Learning Regularizers From Data

Venkat Chandrasekaran Caltech

Joint work with Yong Sheng Soh

Variational Perspective on Inference

 $\min_{\theta} \quad \log(\theta; \text{ data}) + \lambda \operatorname{regularizer}(\theta)$

Loss ensures fidelity to observed data

 \odot Based on the specific inverse problem one wishes to solve

Regularizer useful to induce desired structure in solution
 Based on prior knowledge via domain expertise

This Talk

What if we don't have domain expertise to design regularizer?
 Many domains with unstructured, high-dimensional data

• Learn regularizer from data?

 Eg., learn regularizer for image denoising given many "clean" images?

 ○ <u>Pipeline</u>: (relatively) clean data → learn regularizer → use regularizer in subsequent problems with noisy/incomplete data

Outline

• Learning *computationally tractable* regularizers from data

- Convex regularizers that can be computed / optimized efficiently by semidefinite programming
- Along the way, algorithms for quantum / operator problems
 Operator Sinkhorn scaling [Gurvits (`03)]

• Contrast with prior work on dictionary learning / sparse coding

Designing Regularizers

- What is a good regularizer?
- What properties do we want of a regularizer?
- When does a regularizer induce the desired structure?
- First, let's understand how to transform domain expertise to a suitable regularizer ...

Example: Image Denoising

Original

Noisy

Denoised

Ideas due to: Meyer, Mallat, Daubechies, Donoho, Johnstone, Crouse, Nowak, Baraniuk, ...

o Loss: Euclidean-norm

<u>Regularizer</u>: L1 norm (sum of magnitudes) of wavelet coefficients
 Natural images are typically sparse in wavelet basis

Example: Matrix Completion

	Life is Beautiful	Goldfinger	Office Space	Big Lebowski	Shawshank Redemption	Godfather
Alice	5	4	?	?	?	?
Bob	?	4	?	1	4	?
Charlie	?	?	?	4	?	5
Donna	4	?	?	?	5	?

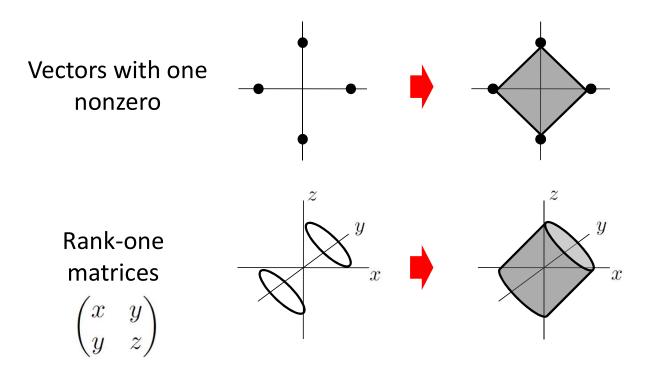
Ideas due to: Srebro, Jaakkola, Fazel, Boyd, Recht, Parrilo, Candes, ...

O Loss: Euclidean/logistic

<u>Regularizer</u>: nuclear norm (sum of singular values) of matrix
 User-preference matrices often well-approximated as low-rank

What is a Good Regularizer?

O Why the L1 and nuclear norms in these examples?



L1 norm ball [Santosa,

Symes, Donoho, Johnstone, Tibshirani, Chen, Saunders, Candes, Romberg, Tao, Tanner, Meinshausen, Buhlmann, ...]

Nuclear norm ball [Fazel, Boyd, Recht, Parrilo, Candes, ...]

Atomic Sets and Atomic Norms

 \circ Given a set $\{a_i\}_{i \in I} \subset \mathbb{R}^d$ of *atoms*, concisely described data w.r.t. $\{a_i\}$ are

$$\sum_{i\in\mathcal{S},\mathcal{S}\subset\mathcal{I}}c_i\mathbf{a}_i,\quad c_i\geq 0,$$

for $|\mathcal{S}|$ small

○ Given atomic set $\{\mathbf{a}_i\}$, regularize using atomic norm $\|\mathbf{x}\| = \inf \{t : \mathbf{x} \in t \cdot \operatorname{conv}(\{\mathbf{a}_i\}), t > 0\}.$

C., Recht, Parrilo, Willsky, "The Convex Geometry of Linear Inverse Problems," Foundations of Computational Mathematics, 2012

