{2}+\frac{m}{2}\|x\|^{2}$
- ℓ_{2}-regularized logistic regression:
$f_{i}(x)=\log \left(1+e^{-b_{i} a_{i}^{T} x}\right)+\frac{m}{2}\|x\|^{2}$
- ℓ_{2}-regularized loss minimization with loss function $l_{i}(x)$: $f_{i}(x)=l_{i}(x)+\frac{\lambda}{2}\|x\|^{2}$

Stochastic Gradient Method

- [Robbins and Monro, 1951] used the iteration rule

$$
x^{k+1}=x^{k}-\alpha \nabla f_{i_{k}}\left(x^{k}\right)
$$

where the index i_{k} is randomly chosen for every k.

- Each iteration requires only one computation.
- With well-chosen constant step size, the method converges linearly to some tolerance of the optimum.

Stochastic Average Gradient (SAG) Method

[Roux et al., 2012; Schmidt et al., 2013] use the iteration rule:

Finite-Sum Methods as Jump Systems

Minimize

$$
g(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

where $f_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is L-smooth and g is m-strongly convex.

$$
x^{k+1}=x^{k}-\frac{\alpha}{n} \sum_{i=1}^{n} y_{i}^{k+1}
$$

where at each iteration a random i_{k} is drawn and

$$
y_{i}^{k+1}:= \begin{cases}\nabla f_{i}\left(x^{k}\right) & \text { if } i=i_{k} \\ y_{i}^{h} & \text { otherwise }\end{cases}
$$

Let $\alpha=\frac{1}{16 L}$. Then $\mathbb{E}\left[g\left(x^{k}\right)-g\left(x^{*}\right)\right] \leq C_{0}\left(1-\min \left\{\frac{1}{8 n}, \frac{m}{16 L}\right\}\right)^{k}$.
$x^{k+1}=x^{k}-\frac{\alpha}{n} \sum_{i=1}^{n} y_{i}^{k+1}$

- Now there is a large family of methods, e.g. SVRG, MISO, Finito, SDCA, and SAGA. Analysis is done case-by-case.
- For example, SAGA (Defazio et al., 2014) uses

$$
\begin{aligned}
& x^{k+1}=x^{k}-\alpha\left(\nabla f_{i_{k}}\left(x^{k}\right)-y_{i_{k}}^{k}+\frac{1}{n} \sum_{i=1}^{n} y_{i}^{k}\right) \\
& y_{i}^{k+1}= \begin{cases}\nabla f_{i}\left(x^{k}\right) & \text { if } i=i_{k} \\
y_{i}^{k} & \text { otherwise }\end{cases}
\end{aligned}
$$

- SAGA and SAG look very similar. But the analysis of SAG is much more difficult! Why?

Stochastic Finite-Sum Methods

- Gradient Descent Method

$$
x^{k+1}=x^{k}-\alpha \nabla g\left(x^{k}\right)
$$

- Convergence is linear.
- Each iteration requires n computations:
$\nabla g\left(x^{k}\right)=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(x^{k}\right)$

$$
(x)=\bar{n} \sum_{i=1} \vee T_{i}(x
$$

Full Gradient Descent Method

Choose $A_{i_{k}}=\tilde{A}_{i_{k}} \otimes I_{p}, B_{i_{k}}=\tilde{B}_{i_{k}} \otimes I_{p}$, and $C=\tilde{C} \otimes I_{p}$ where

