Optimal and Long-Step Feasibility Algorithms

Pontus Giselsson, Mattias Fält

Dept. of Automatic Control Faculty of Engineering (LTH) Lund University

Objective

• Create efficient algorithms for solving large-scale cone programs:

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax + s = b\\ & s \in \mathcal{K} \end{array}$$

where ${\cal K}$ is a convex cone

• Special focus on high accuracy solutions

Feasibility formulation

• Primal and dual problems:

$$\begin{array}{ll} \min & c^T x & \max & b^T y \\ \text{s.t.} & Ax + s = b & \text{s.t.} & A^T y = -c \\ & s \in \mathcal{K} & y \in \mathcal{K}^* \end{array}$$

• Primal dual embedding, using strong duality $(c^T x + b^T y = 0)$:

$$\begin{array}{ll} \text{find} & (x,s,y) \\ \text{such that} & \begin{bmatrix} 0 & 0 & A^T \\ A & I & 0 \\ c^T & 0 & b^T \end{bmatrix} \begin{bmatrix} x \\ s \\ y \end{bmatrix} = \begin{bmatrix} -c \\ b \\ 0 \end{bmatrix} \\ (x,s,y) \in \mathbb{R}^n \times \mathcal{K} \times \mathcal{K}^* \end{array}$$

Our focus

Method of alternating relaxed projections (MARP)¹

or

Generalized alternating projections (GAP)¹

¹S. Agmon, 1954. T. S. Motzkin and I. Shoenberg, 1964. L. M. Bregman, 1965.

Relaxed projection

• Relaxed projection operator

$$\Pi_C^{\alpha} x \coloneqq (1 - \alpha) x + \alpha \Pi_C x$$

• Relaxation parameter $\alpha \in (0,2]$ decides relaxed projection point

• Alternating relaxed projections:

$$x^{k+1} = (1-\alpha)x^k + \alpha \prod_D^{\alpha_2} \prod_C^{\alpha_1} x^k$$

• Alternating relaxed projections:

$$x^{k+1} = (1-\alpha)x^k + \alpha \prod_D^{\alpha_2} \prod_C^{\alpha_1} x^k$$

• Alternating projections: $(\alpha_1 = \alpha_2 = \alpha = 1)$

• Alternating relaxed projections:

$$x^{k+1} = (1-\alpha)x^k + \alpha \prod_D^{\alpha_2} \prod_C^{\alpha_1} x^k$$

- Alternating projections: $(\alpha_1 = \alpha_2 = \alpha = 1)$
- Douglas-Rachford: $(\alpha_1 = \alpha_2 = 2, \alpha = 1/2)$

• Alternating relaxed projections:

$$x^{k+1} = (1-\alpha)x^k + \alpha \prod_D^{\alpha_2} \prod_C^{\alpha_1} x^k$$

- Alternating projections: $(\alpha_1 = \alpha_2 = \alpha = 1)$
- Douglas-Rachford: ($\alpha_1 = \alpha_2 = 2, \alpha = 1/2$)
- Performance and behavior highly dependent on parameters
- Interpretation: Exploration-exploitation trade-off

3D example – Douglas-Rachford

3D example – Douglas-Rachford

3D example – Douglas-Rachford

Distance to intersection

Distance for *shadow sequence* to intersection, x^* :

 $\|\Pi_C(x^k) - x^\star\|$

Optimal trade-off?

- Although algorithm from 1950's, optimal parameters not known
- Not even for subspace intersection problems

Our contribution

Optimally parameter selection for subspace intersection problem:

find $x \in \mathcal{U} \cap \mathcal{V}$

where

$$\mathcal{U} := \{ x \in \mathbb{R}^n : Ax = 0 \}, \qquad \mathcal{V} := \{ x \in \mathbb{R}^n : Bx = 0 \}$$

Why interesting?

• Assume general convex intersection problem

find $x \in C \cap D$

where

- Intersection between ${\boldsymbol C}$ and ${\boldsymbol D}$ is "sufficiently regular"
- The sets are "sufficiently smooth"
- Then algorithm exhibits a finite identification property:
 - Active manifolds for attracting intersection point identified in finite number of iterations
 - Locally, behavior of iterates become (or approach) an affine subspace intersection iteration

Convergence rate

• Alternating relaxed projections for subspace intersection problem:

$$x^{k+1} = (1-\alpha)x^k + \alpha \Pi_{\mathcal{U}}^{\alpha_2} \Pi_{\mathcal{V}}^{\alpha_1} x^k$$

