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Objective

• Create efficient algorithms for solving large-scale cone programs:

minimize cTx
subject to Ax+ s = b

s ∈ K

where K is a convex cone

• Special focus on high accuracy solutions
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Feasibility formulation

• Primal and dual problems:

min cTx max bT y

s.t. Ax+ s = b s.t. AT y = −c
s ∈ K y ∈ K∗

• Primal dual embedding, using strong duality (cTx+ bT y = 0):

find (x, s, y)

such that

 0 0 AT

A I 0
cT 0 bT

xs
y

 =

−cb
0


(x, s, y) ∈ Rn ×K ×K∗
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Our focus

Method of alternating relaxed projections (MARP)1

or

Generalized alternating projections (GAP)1

1S. Agmon, 1954. T. S. Motzkin and I. Shoenberg, 1964. L. M. Bregman, 1965.
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Relaxed projection

• Relaxed projection operator

Πα
Cx := (1− α)x+ αΠCx

• Relaxation parameter α ∈ (0, 2] decides relaxed projection point

x Π1
Cx Π2

Cx

Π1.5
C xΠ0.5

C x

C
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Alternating relaxed projections

• Alternating relaxed projections:

xk+1 = (1− α)xk + αΠα2

D Πα1

C xk

x0

x1

• Alternating projections: (α1 = α2 = α = 1)
• Douglas-Rachford: (α1 = α2 = 2, α = 1/2)
• Performance and behavior highly dependent on parameters
• Interpretation: Exploration-exploitation trade-off
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3D example – Alternating projections
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Distance to intersection

Distance for shadow sequence to intersection, x?:

‖ΠC(xk)− x?‖
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Optimal trade-off?

• Although algorithm from 1950’s, optimal parameters not known

• Not even for subspace intersection problems
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Our contribution

Optimally parameter selection for subspace intersection problem:

find x ∈ U ∩ V

where

U := {x ∈ Rn : Ax = 0}, V := {x ∈ Rn : Bx = 0}
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Why interesting?

• Assume general convex intersection problem

find x ∈ C ∩D
where

• Intersection between C and D is “sufficiently regular”
• The sets are “sufficiently smooth”

• Then algorithm exhibits a finite identification property:
• Active manifolds for attracting intersection point identified in

finite number of iterations
• Locally, behavior of iterates become (or approach) an affine

subspace intersection iteration
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Convergence rate

• Alternating relaxed projections for subspace intersection problem:

xk+1 = (1− α)xk + αΠα2

U Πα1

V x
k

• Algorithm is matrix iteration with (parameter dependent) matrix

M(α, α1, α2) := (1− α)I + α((1− α2)I + α2ΠU )((1− α1)I + α1ΠV)

• Sharp asymptotic rate is magnitude of second largest eigenvalues,

|λ2(M(α, α1, α2))|

(not counting multiplicity of eigenvalue at 1)
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Friedrichs angle

• Eigenvalues depend on principal angles between U and V
• The smallest nonzero principal angle is called Friedrichs angle, θF
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Known results

• Alternating projections (α = α1 = α2 = 1)1:

|λ2(M(1, 1, 1))| = cos2 θF

• Douglas-Rachford (α = 1
2 , α1 = α2 = 2)2:

|λ2(M(0.5, 2, 2))| = cos θF

• One parameter optimized while two fixed3

1F. Deutsch, 1984.
2H. Bauschke et al., 2014.
3H. Bauschke et al., 2016.
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Our contribution

• Let p = dimU and q = dimV with U and V linear subspaces

• Assume: Dimensions for linear subspaces unknown

• Find α, α1, α2 > 0 that solve

minimize γ
subject to |λ2(M(α, α1, α2))| ≤ γ for q < p

|λ2(M(α, α1, α2))| ≤ γ for q = p
|λ2(M(α, α1, α2))| ≤ γ for q > p

• Optimal parameters:

α∗1 = α∗2 =
2

1 + sin θF
, α∗ = 1

• Optimal rate:

γ∗ =
1− sin θF
1 + sin θF

= α∗1 − 1
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Rate comparison
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Optimal parameters depend on Friedrichs angle, which is not known
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Adaptive method