Atomic Norm Regularizers

Underlying model	Application	Atomic norm	
sparse vector	lasso, compressed sensing	L1 norm	
low-rank matrix	factor modeling, matrix completion	nuclear norm	
vector with entries of same magnitude	knapsack, democratic representations [Mangasarian; Studer et al.]	infinity-norm	
permutation matrix	ranking, multi-target tracking [Jagabathula et al.; Huang et al.]	norm induced by Birkhoff polytope	
orthogonal matrix	visual pose estimation [Horowitz & Matni]	spectral norm	

• Line spectral estimation [Bhaskar at al. (`12)]

• Low-rank tensor decomposition [Tang et al. (`15)]

C., Recht, Parrilo, Willsky, "The Convex Geometry of Linear Inverse Problems," Foundations of Computational Mathematics, 2012

Atomic Norm Regularizers

• These norms also have **the 'right' convex-geometric properties**

 \circ Low-dimensional faces of $\operatorname{conv}(\{\mathbf{a}_i\})$ are concisely described using $\{\mathbf{a}_i\}$

 Solutions of convex programs with generic data lie on low-dimensional faces

C., Recht, Parrilo, Willsky, "The Convex Geometry of Linear Inverse Problems," Foundations of Computational Mathematics, 2012

Learning Regularizers

- Conceptual question: Given a dataset, how do we identify a regularizer that is effective at enforcing structure that is present in the data?
- <u>Atomic norms</u>: If data can be concisely represented wrt a set of atoms {a_i}, then an effective regularizer is available
 It is the atomic norm wrt {a_i}
- Approach: Given dataset, identify a set of atoms s.t. data permits concise representations

Learning Polyhedral Regularizers

 $\ensuremath{\circ}$ Assume that the atomic set is finite

Given
$$\{\mathbf{y}^{(j)}\}_{j=1}^n \subset \mathbb{R}^d$$
, identify $\{\mathbf{a}_i\}_{i=1}^q \subset \mathbb{R}^d$ so that
 $\mathbf{y}^{(j)} \approx \sum_{i=1}^n x_i^{(j)} \mathbf{a}_i$, where $x^{(j)}$ are mostly zero
 $= A\mathbf{x}^{(j)}$ where $A = [\mathbf{a}_1| \dots |\mathbf{a}_q]$
 $\mathbf{x}^{(j)}$ is sparse

Learning Polyhedral Regularizers

Given $\{\mathbf{y}^{(j)}\}_{j=1}^n \subset \mathbb{R}^d$ and target dimension q, find $A \in \mathbb{R}^{d \times q}$ such that each $\mathbf{y}^{(j)} \approx A\mathbf{x}^{(j)}$ for *sparse* $\mathbf{x}^{(j)} \in \mathbb{R}^q$

Regularizer is the atomic norm wrt

 $\operatorname{conv}(\{\pm \mathbf{a}_i\})$

• Level set is $A(\checkmark)$, where $A = [\mathbf{a}_1 | \dots | \mathbf{a}_q]$ • Expressible as a linear program

Learning Polyhedral Regularizers

Given $\{\mathbf{y}^{(j)}\}_{j=1}^n \subset \mathbb{R}^d$ and target dimension q, find $A \in \mathbb{R}^{d \times q}$ such that each $\mathbf{y}^{(j)} \approx A\mathbf{x}^{(j)}$ for *sparse* $\mathbf{x}^{(j)} \in \mathbb{R}^q$

Extensively studied as 'dictionary learning' or 'sparse coding'

Olshausen, Field (`96); Aharon, Elad, Bruckstein (`06); Spielman, Wang, Wright (`12); Arora, Ge, Moitra (`13); Agarwal, Anandkumar, Netrapalli (`13); Barak, Kelner, Steurer (`14); Sun, Qu, Wright (`15); ...

• Dictionary learning identifies linear programming regularizers!

Learning an Infinite Set of Atoms?

 \odot So far

- $\circ~$ Learning a regularizer corresponds to computing a matrix factorization
- Finite set of atoms = dictionary learning
- Can we learn an **infinite** set of atoms?
 - Richer family of concise representations
 - Require compact description of atoms, tractable description of convex hull
- Specify infinite atomic set as an algebraic variety whose convex hull is computable via semidefinite programming

In a Nutshell...

