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STimulated Emission Depletion



STimulated Emission Depletion

≈ 3nm per pixel



Statistical Image Denoising/Deconvolution
minimize

x∈Rn
f (x)

subject to gε(Ax) ≤ 0

where f is convex, piecewise linear-quadratic, A : Rn → Rn , and

gε : Rn → m = 2Rn
:= v 7→ (g1(v)− ε1,g2(v)− ε2, . . . ,gm(v)− εm)T

is convex and smooth

What is the scientific content of processed images?
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Goals

Solve
0 ∈ F (x)

for F : E ⇒ E with E a Euclidean space.

I #1. Convergence (with a posteriori error bounds) of Picard
iterations:

xk+1 ∈ Txk where Fix T ≈ zer F

I #2. Algorithms:
I (Non)convex Optimization: ADMM/Douglas-Rachford
I Saddle-point Problems: Proximal Alternating Predictor-Corrector

(PAPC)

I #3. Applications:
I Image denoising/deconvolution
I Phase retrieval



Building blocks

I Resolvent: (Id +λF )−1

I Prox operator: for a function f : X → R , define

proxM,f (x) := argmin y

{
f (y) +

1
2
‖y − x‖2

M

}
I Proximal reflector: RM,f := 2 proxM,f − Id
I Projector: if f = ιΩ for Ω ⊂ X closed and nonempty, then

proxM,f (x) = PΩx where

PΩx := {x ∈ Ω | ‖x − x‖ = dist (x ,Ω)}
dist (x ,Ω) := inf

y∈Ω
‖x − y‖M .

I Reflector: if f = ιΩ for some closed, nonempty set Ω ⊂ X , then
RΩ := 2PΩ − Id



Optimization

p∗ = min
x

{
f (x) +

I∑
i

gi (AT
i x) =: f (x) + g(AT x) : x ∈ Rn

}
. (P)

Reformulations:

Augmented Lagrangian

min
x∈Rn

min
v∈Rm

f (x) + 〈x , Ab〉 − 〈b, v〉+ g(v) + 1
2‖A

T x − v‖2
M (L)

Saddle-point

min
x∈Rn

max
y∈Rm

{
K (x , y) := f (x) +

〈
AT x , y

〉
− g∗(y)

}
. (M)



Algorithms

ADMM
Initialization. Choose η > 0 and (x0, v0,b0).
General Step (k = 0,1, . . .)

xk+1 ∈ argmin x

{
f (x) + 〈bk ,Ax〉+ η

2‖Ax − vk‖2
}

; (1a)

vk+1 ∈ argmin v

{
g(v)− 〈bk , v〉+ η

2‖Axk+1 − v‖2
}

; (1b)

bk+1 = bk + η(Axk+1 − vk+1). (1c)

In the convex setting, the points in ADMM can be computed from the
corresponding points in

Douglas-Rachford

yk+1 ∈ Tyk (k ∈ N)

for T := 1
2 (RηBRηD + Id) = JηB(2JηD − Id) + (Id−JηD),

where B := ∂
(
f ∗ ◦ (−AT )

)
and D := ∂g∗



Algorithms

Proximal Alternating Predictor-Corrector (PAPC) [Drori,
Sabach&Teboulle, 2015]
Initialization: Let (x0, y0) ∈ Rn × Rm, and choose the parameters τ
and σ to satisfy

τ ∈
(

0, 1
Lf

)
, 0 < τσ ≤ 1

‖ATA‖ .

Main Iteration: for k = 1,2, . . . update xk , yk as follows:

pk = xk−1 − τ(∇f (xk−1) +Ayk−1);

for i = 1, . . . , I,

yk
i = proxσ,g∗

i

(
yk−1

i + σAT
i pk

)
;

xk = xk−1 − τ(∇f (xk−1) +Ayk ).
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Key abstract properties

Almost firm nonexpansiveness
T : E ⇒ E is pointwise almost firmly nonsexpansive at y when∥∥x+ − y+

∥∥2 ≤ ε

2
‖x − y‖2 + 〈x+ − y+, x − y〉

for all x+ ∈ Tx , and all y+ ∈ Ty whenever x ∈ U.

Metric subregularity (Ioffe, Aze, Dontchev&Rockafellar)
Φ : E ⇒ Y is metrically regular on U × V ⊂ E× Y relative to Λ ⊂ E if
∃ a κ > 0 such that

dist
(
x ,Φ−1(y) ∩ Λ

)
≤ κdist (y ,Φ(x)) (2)

holds for all x ∈ U ∩ Λ and y ∈ V . When the set V consists of a single
point, V = {y}, then Φ is said to be metrically subregular for y on U
relative to Λ ⊂ E.