Method	$\bar{A}_{i_{k}}$	$\overline{B_{i_{k}}}$	C
SAGA	$\left[\begin{array}{cc}I_{n}-e_{i j} e^{e} e_{i k}^{T} & \tilde{0} \\ -\frac{\alpha}{n}\left(e-n e_{i k}\right)^{T} & 1\end{array}\right]$	$\left[\begin{array}{c}e_{i k} e_{i}^{T} \\ -\alpha e_{i_{k}}^{T}\end{array}\right]$	$\left[\begin{array}{ll}\tilde{0}^{T} & 1\end{array}\right]$
SAG	$\left[\begin{array}{cc}I_{n}-e_{i k} e_{i i^{\prime}}^{T} & \tilde{0} \\ -\frac{\alpha}{n}\left(e-e_{i_{k}}\right)^{T} & 1\end{array}\right]$	$\left[\begin{array}{l}e_{i} e_{i} e_{i} \\ -\frac{\alpha}{n} e_{i k}^{T}\end{array}\right]$	$\left[\begin{array}{ll}\tilde{0}^{T} & 1\end{array}\right]$
Finito	$\left[\begin{array}{cc}I_{n}-e_{i} e^{e} e_{i k}^{T} & \tilde{0} \\ -\alpha\left(e_{i k} e^{T}\right) & \left.I_{n}-e_{i_{k}\left(e_{i_{k}}^{T}-\frac{1}{n} e^{T}\right)}\right]\end{array}\right]$		$\left[\begin{array}{ll}-\alpha e^{T} & \frac{1}{n} e^{T}\end{array}\right]$
SDCA	$I_{n}-\alpha m n e_{i_{k} e^{\prime} e_{i_{k}}^{T}}$	$-\alpha m n e_{i_{k}} e_{i_{k}}^{T}$	$\frac{1}{m n} e^{T}$

Sparsity of $B_{i_{k}}$ captures the low cost of stochastic methods.

LMI Conditions for Rate Analysis

If g is L-smooth and m-strongly convex, then

$$
\left[\begin{array}{l}
x-x^{*} \\
\nabla g(x)
\end{array}\right]^{T}\left[\begin{array}{cc}
-2 m L I_{p} & (m+L) I_{p} \\
(m+L) I_{p} & -2 I_{p}
\end{array}\right]\left[\begin{array}{l}
x-x^{*} \\
\nabla g(x)
\end{array}\right] \geq 0
$$

Assumptions on f_{i} give

$$
\left[\begin{array}{c}
x-x^{*} \\
\nabla f_{i}(x)-\nabla f_{i}\left(x^{*}\right)
\end{array}\right]^{T}\left[\begin{array}{cc}
2 L \gamma I_{p} & (L-\gamma) I_{p} \\
(L-\gamma) I_{p} & -2 I_{p}
\end{array}\right]\left[\begin{array}{c}
x-x^{*} \\
\nabla f_{i}(x)-\nabla f_{i}\left(x^{*}\right)
\end{array}\right] \geq 0
$$

Conclusions from Numerical Results

- For SAGA, the LMI is consistent with existing rate. It even suggests that we can use a diagonal Lyapunov function.
- Numerically solving the analysis LMI
$\frac{1}{n} \sum_{i=1}^{n}\left[\begin{array}{cc}A_{i}^{T} P A_{i}-\rho^{2} P & A_{i}^{T} P B_{i} \\ B_{i}^{T} P A_{i} & B_{i}^{T} P B_{i}\end{array}\right]+\left[\begin{array}{ll}C & D\end{array}\right]^{T} M\left[\begin{array}{ll}C & D\end{array}\right] \prec 0$
reveals opportunities and difficulties with different methods.
- After implementing the LMI once, one then only needs to modify the $\left(A_{i}, B_{i}, C\right)$ matrices for every new method.

Outline

- Integral Quadratic Constraints
- Jump Dynamic Systems
- Numerical Rate Bounds for Stochastic Algorithms