	Polyhedral Regularizers (Dictionary Learning)	Semidefinite-Representable Regularizers (Our work)
Atoms	A(standard basis vectors)	$\mathcal{A}(\text{unit-norm rank 1 matrices})$
Learn Regularizer	Find $A \in \mathbb{R}^q \mapsto \mathbb{R}^d$ s.t. $\mathbf{y}^{(j)} \approx A\mathbf{x}^{(j)}$ for sparse $\mathbf{x}^{(j)}$	Find $\mathcal{A} \in \mathbb{R}^{q \times q} \mapsto \mathbb{R}^{d}$ s.t. $\mathbf{y}^{(j)} \approx \mathcal{A}(X^{(j)})$ for low-rank $X^{(j)}$
Level Set	$A(\checkmark)$	$\mathcal{A}(\bigcirc)$
Compute regularizer	Linear Programming	Semidefinite Programming

Learning Semidefinite Regularizers

O Learning phase:

Given $\{\mathbf{y}^{(j)}\}_{j=1}^n \subset \mathbb{R}^d$ and target dimension q, find $\mathcal{A} : \mathbb{R}^{q \times q} \mapsto \mathbb{R}^d$ such that each $\mathbf{y}^{(j)} \approx \mathcal{A}(X^{(j)})$ for *low-rank* $X^{(j)} \in \mathbb{R}^{q \times q}$

 \circ <u>Deployment phase</u>: use image of nuclear norm ball under learned map ${\cal A}$ as unit ball of regularizer

Learning Semidefinite Regularizers

O Learning phase:

Given $\{\mathbf{y}^{(j)}\}_{j=1}^n \subset \mathbb{R}^d$ and target dimension q, find $\mathcal{A} : \mathbb{R}^{q \times q} \mapsto \mathbb{R}^d$ such that each $\mathbf{y}^{(j)} \approx \mathcal{A}(X^{(j)})$ for *low-rank* $X^{(j)} \in \mathbb{R}^{q \times q}$

 <u>Obstruction</u>: This is a matrix factorization problem. The factors are *not-unique*.

Addressing Identifiability Issues

• Characterize the degrees of ambiguities in any factorization

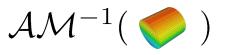
• Propose a **normalization** scheme

• Selects a unique choice of regularizer

Normalization scheme is computable via Operator Sinkhorn
 Scaling

- \circ Given a factorization of $\{\mathbf{y}^{(j)}\}_{j=1}^n \subset \mathbb{R}^d$ as $\mathbf{y}^{(j)} \approx \mathcal{A}(X^{(j)})$ for low-rank $X^{(j)} \in \mathbb{R}^{q \times q}$, there are *many equivalent factorizations*
- For any linear map $\mathcal{M} : \mathbb{R}^{q \times q} \to \mathbb{R}^{q \times q}$ that is a **rank-preserver**, an equivalent factorization is $\mathbf{y}^{(j)} = \mathcal{A}\mathcal{M}^{-1}(\mathcal{M}X^{(j)})$ ◦ Eg., transpose, conjugation by non-singular matrices
- <u>Thm</u> [Marcus, Moyls (`59)]: A linear map $\mathcal{M} : \mathbb{R}^{q \times q} \to \mathbb{R}^{q \times q}$ is a rankpreserver if and only if we have that (i) $\mathcal{M}(X) = W_1 X W_2$ or (ii) $\mathcal{M}(X) = W_1 X' W_2$ for non-singular $W_1, W_2 \in \mathbb{R}^{q \times q}$

 \circ For a given factorization, the regularizer is specified by



 \circ Normalization entails selecting ${\cal M}$ so that ${\cal A}{\cal M}^{-1}(~~)$ is uniquely specified

 \circ Def: A linear map $\mathcal{A} : \mathbb{R}^{q \times q} \mapsto \mathbb{R}^d$ is normalized if $\sum_{k=1}^d \mathcal{A}_k \mathcal{A}'_k = \sum_{k=1}^d \mathcal{A}'_k \mathcal{A}_k = I$ where $\mathcal{A}_i \in \mathbb{R}^{q \times q}$ is the *i*'th component linear functional of \mathcal{A}

 \circ Think of \mathcal{A} as:

$$\mathcal{A}(X) = \left(\begin{array}{c} \langle \mathcal{A}_1, X \rangle \\ \vdots \\ \langle \mathcal{A}_d, X \rangle \end{array}\right)$$

• Def: A linear map $\mathcal{A} : \mathbb{R}^{q \times q} \mapsto \mathbb{R}^d$ is normalized if $\sum_{k=1}^d \mathcal{A}_k \mathcal{A}'_k = \sum_{k=1}^d \mathcal{A}'_k \mathcal{A}_k = I$ where $\mathcal{A}_i \in \mathbb{R}^{q \times q}$ is the *i*'th component linear functional of \mathcal{A} • Analogous to unit-norm columns in dictionary learning

 \circ Generic \mathcal{A} normalizable by conjugating \mathcal{A}_i 's by PD matrices \circ Such a conjugation is **unique**

- Computed via **Operator Sinkhorn Scaling** [Gurvits (`03)]
- Developed for matroid problems, operator analogs of matching, ...

