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Variational Perspective on Inference

o Loss ensures fidelity to observed data
o Based on the specific inverse problem one wishes to solve

o Regularizer useful to induce desired structure in solution
o Based on prior knowledge via domain expertise



This Talk

o What if we don’t have domain expertise to design regularizer? 
oMany domains with unstructured, high-dimensional data

o Learn regularizer from data?
o Eg., learn regularizer for image denoising

given many “clean” images?

o Pipeline: (relatively) clean data  learn regularizer use 
regularizer in subsequent problems with noisy/incomplete data



Outline

o Learning computationally tractable regularizers from data

o Convex regularizers that can be computed / optimized efficiently 
by semidefinite programming

o Along the way, algorithms for quantum / operator problems
oOperator Sinkhorn scaling [Gurvits (`03)]

o Contrast with prior work on dictionary learning / sparse coding



Designing Regularizers

o What is a good regularizer?

o What properties do we want of a regularizer?

o When does a regularizer induce the desired structure?

o First, let’s understand how to transform domain expertise to a 
suitable regularizer …



Example: Image Denoising

o Loss: Euclidean-norm

o Regularizer: L1 norm (sum of magnitudes) of wavelet coefficients
o Natural images are typically sparse in wavelet basis

Ideas due to: Meyer, 
Mallat, Daubechies, 
Donoho, Johnstone, 
Crouse, Nowak, 
Baraniuk, …

Original Noisy Denoised



Example: Matrix Completion

o Loss: Euclidean/logistic

o Regularizer: nuclear norm (sum of singular values) of matrix
o User-preference matrices often well-approximated as low-rank

Life is 
Beautiful

Goldfinger Office 
Space

Big 
Lebowski

Shawshank
Redemption

Godfather

Alice 5 4 ? ? ? ?

Bob ? 4 ? 1 4 ?

Charlie ? ? ? 4 ? 5

Donna 4 ? ? ? 5 ?

Ideas due to: Srebro, 
Jaakkola, Fazel, Boyd, 
Recht, Parrilo, 
Candes, …



What is a Good Regularizer?

o Why the  L1 and nuclear norms in these examples?

Vectors with one 
nonzero

Rank-one 
matrices

L1 norm ball [Santosa, 
Symes, Donoho, Johnstone, 
Tibshirani, Chen, Saunders, 
Candes, Romberg, Tao, Tanner, 
Meinshausen, Buhlmann, …]

Nuclear norm ball [Fazel, 
Boyd, Recht, Parrilo, Candes, …]



o Given a set                            of atoms, concisely described data 
w.r.t.           are

for       small

o Given atomic set          , regularize using atomic norm

Atomic Sets and Atomic Norms

C., Recht, Parrilo, Willsky, “The Convex Geometry of Linear Inverse Problems,” Foundations of 
Computational Mathematics, 2012



Atomic Norm Regularizers

o Line spectral estimation [Bhaskar at al. (`12)]

o Low-rank tensor decomposition [Tang et al. (`15)]

C., Recht, Parrilo, Willsky, “The Convex Geometry of Linear Inverse Problems,” Foundations of 
Computational Mathematics, 2012



Atomic Norm Regularizers

o These norms also have the 'right’ convex-geometric properties

o Low-dimensional faces of are concisely described using 

o Solutions of convex programs with generic data lie on low-dimensional 
faces

C., Recht, Parrilo, Willsky, “The Convex Geometry of Linear Inverse Problems,” Foundations of 
Computational Mathematics, 2012



Learning Regularizers

o Conceptual question: Given a dataset, how do we identify a 
regularizer that is effective at enforcing structure that is present 
in the data?

o Atomic norms: If data can be concisely represented wrt a set of 
atoms         , then an effective regularizer is available
o It is the atomic norm wrt

o Approach: Given dataset, identify a set of atoms s.t. data 
permits concise representations



Learning Polyhedral Regularizers

o Assume that the atomic set is finite

Given                               , identify                             so that

where

where

are mostly zero

is sparse



Learning Polyhedral Regularizers

Given                           and target dimension    , find                 
such that each                        for sparse

o Regularizer is the atomic norm wrt

o Level set is               ,   where
o Expressible as a linear program



Learning Polyhedral Regularizers

Given                               and target dimension    , find                 
such that each                          for sparse

o Extensively studied as ‘dictionary learning’ or ‘sparse coding’
o Olshausen, Field (`96); Aharon, Elad, Bruckstein (`06); Spielman, Wang, Wright (`12); Arora, Ge, 

Moitra (`13); Agarwal, Anandkumar, Netrapalli (`13); Barak, Kelner, Steurer (`14); Sun, Qu, Wright 
(`15); …

o Dictionary learning identifies linear programming regularizers!