• Algorithm is matrix iteration with (parameter dependent) matrix

 $M(\alpha, \alpha_1, \alpha_2) := (1 - \alpha)I + \alpha((1 - \alpha_2)I + \alpha_2\Pi_{\mathcal{U}})((1 - \alpha_1)I + \alpha_1\Pi_{\mathcal{V}})$

• Sharp asymptotic rate is magnitude of second largest eigenvalues,

 $|\lambda_2(M(\alpha, \alpha_1, \alpha_2))|$

(not counting multiplicity of eigenvalue at 1)

Friedrichs angle

- Eigenvalues depend on principal angles between ${\mathcal U}$ and ${\mathcal V}$
- The smallest nonzero principal angle is called *Friedrichs angle*, θ_F

Known results

• Alternating projections $(\alpha = \alpha_1 = \alpha_2 = 1)^1$:

$$|\lambda_2(M(1,1,1))| = \cos^2 \theta_F$$

• Douglas-Rachford $(\alpha = \frac{1}{2}, \alpha_1 = \alpha_2 = 2)^2$:

$$|\lambda_2(M(0.5,2,2))| = \cos\theta_F$$

• One parameter optimized while two fixed³

¹F. Deutsch, 1984.

- ²H. Bauschke et al., 2014.
- ³H. Bauschke et al., 2016.

Our contribution

- Let $p = \dim \mathcal{U}$ and $q = \dim \mathcal{V}$ with \mathcal{U} and \mathcal{V} linear subspaces
- Assume: Dimensions for linear subspaces unknown
- Find $\alpha, \alpha_1, \alpha_2 > 0$ that solve

$$\begin{array}{ll} \mbox{minimize} & \gamma \\ \mbox{subject to} & |\lambda_2(M(\alpha, \alpha_1, \alpha_2))| \leq \gamma & \mbox{ for } q p \end{array}$$

• Optimal parameters:

$$\alpha_1^* = \alpha_2^* = \frac{2}{1 + \sin \theta_F}, \qquad \qquad \alpha^* = 1$$

• Optimal rate:

$$\gamma^* = \frac{1 - \sin \theta_F}{1 + \sin \theta_F} = \alpha_1^* - 1$$

Rate comparison

Rate comparison

Optimal parameters depend on Friedrichs angle, which is not known

• Online method to estimate θ_F :

• Online method to estimate θ_F :

• Conservative: $\hat{\theta}^k \geq \theta_F$ if $x^k \in \mathcal{U} + \mathcal{V}$

• Online method to estimate θ_F :

- Conservative: $\hat{\theta}^k \ge \theta_F$ if $x^k \in \mathcal{U} + \mathcal{V}$
- Adaptive method: Choose $\alpha_1^k=\alpha_2^k=\frac{2}{1+\sin\hat{\theta}^k}$ and $\alpha=1$

• Online method to estimate θ_F :

- Conservative: $\hat{\theta}^k \geq \theta_F$ if $x^k \in \mathcal{U} + \mathcal{V}$
- Adaptive method: Choose $\alpha_1^k=\alpha_2^k=\frac{2}{1+\sin\hat{\theta}^k}$ and $\alpha=1$
- Easy to prove convergence to intersection

3D example – convergence

Distance for shadow sequence to intersection, x^* :

 $\|\Pi_C(x^k) - x^\star\|$

Problem

- Performance of all methods depends on the Friedrichs angle
- Poor performance when Friedrichs angle very small
- Example with Friedrichs angle $\theta_F = 0.0001$
 - Optimal rate factor $\gamma=0.9998$
 - 20000 iterations: $\gamma^{20000} = 0.0183$

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- Can we construct "better" set that contains fixed-point set?
- Long-step method: (Relaxed) projection onto intersection

- It creates a separating hyperplane and performs relaxed projection
- The constructed halfspace contains fixed-point set (intersection)

- Can we construct "better" set that contains fixed-point set?
- Long-step method: (Relaxed) projection onto intersection

- Smaller angle between projection vectors \Rightarrow longer step

3D example – convergence

Distance for *shadow sequence* to intersection, x^* :

 $\|\Pi_C(x^k) - x^\star\|$

Algorithm variations

- Perform long-step in every iteration
- Run adaptive method and interleave with occasional long-steps
- Use history of halfspaces \Rightarrow smaller intersection and longer steps
- Parallel versions: construct halfspaces from parallel projections $^{1} % \left({\left[{{{\rm{projections}}^{1}} \right]_{\rm{space}}} \right)$