- Analytical Rate Bounds

Simplified Parameterization

$\left.\begin{array}{c|c|c}\hline \text { Method } & \text { Parameterization of } \bar{P} & \text { Matrix Form of the Resultant LMI } \\ \hline \text { SAGA } & {\left[\begin{array}{cc}p_{1} I_{n} & \tilde{0} \\ \tilde{0}^{T} & p_{2}\end{array}\right]} & {\left[\begin{array}{ccc}\mu_{1} I_{n}+q_{1} e e^{T} & q_{4} e & \mu_{6} I_{n}+q_{6} e e^{T} \\ q_{4} e^{T} & \mu_{2} & q_{5} e^{T} \\ \mu_{6} I_{n}+q_{6} e e^{T} & q_{5} e & \mu_{3} I_{n}+q_{3} e e^{T}\end{array}\right]} \\ \text { SDCA } & p_{1} I_{n}+p_{2} e e^{T} & {\left[\begin{array}{cc}\mu_{1} I_{n}+q_{1} e e^{T} & \mu_{3} I_{n}+q_{3} e T^{T} \\ \mu_{3} I_{n}+q_{3} e e^{T} & \mu_{2} I_{n}+q_{2} e e^{T}\end{array}\right]} \\ \text { Finito } & {\left[\begin{array}{cc}p_{1} I_{n}+p_{2} e e^{T} & p_{3} e e^{T} \\ p_{3} e e^{T} & p_{4} I_{n}+p_{5} e e^{T}\end{array}\right]}\end{array}\right]\left[\begin{array}{ccc}\mu_{1} I_{n}+q_{1} e e^{T} & \mu_{4} I_{n}+q_{4} e e^{T} & \mu_{6} I_{n}+q_{6} e e^{T} \\ \mu_{4} I_{n}+q_{4} e e^{T} & \mu_{2} I_{n}+q_{2} e e^{T} & \mu_{5} I_{n}+q_{5} e e^{T} \\ \mu_{6} I_{n}+q_{6} e e^{T} & \mu_{5} I_{n}+q_{5} e e^{T} & \mu_{3} I_{n}+q_{3} e e^{T}\end{array}\right]$

Simplified LMI for SAGA

Suppose i_{k} is uniformly sampled and $m>0$. Let a testing rate $0 \leq \rho \leq 1$ be given. Suppose $g \in \mathcal{S}(m, L)$, and γ is defined based on assumptions on f_{i}. If there exist positive scalars p_{1}, p_{2}, and non-negative scalars λ_{1}, λ_{2} such that

$$
\begin{aligned}
& {\left[\begin{array}{cc}
p_{2} \alpha^{2}+\left(\frac{n-1}{n}-\rho^{2}\right) n p_{1} & -\alpha^{2} p_{2} \\
-\alpha^{2} p_{2} & p_{1}+\alpha^{2} p_{2}-2 \lambda_{2}
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
\left(1-\rho^{2}\right) p_{2}-2 \lambda_{1} m L+2 \lambda_{2} L \gamma & -\alpha p_{2}+(m+L) \lambda_{1}+(L-\gamma) \lambda_{2} \\
-\alpha p_{2}+(m+L) \lambda_{1}+(L-\gamma) \lambda_{2} & p_{1}+\alpha^{2} p_{2}-2 \lambda_{2}-2 \lambda_{1}
\end{array}\right]}
\end{aligned}
$$

Then SAGA initialized with any $x^{0} \in \mathbb{R}^{p}$ and $y_{i}^{0} \in \mathbb{R}^{p}$ satisfies

$$
\mathbb{E}\left[\left\|x^{k}-x^{*}\right\|^{2}+\frac{p_{1}}{p_{2}} \sum_{i=1}^{n}\left\|y_{i}^{k}-\nabla f_{i}\left(x^{*}\right)\right\|^{2}\right] \leq \rho^{2 k} R^{0}
$$

where $R^{0}=\left\|x^{0}-x^{*}\right\|^{2}+\frac{p_{1}}{p_{2}} \sum_{i=1}^{n}\left\|y_{i}^{0}-\nabla f_{i}\left(x^{*}\right)\right\|^{2}$.

SAGA with Individual Convexity

When f_{i} is m-strongly convex, we have $\gamma=-m$, and the LMI becomes

$$
\begin{aligned}
& {\left[\begin{array}{cc}
p_{2} \alpha^{2}+\left(\frac{n-1}{n}-\rho^{2}\right) n p_{1} & -\alpha^{2} p_{2} \\
-\alpha^{2} p_{2} & p_{1}+\alpha^{2} p_{2}-2 \lambda_{2}
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
\left(1-\rho^{2}\right) p_{2}-2\left(\lambda_{1}+\lambda_{2}\right) m L & -\alpha p_{2}+(m+L)\left(\lambda_{1}+\lambda_{2}\right) \\
-\alpha p_{2}+(m+L)\left(\lambda_{1}+\lambda_{2}\right) & p_{1}+\alpha^{2} p_{2}-2 \lambda_{2}-2 \lambda_{1}
\end{array}\right] \leq 0}
\end{aligned}
$$