Learning an Infinite Set of Atoms?

o So far
o Learning a regularizer corresponds to computing a matrix factorization
o Finite set of atoms = dictionary learning

o Can we learn an infinite set of atoms?
o Richer family of concise representations
o Require compact description of atoms, tractable description of convex 

hull

o Specify infinite atomic set as an algebraic variety whose convex 
hull is computable via semidefinite programming



In a Nutshell…

Polyhedral Regularizers
(Dictionary Learning)

Semidefinite-Representable
Regularizers (Our work)

Atoms

Learn
Regularizer

Level
Set

Compute
regularizer

Linear Programming Semidefinite Programming



o Learning phase:

o Deployment phase: use image of nuclear norm ball under learned 
map      as unit ball of regularizer

Given and target dimension   , find
such that each                             for low-rank

Learning Semidefinite Regularizers



Given                              and target dimension   , find
such that each                              for low-rank

Learning Semidefinite Regularizers

o Learning phase:

o Obstruction: This is a matrix factorization problem.  The factors 
are not-unique.



Addressing Identifiability Issues

o Characterize the degrees of ambiguities in any factorization

o Propose a normalization scheme
o Selects a unique choice of regularizer

o Normalization scheme is computable via Operator Sinkhorn
Scaling



o Given a factorization of                               as                               for 
low-rank                         , there are many equivalent factorizations

o For any linear map                                       that is a rank-preserver, 
an equivalent factorization is 
o Eg., transpose, conjugation by non-singular matrices

o Thm [Marcus, Moyls (`59)]: A linear map                                      is a rank-
preserver if and only if we have that (i)                                       or 
(ii)                                     for non-singular

Identifiability Issues



Identifiability Issues

o For a given factorization, the regularizer is specified by

o Normalization entails selecting        so that                            is 
uniquely specified



Identifiability Issues

o Def: A linear map                              is normalized if

where                      is the   ’th component linear functional of 

o Think of        as:



Identifiability Issues

o Def: A linear map                              is normalized if

where                      is the   ’th component linear functional of 
o Analogous to unit-norm columns in dictionary learning

o Generic       normalizable by conjugating      ’s by PD matrices
o Such a conjugation is unique
o Computed via Operator Sinkhorn Scaling [Gurvits (`03)]
o Developed for matroid problems, operator analogs of matching, …



Given                              and target dimension   , find
such that each                              for low-rank

Algorithm for Learning Semidefinite Regularizer

Alternating updates
1) Updating          ’s -- affine rank-minimization problems

o NP-hard, but many relaxations available with performance guarantees

2) Updating      -- least-squares + Operator Sinkhorn scaling

o Direct generalization of dictionary learning algorithms



Convergence Result

o Suppose data                              generated as                                                       

o is a random Gaussian map

o with uniform-at-random row/column spaces

o Theorem: Then our algorithm is locally linearly convergent
w.h.p. to the correct regularizer if
o Recovery for ‘most’ regularizers



Experiments – Setup

o Pictures taken by Yong Sheng Soh

o Supplied 8x8 patches and their rotations 
as training set to our algorithm



Experiments – Approximation Power

o Train: 6500 points (centered, normalized)
o Learn linear / semidefinite regularizers

o Blue – linear programming (dictionary learning)
o Red – semidefinite programming (our idea)

o Best over many random initializations



Experiments – Denoising Performance

o Test: 720 points corrupted by Gaussian noise
o Denoise with Euclidean loss, learned regularizer

o Blue – linear programming (dictionary learning)
o Red – semidefinite programming (our idea)

Computational complexity of regularizer



Comparison of Atomic Structure

Finite atomic set (dictionary learning) Subset of infinite atomic set (our idea)



Summary

o Learning semidefinite programming regularizers from data
o Generalize dictionary learning, which gives linear programming 

regularizers

o Q: Data more likely to lie near faces of certain convex sets?

oWhat do high-dimensional data really look like?
o Can physics help us answer this question?
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