• Online method to estimate θF :

V

U

xk

yk := Pα1

V xk

zk := PUP
α1

V xk

θ̂k

• Conservative: θ̂k ≥ θF if xk ∈ U + V
• Adaptive method: Choose αk1 = αk2 = 2

1+sin θ̂k
and α = 1

• Easy to prove convergence to intersection
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3D example – convergence

Distance for shadow sequence to intersection, x?:

‖ΠC(xk)− x?‖

0 100 200 300 400 500 600 700 800 900 1,000

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

iteration number, k

‖Π
C

(x
k
)
−
x
?
‖

Alternating projections
Douglas-Rachford
Optimal parameters
Adaptive method

21



Problem

• Performance of all methods depends on the Friedrichs angle

• Poor performance when Friedrichs angle very small

• Example with Friedrichs angle θF = 0.0001

• Optimal rate factor γ = 0.9998
• 20000 iterations: γ20000 = 0.0183
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Long-step method

• It creates a separating hyperplane and performs relaxed projection
• The constructed halfspace contains fixed-point set (intersection)

x1

• Can we construct “better” set that contains fixed-point set?
• Long-step method: (Relaxed) projection onto intersection
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Closer to intersection

x1

• Smaller angle between projection vectors ⇒ longer step
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3D example – convergence

Distance for shadow sequence to intersection, x?:

‖ΠC(xk)− x?‖
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Algorithm variations

• Perform long-step in every iteration

• Run adaptive method and interleave with occasional long-steps

• Use history of halfspaces ⇒ smaller intersection and longer steps

• Parallel versions: construct halfspaces from parallel projections1

1K. Kiwiel et al., 1995.
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Convergence

Convergence to a fixed-point can be proven using the following steps:

• Method can be written as

xk+1 = Skx
k

where Sk is (iteration dependent) quasi-averaged operator

• Intersection of fixed-point sets of all operators Sk is C ∩D
• Steps longer or as long as in nominal method
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Numerical evaluation

• Problem:

find x
such that A(x− b) = 0

x ≥ 0

• A150×300 has randomly generated entries, b = 10−81

• Constructed to have small feasible set
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Numerical evaluation

Plot: distC(ΠDx
k) vs iteration k
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Trajectory generation

• Trajectory generation problem for quadrocopters:

• Visit points in space while avoiding obstacles

• Can “solve” this using our feasibility methods and Superiorization
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Superiorization

• Assume that T is averaged with nonempty fixed-point set

• Basic (Krasnoselskii-Mann) method to find fixed-point:

xk+1 = Txk

• Any orbit (xk)k≥0 converges to fixed-point of T if1

∞∑
k=0

‖xk+1 − Txk‖ <∞

• Superiorization2:

xk+1 = T (xk − βk∇f(xk))

with βk summable and ∇f bounded
1D. Butnariu, S. Reich, and A.J. Zaslavski, 2006.
2D. Butnariu, R. Davidi, G. T. Herman, and I. Kazantsev, 2007.
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Formulation

Convex constraints solved using feasibility methods:

• Quadrocopter dynamic constraints

• Quadrocopter state and input constraints

• Room box constraints

Nonconvex constraints, violation modeled with nonconvex cost:

• Obstacle avoidance

• Minimize shortest distance from trajectory to each point
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Generated trajectory
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Experimental setup

• Positioning system with ultra-wideband radio communication
• Time stamp sent in communication from quadrocopter to nodes
• Positioning decided from time between send and receive

UWB anchor
Quadcopter position
Possible location
Possible location ±σ

• 20 to 30 times cheaper than, e.g., a VICON system
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Video
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Real trajectories
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Real trajectories
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Real trajectories
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Conclusions

• Optimal parameters for alternating relaxed projections

• Long step feasibility method

• Trajectory generation for quadrocopters
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Ongoing work

• Compare first-order methods for large-scale conic programming

• Julia packages:
• Solver suite for first order method (FirstOrderSolvers.jl)
• Test bed for evaluating methods
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Thank you

And thanks to Marcus Greiff for quadcopter flying
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