Convergence

Convergence to a fixed-point can be proven using the following steps:

• Method can be written as

$$x^{k+1} = S_k x^k$$

where S_k is (iteration dependent) quasi-averaged operator

- Intersection of fixed-point sets of all operators S_k is $C\cap D$
- Steps longer or as long as in nominal method

Numerical evaluation

• Problem:

find
$$x$$

such that $A(x-b) = 0$
 $x \ge 0$

- $A^{150 \times 300}$ has randomly generated entries, $b = 10^{-8} \mathbf{1}$
- Constructed to have small feasible set

Numerical evaluation

Plot: dist_C($\Pi_D x^k$) vs iteration k

Trajectory generation

• Trajectory generation problem for quadrocopters:

- Visit points in space while avoiding obstacles
- Can "solve" this using our feasibility methods and Superiorization

Superiorization

- $\bullet\,$ Assume that T is averaged with nonempty fixed-point set
- Basic (Krasnoselskii-Mann) method to find fixed-point:

$$x^{k+1} = Tx^k$$

• Any orbit $(x^k)_{k\geq 0}$ converges to fixed-point of T if 1

$$\sum_{k=0}^{\infty} \|x^{k+1} - Tx^k\| < \infty$$

• Superiorization²:

$$x^{k+1} = T(x^k - \beta_k \nabla f(x^k))$$

with β_k summable and ∇f bounded

¹D. Butnariu, S. Reich, and A.J. Zaslavski, 2006.

²D. Butnariu, R. Davidi, G. T. Herman, and I. Kazantsev, 2007.

Formulation

Convex constraints solved using feasibility methods:

- Quadrocopter dynamic constraints
- Quadrocopter state and input constraints
- Room box constraints

Nonconvex constraints, violation modeled with nonconvex cost:

- Obstacle avoidance
- Minimize shortest distance from trajectory to each point

Generated trajectory

Experimental setup

- Positioning system with ultra-wideband radio communication
- Time stamp sent in communication from quadrocopter to nodes
- · Positioning decided from time between send and receive

• 20 to 30 times cheaper than, e.g., a VICON system
Video

Real trajectories

Real trajectories

Real trajectories

Conclusions

- Optimal parameters for alternating relaxed projections
- Long step feasibility method
- Trajectory generation for quadrocopters

Ongoing work

- Compare first-order methods for large-scale conic programming
- Julia packages:
 - Solver suite for first order method (FirstOrderSolvers.jl)
 - Test bed for evaluating methods

Thank you

And thanks to Marcus Greiff for quadcopter flying

References

M. Fält, P. Giselsson. "Optimal Convergence Rates for Generalized Alternating Projections", 2017. arXiv:1703.10547.

S. Agmon, "The relaxation method for linear inequalities," *Canadian Journal of Mathematics*, vol. 6, no. 3, pp. 382–392, 1954.

T. S. Motzkin and I. Shoenberg, "The relaxation method for linear inequalities," *Canadian Journal of Mathematics*, vol. 6, no. 3, pp. 383–404, 1954.

L. M. Bregman, "Finding the common point of convex sets by the method of successive projection," *Dokl Akad. Nauk SSSR*, vol. 162, no. 3, pp. 487–490, 1965.

H. H. Bauschke, J. Y. B. Cruz, T. T. A. Nghia, H. M. Pha, and X. Wang, "The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle," *Journal of Approximation Theory*, vol. 185, no. 0, pp. 63–79, 2014.

H. H. Bauschke, J. Y. B. Cruz, T. T. A. Nghia, H. M. Pha, and X. Wang, "Optimal rates of linear convergence of relaxed alternating projections and generalized Douglas-Rachford methods for two subspaces," *Numerical Algorithms*, vol. 73, no. 1, pp. 33–76, 2016.

K. C. Kiwiel and B. Łopuch, "On long-step surrogate projection methods for solving convex feasibility problems," In *Proceedings of the Seventeenth IFIP TC7 Conference on System Modelling and Optimization*, pp. 466–472, 1995.

D. Butnariu, S. Reich and A.J. Zaslavski, "Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces," *Fixed Point Theory and its Applications*, (Conference Proceedings, Guanajuato, Mexico, 2005), Yokahama Publishers, Yokahama, Japan, pp. 11-32, 2006.

D. Butnariu, R. Davidi, G. T. Herman, and I. Kazantsev, "Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems". *IEEE J. Select. Topics Signal Proc.* vol. 1, pp. 540–547, 2007.