We can choose $p_{1}=\frac{1}{L}, p_{2}=\frac{1}{\alpha}, \lambda_{1}=0$, and $\lambda_{2}=\frac{1}{L}$ to show
$\mathbb{E}\left[\left\|x^{k}-x^{*}\right\|^{2}\right] \leq\left(1-\min \left\{\frac{2 L \alpha-1}{(L \alpha-1) n}, 2 m \alpha-\frac{\alpha m^{2}}{(1-L \alpha) L}\right\}\right)^{k} R^{0}$
where $R^{0}=\left\|x^{0}-x^{*}\right\|^{2}+\frac{\alpha}{L} \sum_{i=1}^{n}\left\|y_{i}^{0}-\nabla f_{i}\left(x^{*}\right)\right\|^{2}$. Choosing $\alpha=\frac{1}{3 L}$, we have standard SAGA rate $\rho^{2}=1-\min \left\{\frac{1}{3 n}, \frac{m}{3 L}\right\}$.

SAGA without Individual Convexity

When f_{i} is only L-smooth (not necessarily convex), we have $\gamma=L$, and the LMI becomes

$$
\begin{aligned}
& {\left[\begin{array}{cc}
p_{2} \alpha^{2}+\left(\frac{n-1}{n}-\rho^{2}\right) n p_{1} & -\alpha^{2} p_{2} \\
-\alpha^{2} p_{2} & p_{1}+\alpha^{2} p_{2}-2 \lambda_{2}
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
\left(1-\rho^{2}\right) p_{2}-2 \lambda_{1} m L+2 \lambda_{2} L^{2} & -\alpha p_{2}+(m+L) \lambda_{1} \\
-\alpha p_{2}+(m+L) \lambda_{1} & p_{1}+\alpha^{2} p_{2}-2 \lambda_{2}-2 \lambda_{1}
\end{array}\right] \leq 0}
\end{aligned}
$$

When $\alpha=\frac{m}{4\left(m^{2} n+L^{2}\right)}$, we can choose $b=\frac{2\left(m^{2} n+L^{2}\right)}{L^{2}}$,
$p_{1}=b \alpha>0, p_{2}=\frac{1}{\alpha}, \lambda_{1}=\frac{1}{L} \geq 0$, and $\lambda_{2}=b \alpha$ to show

$$
\mathbb{E}\left[\left\|x^{k}-x^{*}\right\|^{2}\right] \leq\left(1-\frac{m^{2}}{8\left(m^{2} n+L^{2}\right)}\right)^{k} R^{0}
$$

where $R^{0}=\left\|x^{0}-x^{*}\right\|^{2}+\frac{m^{2}}{8\left(m^{2} n+L^{2}\right) L^{2}} \sum_{i=1}^{n}\left\|y_{i}^{0}-\nabla f_{i}\left(x^{*}\right)\right\|^{2}$. Hence, the ϵ-optimal iteration complexity of SAGA without individual convexity is $\tilde{O}\left(\left(\frac{L^{2}}{m^{2}}+n\right) \log \left(\frac{1}{\epsilon}\right)\right)$.

Conclusions from Simplified LMIs

- Finito and SDCA (with and without individual convexity) can be analyzed similarly.
- When assumptions on f_{i} change, we only need to modify the value of γ and solve the resultant LMI.
- The LMI for SAGA only has 4 decision variables!
- Finito requires off-diagonal terms in the Lyapunov function and the resultant LMI has 7 decision variables! We only prove $\tilde{O}\left(n \log \left(\frac{1}{\epsilon}\right)\right)$ under a big data condition $n \geq \frac{48 L^{2}}{m^{2}}$.
- SAG requires advanced quadratic constraints, and the resultant LMI has 10 decision variables! Analytically hard! This explains why the original proof for SAG is involved!

Summary

Future Work

- Automate rate analysis of stochastic finite-sum methods.
- Distinguish difficult methods, e.g. SAG, from easy methods, e.g. SAGA, at early stage.
- Use numerical semidefinite programs to support search for analytical proofs.
- Analysis of Acceleration
- Automated Algorithm Design
- Worst case analysis from dual problem
- Asynchronous Settings and Time Delays

Bin Hu, Peter Seiler, and Anders Rantzer, "A unified analysis of stochastic optimization methods using jump system theory and quadratic constraints," Conference On Learning Theory, COLT 2017.

