Optimal and Long-Step Feasibility Algorithms

Pontus Giselsson, Mattias Fält

Dept. of Automatic Control
Faculty of Engineering (LTH)
Lund University

Objective

- Create efficient algorithms for solving large-scale cone programs:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x+s=b \\
& s \in \mathcal{K}
\end{array}
$$

where \mathcal{K} is a convex cone

- Special focus on high accuracy solutions

Feasibility formulation

- Primal and dual problems:

$$
\begin{array}{cl}
\min & c^{T} x \\
\mathrm{s.t.} & A x+s=b \\
& s \in \mathcal{K}
\end{array}
$$

$$
\begin{aligned}
\max & b^{T} y \\
\text { s.t. } & A^{T} y=-c \\
& y \in \mathcal{K}^{*}
\end{aligned}
$$

- Primal dual embedding, using strong duality $\left(c^{T} x+b^{T} y=0\right)$:

$$
\begin{array}{ll}
\text { find } \\
\text { such that } & (x, s, y) \\
{\left[\begin{array}{ccc}
0 & 0 & A^{T} \\
A & I & 0 \\
c^{T} & 0 & b^{T}
\end{array}\right]\left[\begin{array}{c}
x \\
s \\
y
\end{array}\right]=\left[\begin{array}{c}
-c \\
b \\
0
\end{array}\right]} \\
(x, s, y) \in \mathbb{R}^{n} \times \mathcal{K} \times \mathcal{K}^{*}
\end{array}
$$

Our focus

Method of alternating relaxed projections (MARP) ${ }^{1}$
 or
 Generalized alternating projections (GAP) ${ }^{1}$

[^0]
Relaxed projection

- Relaxed projection operator

$$
\Pi_{C}^{\alpha} x:=(1-\alpha) x+\alpha \Pi_{C} x
$$

- Relaxation parameter $\alpha \in(0,2]$ decides relaxed projection point

Alternating relaxed projections

- Alternating relaxed projections:

$$
x^{k+1}=(1-\alpha) x^{k}+\alpha \Pi_{D}^{\alpha_{2}} \Pi_{C}^{\alpha_{1}} x^{k}
$$

Alternating relaxed projections

- Alternating relaxed projections:

$$
x^{k+1}=(1-\alpha) x^{k}+\alpha \Pi_{D}^{\alpha_{2}} \Pi_{C}^{\alpha_{1}} x^{k}
$$

- Alternating projections: $\left(\alpha_{1}=\alpha_{2}=\alpha=1\right)$

Alternating relaxed projections

- Alternating relaxed projections:

$$
x^{k+1}=(1-\alpha) x^{k}+\alpha \Pi_{D}^{\alpha_{2}} \Pi_{C}^{\alpha_{1}} x^{k}
$$

- Alternating projections: $\left(\alpha_{1}=\alpha_{2}=\alpha=1\right)$
- Douglas-Rachford: $\left(\alpha_{1}=\alpha_{2}=2, \alpha=1 / 2\right)$

Alternating relaxed projections

- Alternating relaxed projections:

$$
x^{k+1}=(1-\alpha) x^{k}+\alpha \Pi_{D}^{\alpha_{2}} \Pi_{C}^{\alpha_{1}} x^{k}
$$

- Alternating projections: $\left(\alpha_{1}=\alpha_{2}=\alpha=1\right)$
- Douglas-Rachford: $\left(\alpha_{1}=\alpha_{2}=2, \alpha=1 / 2\right)$
- Performance and behavior highly dependent on parameters
- Interpretation: Exploration-exploitation trade-off

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example - Alternating projections

3D example - Alternating projections

3D example - Alternating projections

3D example - Alternating projections

3D example - Alternating projections

3D example - Alternating projections

3D example - Alternating projections

3D example - Alternating projections

3D example - Alternating projections

3D example - Alternating projections

3D example - Alternating projections

3D example - Alternating projections

3D example - Douglas-Rachford

3D example - Douglas-Rachford

$$
0
$$

3D example - Douglas-Rachford

3D example - Trade-off

Distance to intersection

Distance for shadow sequence to intersection, x^{\star} :

$$
\left\|\Pi_{C}\left(x^{k}\right)-x^{\star}\right\|
$$

Optimal trade-off?