Algorithm for Learning Semidefinite Regularizer

Given $\{\mathbf{y}^{(j)}\}_{j=1}^n \subset \mathbb{R}^d$ and target dimension q, find $\mathcal{A} : \mathbb{R}^{q \times q} \mapsto \mathbb{R}^d$ such that each $\mathbf{y}^{(j)} \approx \mathcal{A}(X^{(j)})$ for *low-rank* $X^{(j)} \in \mathbb{R}^{q \times q}$

Alternating updates

- 1) Updating $X^{(j)}$'s -- affine rank-minimization problems
 - NP-hard, but many relaxations available with performance guarantees
- 2) Updating \mathcal{A} -- least-squares + Operator Sinkhorn scaling

• Direct generalization of dictionary learning algorithms

Convergence Result

 \circ Suppose data $\{\mathbf{y}^{(j)}\}_{j=1}^n \subset \mathbb{R}^d$ generated as $\mathbf{y}^{(j)} = \mathcal{A}^{\star}(X^{(j)^{\star}})$

 $\circ \mathcal{A}^{\star}: \mathbb{R}^{q imes q} \mapsto \mathbb{R}^{d}$ is a random Gaussian map

 $\circ \operatorname{rank}\left(X^{(j)^{\star}}\right) = r$ with uniform-at-random row/column spaces

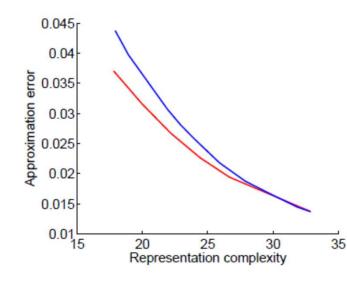
• <u>Theorem</u>: Then our algorithm is *locally linearly convergent* w.h.p. to the correct regularizer if $d \gtrsim rq$, $n \gtrsim q^{10}/d$ • Recovery for 'most' regularizers

Experiments – Setup

 $\,\circ\,$ Pictures taken by Yong Sheng Soh

 Supplied 8x8 patches and their rotations as training set to our algorithm

Experiments – Approximation Power

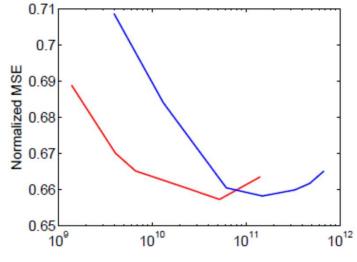


Train: 6500 points (centered, normalized)
Learn linear / semidefinite regularizers

Blue – linear programming (dictionary learning)
 Red – semidefinite programming (our idea)

Best over many random initializations

Experiments – Denoising Performance

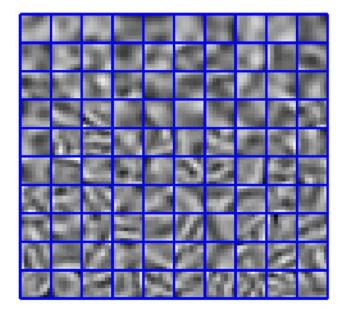


Computational complexity of regularizer

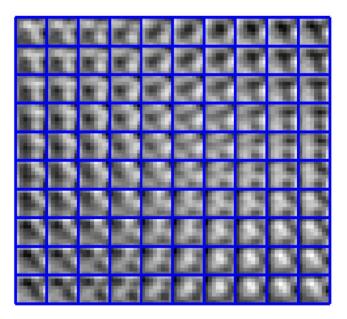
Test: 720 points corrupted by Gaussian noise
Denoise with Euclidean loss, learned regularizer

Blue – linear programming (dictionary learning)
 Red – semidefinite programming (our idea)

Comparison of Atomic Structure



Finite atomic set (dictionary learning)



Subset of infinite atomic set (our idea)

Summary

- Learning semidefinite programming regularizers from data
 - Generalize dictionary learning, which gives linear programming regularizers

• Q: Data more likely to lie near faces of certain convex sets?

 \circ What do high-dimensional data really look like?

 \odot Can physics help us answer this question?

users.cms.caltech.edu/~venkatc