Abstract results

Linear convergence [L. Nguyen& Tam, 2017]
Let g = ιΩ for Ω ⊂ Rn semi-algebraic and let f : Rn → R be
linear-quadratic convex. Let (xk )k∈N be iterates of the
Douglas–Rachford algorithm and let Λ = aff (xk ). If TDR − Id is
metrically subregular at all points x ∈ Fix TDR ∩ Λ 6= ∅ relative to Λ
then for all x0 close enough to Fix TDR ∩ Λ, the sequence xk

converges linearly to a point in Fix T ∩ Λ with constant at most
c =

√
1 + ε− 1/κ2 < 1 where κ is the constant of metric

subregularity for TDR − Id on some neighborhood U containing the
sequence and ε is the violation of almost firm nonexpansiveness on
the neighborhood U.



Polyhedrality =⇒ metric subregularity

If T is polyhedral and Fix T ∩ Λ consists of isolated points, then Id−T
is metrically subregular at x relative to Λ.



Application: ADMM/Douglas-Rachford

Linear convergence of polyhedral DR/ADMM [Aspelmeier,
Charitha, L., 2016]
Let f : U → R ∪ {+∞} and g : V → R be proper, lsc, convex,
piecewise linear-quadratic functions and T the corresponding
Douglas-Rachford fixed point mapping. Suppose that, for some affine
subspace W , Fix T ∩W is an isolated point {y}. Then the
Douglas-Rachford sequence (yk )k∈N converges linearly to y with rate
bounded above by

√
1− κ−2, where κ > 0 is a constant of metric

subregularity of Id−T at y for the neighborhood O. Moreover, the
sequence

(
bk , vk

)
k∈N generated by the ADMM Algorithm converges

linearly to
(

b, v
)

and the primal ADMM sequence
(
xk
)

k∈N converges
to a solution to P.



Remark

Compare to

Linear convergence with strong monotonicity
Let f and g be proper, lsc and convex. Suppose there exists a
solution to 0 ∈

(
∂
(
f ∗ ◦ (−AT )

)
+ ∂g∗

)
(x) where A is an injective

linear mappinig. Suppose further that, on some neighborhood of y g
is strongly convex with constant µ and ∂g is β-inverse strongly
monotone for some β > 0. Then any DR sequence initiated on this
neighborhood converges linearly to a point in Fix T with rate at least

K =
(

1− 2ηβµ2

(µ+η)2

) 1
2
< 1.

[Lions&Mercier, 1979]

See also He&Yuan, (2012); Boley (2013); Hesse&L. (2013);
Bauschke,BelloCruz,Nghia,Phan&Wang(2014);
Bauschke&Noll(2014); Hesse, Neumann&L. (2014); Patrinos,
Stella&Bemporad (2014); Giselsson (2015×2).



Strong monotonicity: nice when you have it...

I TV: f (x) := ‖∇x‖1

I modified Huber:

fα(t) =


(t+ε)2−ε2

2α if 0 ≤ t ≤ α− ε
(t−ε)2−ε2

2α if −α + ε ≤ t ≤ 0

|t |+
(
ε− ε2+α2

2α

)
if |t | > α− ε.



Beyond monotonicity

Pointwise quadratically supportable functions

(i) ϕ : Rn → R ∪ {+∞} is pointwise quadratically supportable at y if
it is subdifferentially regular there and ∃ a neighborhood V of y
and a µ > 0 such that

(∀v ∈ ∂ϕ(y)) ϕ(x) ≥ ϕ(y)+〈v , x − y〉+ µ

2
‖x − y‖2

, ∀x ∈ V .

(ii) ϕ : Rn → R ∪ {+∞} is strongly coercive at y if it is
subdifferentially regular on V and ∃ a neighborhood V of y and a
constant µ > 0 such that

(∀v ∈ ∂ϕ(z)) ϕ(x) ≥ ϕ(z)+〈v , x − z〉+µ

2
‖x − z‖2

, ∀x , z ∈ V .



Strong convexity

Compare to:

(pointwise) strongly convex functions

(i) ϕ : Rn → R ∪ {+∞} is pointwise strongly convex at y if there ∃ a
convex neighborhood V of y and a constant µ > 0 such that,
(∀τ ∈ (0,1))

ϕ (τx + (1− τ)y) ≤ τϕ(x)+(1−τ)ϕ(y)−1
2
µτ(1−τ)‖x−y‖2, ∀x ∈ V .

(ii) ϕ : Rn → R ∪ {+∞} is strongly convex at y if ∃ a cvx
neighborhood V of y and a constant µ > 0 such that,
(∀τ ∈ (0,1))

ϕ (τx + (1− τ)z) ≤ τϕ(x)+(1−τ)ϕ(z)−1
2
µτ(1−τ)‖x−z‖2, ∀x , z ∈ V .



Relations

I

{str cvx fncts} = {str coercive fncts}
= {str mon fncts}
⊂ {cvx fncts}

I

{ptws str cvx fncts at x} ⊂ {ptws quadr supportable fncts at x}

{ptws str mon fncts at x} ⊂ {ptws quadr supportable fncts at x}

f ptws quadratically supportable at x ; f convex
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Linear Convergence of PAPC
Recall

PAPC
Initialization: Let (x0, y0) ∈ Rn × Rm, and choose the parameters τ and σ to
satisfy

τ ∈
(

0, 1
Lf

)
, 0 < τσ ≤ 1

‖ATA‖ .