- Although algorithm from 1950's, optimal parameters not known
- Not even for subspace intersection problems

Our contribution

Optimally parameter selection for subspace intersection problem:

$$
\text { find } x \in \mathcal{U} \cap \mathcal{V}
$$

where

$$
\mathcal{U}:=\left\{x \in \mathbb{R}^{n}: A x=0\right\}, \quad \mathcal{V}:=\left\{x \in \mathbb{R}^{n}: B x=0\right\}
$$

Why interesting?

- Assume general convex intersection problem

$$
\text { find } x \in C \cap D
$$

where

- Intersection between C and D is "sufficiently regular"
- The sets are "sufficiently smooth"
- Then algorithm exhibits a finite identification property:
- Active manifolds for attracting intersection point identified in finite number of iterations
- Locally, behavior of iterates become (or approach) an affine subspace intersection iteration

Convergence rate

- Alternating relaxed projections for subspace intersection problem:

$$
x^{k+1}=(1-\alpha) x^{k}+\alpha \Pi_{\mathcal{U}}^{\alpha_{2}} \Pi_{\mathcal{V}}^{\alpha_{1}} x^{k}
$$

- Algorithm is matrix iteration with (parameter dependent) matrix

$$
M\left(\alpha, \alpha_{1}, \alpha_{2}\right):=(1-\alpha) I+\alpha\left(\left(1-\alpha_{2}\right) I+\alpha_{2} \Pi_{\mathcal{U}}\right)\left(\left(1-\alpha_{1}\right) I+\alpha_{1} \Pi_{\mathcal{V}}\right)
$$

- Sharp asymptotic rate is magnitude of second largest eigenvalues,

$$
\left|\lambda_{2}\left(M\left(\alpha, \alpha_{1}, \alpha_{2}\right)\right)\right|
$$

(not counting multiplicity of eigenvalue at 1)

Friedrichs angle

- Eigenvalues depend on principal angles between \mathcal{U} and \mathcal{V}
- The smallest nonzero principal angle is called Friedrichs angle, θ_{F}

Known results

- Alternating projections $\left(\alpha=\alpha_{1}=\alpha_{2}=1\right)^{1}$:

$$
\left|\lambda_{2}(M(1,1,1))\right|=\cos ^{2} \theta_{F}
$$

- Douglas-Rachford $\left(\alpha=\frac{1}{2}, \alpha_{1}=\alpha_{2}=2\right)^{2}$:

$$
\left|\lambda_{2}(M(0.5,2,2))\right|=\cos \theta_{F}
$$

- One parameter optimized while two fixed ${ }^{3}$

[^1]
Our contribution

- Let $p=\operatorname{dim} \mathcal{U}$ and $q=\operatorname{dim} \mathcal{V}$ with \mathcal{U} and \mathcal{V} linear subspaces
- Assume: Dimensions for linear subspaces unknown
- Find $\alpha, \alpha_{1}, \alpha_{2}>0$ that solve

$$
\begin{array}{lll}
\operatorname{minimize} & \gamma & \\
\text { subject to } & \left|\lambda_{2}\left(M\left(\alpha, \alpha_{1}, \alpha_{2}\right)\right)\right| \leq \gamma & \text { for } q<p \\
& \left|\lambda_{2}\left(M\left(\alpha, \alpha_{1}, \alpha_{2}\right)\right)\right| \leq \gamma & \text { for } q=p \\
& \left|\lambda_{2}\left(M\left(\alpha, \alpha_{1}, \alpha_{2}\right)\right)\right| \leq \gamma & \text { for } q>p
\end{array}
$$

- Optimal parameters:

$$
\alpha_{1}^{*}=\alpha_{2}^{*}=\frac{2}{1+\sin \theta_{F}}, \quad \alpha^{*}=1
$$