Main Iteration: for k = 1, 2, . . . update xk , yk as follows:

pk = xk−1 − τ(∇f (xk−1) +Ayk−1);

for i = 1, . . . , I,

y k
i = proxσ,g∗

i

(
y k−1

i + σAT
i pk
)
;

xk = xk−1 − τ(∇f (xk−1) +Ay k ).

Saddle-point

min
x∈Rn

max
y∈Rm

{
K (x , y) := f (x) +

〈
AT x , y

〉
− g∗(y)

}
.



Convergence to unique solutions

Q-linear convergence of PAPC
For f convex, ptwise quadrat. supportable at all saddle-point solutions
and differentiable with Lipschitz gradient, g convex and A full rank,
the sequence {(xk , yk )}k∈N generated by the PAPC algorithm is
Q-linearly convergent to every saddle-point solution with respect to a
weighted Euclidean norm dependent on σ, τ and A.

Uniqueness of saddle-points
For f convex, ptwise quadrat. supportable at all saddle-point solutions
and differentiable with Lipschitz gradient, g convex and A full rank,
the set of saddle points is a singleton.
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Statistical Image Denoising/Deconvolution

minimize
x∈Rn

f (x)

subject to gε(Ax) ≤ 0
→ minimize

x∈Rn
f (x)+ρmax{gε(Ax)}.

exact regularization

Solve with
ADMM = Douglas-Rachford on the
dual [Aspelmeier-Charitha-L. 2016]
Solve with Proximal
Alternating Predictor-Corrector
(primal-dual for saddle-point
model) [L., Shefi 2017].



Structural assumptions
Reconstruct the estimator x̄ of the observed signal b that is a solution
to the convex optimization problem:

inf
x∈X

f (x) s.t max
s∈S

∣∣∣∣∣∑
ν∈G

ωs(Ax − b)ν

∣∣∣∣∣ ≤ q (3)

The following blanket assumptions on the problem’s data hold
throughout:

Assumptions

(i) The set of optimal solutions for problem (P), denoted X ∗, is
nonempty.

(ii) The function f : Rn → R is convex and continuously differentiable
with Lipschitz continuous gradient ∇f (constant Lf ) and
pointwise quadratically supportable at points in X ∗

(iii) gi : Rmi → (−∞,+∞], (i = 1, . . . , I) is proper, lsc, and convex.

(iv) The linear mappings Ai : Rmi → Rn, i = 1, . . . , I are full rank, that
is, σ2

min(Ai ) = λmin(AT
i Ai ) > 0.



ADMM with exact penalization
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(about 1 week cpu time)



ADMM with exact penalization

What you can say about the reconstruction:
Under the assumption that the latter iterates are indeed in the region
of local linear convergence and exact evaluation of prox mappings,
the observed convergence rate is c = 0.9997, which yields an a
posteriori upper estimate of the pixelwise error of about 8.9062e−4, or
3 digits of accuracy at each pixel for the computed solution to

minimize
x∈Rn

f (x)

subject to Fε(Ax) ≤ 0
.



PAPC with exact constraints



PAPC with exact constraints

(about 2 hours cpu time)



PAPC with exact constraints

What you can say about the reconstruction:
With an estimated convergence rate of c = 0.9993 for the Huber
objective this corresponds to an a posteriori upper estimate of the
error at iteration k = 800 of 2.4 ∗ 10−3. With an estimated
convergence rate of c = 0.9962 for the quadratic objective function
this corresponds to an a posteriori upper estimate of the error at
iteration k = 800 of 1.5 ∗ 10−3 – about two digits of accuracy at each
pixel for the computed solution to

minimize
x∈Rn

f (x)

subject to Fε(Ax) ≤ 0
.



Blind Phase Retrieval

Ptychographic Imaging [Hegerl&Hoppe, (1970)]

[Institute for X-Ray Physics, Göttingen]



Blind Phase Retrieval

Mathematical Model:
Let F : Cn → Cn denote the discrete Fourier transform. Given bj ∈ Rn

+

and the linear shift operator Sj : Cn → Cn,
find x , y ∈ Cn satisfying∣∣(F (Sj (x)� y

))
l

∣∣ = bjl , (j = 1,2, . . . ,m)(l = 1,2, . . .n).

[Hesse, L. Sabach, Tam (2015)]

Typical problem sizes:
n = 9.6× 105, m = 400
=⇒
3.86× 108 nonlinear equations
in 3.86× 106 unknowns.

Algorithms
must be simple (no parameters)
and must say more than
the standard techniques can say.



ProxToolbox
http://num.math.uni-goettingen.de/proxtoolbox

(Python version coming soon!)

http://num.math.uni-goettingen.de/proxtoolbox
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