- Optimal rate:

$$
\gamma^{*}=\frac{1-\sin \theta_{F}}{1+\sin \theta_{F}}=\alpha_{1}^{*}-1
$$

Rate comparison

Rate comparison

Optimal parameters depend on Friedrichs angle, which is not known

Adaptive method

- Online method to estimate θ_{F} :

Adaptive method

- Online method to estimate θ_{F} :

- Conservative: $\hat{\theta}^{k} \geq \theta_{F}$ if $x^{k} \in \mathcal{U}+\mathcal{V}$

Adaptive method

- Online method to estimate θ_{F} :

- Conservative: $\hat{\theta}^{k} \geq \theta_{F}$ if $x^{k} \in \mathcal{U}+\mathcal{V}$
- Adaptive method: Choose $\alpha_{1}^{k}=\alpha_{2}^{k}=\frac{2}{1+\sin \hat{\theta}^{k}}$ and $\alpha=1$

Adaptive method

- Online method to estimate θ_{F} :

- Conservative: $\hat{\theta}^{k} \geq \theta_{F}$ if $x^{k} \in \mathcal{U}+\mathcal{V}$
- Adaptive method: Choose $\alpha_{1}^{k}=\alpha_{2}^{k}=\frac{2}{1+\sin \hat{\theta}^{k}}$ and $\alpha=1$
- Easy to prove convergence to intersection

3D example - convergence

Distance for shadow sequence to intersection, x^{\star} :

$$
\left\|\Pi_{C}\left(x^{k}\right)-x^{\star}\right\|
$$

Problem

- Performance of all methods depends on the Friedrichs angle
- Poor performance when Friedrichs angle very small
- Example with Friedrichs angle $\theta_{F}=0.0001$
- Optimal rate factor $\gamma=0.9998$
- 20000 iterations: $\gamma^{20000}=0.0183$

Long-step method

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

Long-step method

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

Long-step method

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- Can we construct "better" set that contains fixed-point set?

Long-step method

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- Can we construct "better" set that contains fixed-point set?

Long-step method

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- Can we construct "better" set that contains fixed-point set?

Long-step method

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- Can we construct "better" set that contains fixed-point set?

Long-step method

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- Can we construct "better" set that contains fixed-point set?
- Long-step method: (Relaxed) projection onto intersection

Long-step method

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- Can we construct "better" set that contains fixed-point set?
- Long-step method: (Relaxed) projection onto intersection

Closer to intersection

Closer to intersection

Closer to intersection

Closer to intersection

Closer to intersection

- Smaller angle between projection vectors \Rightarrow longer step

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example

3D example - convergence

Distance for shadow sequence to intersection, x^{\star} :

$$
\left\|\Pi_{C}\left(x^{k}\right)-x^{\star}\right\|
$$

Algorithm variations

- Perform long-step in every iteration
- Run adaptive method and interleave with occasional long-steps
- Use history of halfspaces \Rightarrow smaller intersection and longer steps
- Parallel versions: construct halfspaces from parallel projections ${ }^{1}$

[^2]
Convergence

Convergence to a fixed-point can be proven using the following steps:

- Method can be written as

$$
x^{k+1}=S_{k} x^{k}
$$

where S_{k} is (iteration dependent) quasi-averaged operator

- Intersection of fixed-point sets of all operators S_{k} is $C \cap D$
- Steps longer or as long as in nominal method

Numerical evaluation

- Problem:

$$
\begin{array}{ll}
\text { find } & x \\
\text { such that } & A(x-b)=0 \\
& x \geq 0
\end{array}
$$

- $A^{150 \times 300}$ has randomly generated entries, $b=10^{-8} 1$
- Constructed to have small feasible set

Numerical evaluation

Plot: $\operatorname{dist}_{C}\left(\Pi_{D} x^{k}\right)$ vs iteration k

Trajectory generation

- Trajectory generation problem for quadrocopters:

- Visit points in space while avoiding obstacles
- Can "solve" this using our feasibility methods and Superiorization

Superiorization

- Assume that T is averaged with nonempty fixed-point set
- Basic (Krasnoselskii-Mann) method to find fixed-point:

$$
x^{k+1}=T x^{k}
$$

- Any orbit $\left(x^{k}\right)_{k \geq 0}$ converges to fixed-point of T if 1

$$
\sum_{k=0}^{\infty}\left\|x^{k+1}-T x^{k}\right\|<\infty
$$

- Superiorization ${ }^{2}$:

$$
x^{k+1}=T\left(x^{k}-\beta_{k} \nabla f\left(x^{k}\right)\right)
$$

with β_{k} summable and ∇f bounded
${ }^{1}$ D. Butnariu, S. Reich, and A.J. Zaslavski, 2006.
${ }^{2}$ D. Butnariu, R. Davidi, G. T. Herman, and I. Kazantsev, 2007.

Formulation

Convex constraints solved using feasibility methods:

- Quadrocopter dynamic constraints
- Quadrocopter state and input constraints
- Room box constraints

Nonconvex constraints, violation modeled with nonconvex cost:

- Obstacle avoidance
- Minimize shortest distance from trajectory to each point

Generated trajectory

Experimental setup

- Positioning system with ultra-wideband radio communication
- Time stamp sent in communication from quadrocopter to nodes
- Positioning decided from time between send and receive

- 20 to 30 times cheaper than, e.g., a VICON system

Video

Real trajectories

Real trajectories

Real trajectories

Conclusions

- Optimal parameters for alternating relaxed projections
- Long step feasibility method
- Trajectory generation for quadrocopters

Ongoing work

- Compare first-order methods for large-scale conic programming
- Julia packages:
- Solver suite for first order method (FirstOrderSolvers.jl)
- Test bed for evaluating methods

Thank you

And thanks to Marcus Greiff for quadcopter flying

References

M. Fält, P. Giselsson. "Optimal Convergence Rates for Generalized Alternating Projections", 2017. arXiv:1703.10547.
S. Agmon, "The relaxation method for linear inequalities," Canadian Journal of Mathematics, vol. 6, no. 3, pp. 382-392, 1954.
T. S. Motzkin and I. Shoenberg, "The relaxation method for linear inequalities," Canadian Journal of Mathematics, vol. 6, no. 3, pp. 383-404, 1954.
L. M. Bregman, "Finding the common point of convex sets by the method of successive projection," Dokl Akad. Nauk SSSR, vol. 162, no. 3, pp. 487-490, 1965.
H. H. Bauschke, J. Y. B. Cruz, T. T. A. Nghia, H. M. Pha, and X. Wang, "The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle," Journal of Approximation Theory, vol. 185, no. 0, pp. 63-79, 2014.
H. H. Bauschke, J. Y. B. Cruz, T. T. A. Nghia, H. M. Pha, and X. Wang, "Optimal rates of linear convergence of relaxed alternating projections and generalized Douglas-Rachford methods for two subspaces," Numerical Algorithms, vol. 73, no. 1, pp. 33-76, 2016.
K. C. Kiwiel and B. Łopuch, "On long-step surrogate projection methods for solving convex feasibility problems," In Proceedings of the Seventeenth IFIP TC7 Conference on System Modelling and Optimization, pp. 466-472, 1995.
D. Butnariu, S. Reich and A.J. Zaslavski, "Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces," Fixed Point Theory and its Applications, (Conference Proceedings, Guanajuato, Mexico, 2005), Yokahama Publishers, Yokahama, Japan, pp. 11-32, 2006.
D. Butnariu, R. Davidi, G. T. Herman, and I. Kazantsev, "Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems". IEEE J. Select. Topics Signal Proc. vol. 1, pp. 540-547, 2007.

Douglas-Rachford

$$
\alpha_{1}=\alpha_{2}=\alpha_{1}^{*}-0.01, \alpha=1
$$

[^0]: ${ }^{1}$ S. Agmon, 1954. T. S. Motzkin and I. Shoenberg, 1964. L. M. Bregman, 1965.

[^1]: ${ }^{1}$ F. Deutsch, 1984.
 ${ }^{2}$ H. Bauschke et al., 2014.
 ${ }^{3}$ H. Bauschke et al., 2016.

[^2]: ${ }^{1}$ K. Kiwiel et al., 1995.

