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Variational Perspective on Inference

Ilgll loss(f ; data) 4+ A\ regularizer(6)

o Loss ensures fidelity to observed data

o Based on the specific inverse problem one wishes to solve

o Regularizer useful to induce desired structure in solution
o Based on prior knowledge via domain expertise



This Talk

o What if we don’t have domain expertise to design regularizer?
o Many domains with unstructured, high-dimensional data

o Learn reqgularizer from data?

o Eg., learn regularizer for image denoising

given many “clean” images?

o Pipeline: (relatively) clean data = learn regularizer - use
regularizer in subsequent problems with noisy/incomplete data




Outline

o Learning computationally tractable regularizers from data

o Convex regularizers that can be computed / optimized efficiently
by semidefinite programming

o Along the way, algorithms for quantum / operator problems
o Operator Sinkhorn scaling [Gurvits ("03)]

o Contrast with prior work on dictionary learning / sparse coding



Designhing Regularizers

o What is a good regularizer?
o What properties do we want of a regularizer?
o When does a regularizer induce the desired structure?

o First, let’s understand how to transform domain expertise to a
suitable regularizer ...



Example: Image Denoising

Ideas due to: Meyer,
Mallat, Daubechies,
Donoho, Johnstone,
Crouse, Nowak,
Baraniuk, ...

Original Noisy Denoised

o Loss: Euclidean-norm

o Regularizer: L1 norm (sum of magnitudes) of wavelet coefficients

o Natural images are typically sparse in wavelet basis



Example: Matrix Completion

Life is Goldfinger | Office Big Shawshank | Godfather
Beautiful Space Lebowski | Redemption
Alice 5 4 ? ? ? ?
Bob ? 4 ? 1 4 ?
Charlie ? ? ? 4 ? 5
Donna 4 ? ? ? 5 ?

o Loss: Euclidean/logistic

Ideas due to: Srebro,
Jaakkola, Fazel, Boyd,
Recht, Parrilo,
Candes, ...

o Regularizer: nuclear norm (sum of singular values) of matrix

o User-preference matrices often well-approximated as low-rank



What is a Good Regularizer?

o Why the L1 and nuclear norms in these examples?

L1 norm ball [Santosa,
Vectors with one Symes, Donoho, Johnstone,
NoONzero » Tibshirani, Chen, Saunders,
Candes, Romberg, Tao, Tanner,
Meinshausen, Buhlmann, ...]

z Z
Y Y
Rank—.one » Nuclear norm ball [Fazel,
matrices x v Boyd, Recht, Parrilo, Candes, ...]
x Yy ‘
Yy Z



Atomic Sets and Atomic Norms

o Given a set {a; };cz C R of atoms, concisely described data

w.r.t. {a;} are
E cia;, ¢ =0,
i€S,5CT

for |S|small

o Given atomic set {a;}, regularize using atomic norm

|x|| =inf{t:x €t conv({a;}),t > 0}.

C., Recht, Parrilo, Willsky, “The Convex Geometry of Linear Inverse Problems,” Foundations of
Computational Mathematics, 2012



Atomic Norm Regularizers

Underlying model

Application

Atomic norm

sparse vector

lasso, compressed sensing

L1 norm

low-rank matrix

factor modeling, matrix completion

nuclear norm

vector with entries
of same magnitude

knapsack, democratic representations
[Mangasarian; Studer et al.]

infinity-norm

permutation matrix

ranking, multi-target tracking
[Jagabathula et al.; Huang et al.]

norm induced by
Birkhoff polytope

orthogonal matrix

visual pose estimation
[Horowitz & Matni]

spectral norm

o Line spectral estimation [Bhaskar at al. ('12)]

o Low-rank tensor decomposition [Tang et al. ("15)]

C., Recht, Parrilo, Willsky, “The Convex Geometry of Linear Inverse Problems,” Foundations of
Computational Mathematics, 2012




Atomic Norm Regularizers

o These norms also have the 'right’ convex-geometric properties
o Low-dimensional faces of conv({a; })are concisely described using{a; }

o Solutions of convex programs with generic data lie on low-dimensional
faces

C., Recht, Parrilo, Willsky, “The Convex Geometry of Linear Inverse Problems,” Foundations of
Computational Mathematics, 2012



Learning Regularizers

o Conceptual question: Given a dataset, how do we identify a
regularizer that is effective at enforcing structure that is present
in the data?

o Atomic norms: If data can be concisely represented wrt a set of
atoms {a; }, then an effective regularizer is available

o It is the atomic norm wrt {a; }

o Approach: Given dataset, identify a set of atoms s.t. data
permits concise representations



Learning Polyhedral Regularizers

o Assume that the atomic set is finite

Given {ym}?:1 C R?, identify {a;}?_, C R* so that

(7) Z :z:,gj)ai, where (/) are mostly zero

Q

y

Ax ) where A = [a;]. .. |a/]

x) is sparse




Learning Polyhedral Regularizers

Given{y(j)};f”:1 C R? and target dimension ¢, find A € R4*4
such that each y\9) ~ AxW) for sparse x\7) € R4

o Regularizer is the atomic norm wrt
conv({ta;})

o Level setis A(& ), where A = |a;]...|a,]

o Expressible as a linear program



Learning Polyhedral Regularizers

Given{y")}"_, C R? and target dimension ¢, find A € R%*¢
such that each y9) ~ AxW) for sparse x\7) € R4

o Extensively studied as ‘dictionary learning’ or ‘sparse coding’

o Olshausen, Field ('96); Aharon, Elad, Bruckstein ('06); Spielman, Wang, Wright ('12); Arora, Ge,
Moitra (*13); Agarwal, Anandkumar, Netrapalli ('13); Barak, Kelner, Steurer ('14); Sun, Qu, Wright
("15); ...

o Dictionary learning identifies linear programming regularizers!



Learning an Infinite Set of Atoms?

o So far
o Learning a regularizer corresponds to computing a matrix factorization
o Finite set of atoms = dictionary learning

o Can we learn an infinite set of atoms?
o Richer family of concise representations

o Require compact description of atoms, tractable description of convex
hull

o Specify infinite atomic set as an algebraic variety whose convex
hull is computable via semidefinite programming



In a Nutshell...

Polyhedral Regularizers Semidefinite-Representable
(Dictionary Learning) Regularizers (Our work)

Atoms A(standard basis vectors).A(unit-norm rank 1 matrices)
Learn Find A € R? — R? s.t. Find A € R7%9 — R? s.t.
Regularizer y¥) ~ Ax") for yU) ~ A(X)) for

sparse x /) low-rank X )
Set A(@) A( €

Compute Linear Programming Semidefinite Programming
regularizer



Learning Semidefinite Regularizers

o Learning phase:

Given{y\) }i_1 C R and target dimension g, find A4 : R7*9 — R4
such that each vy ~ A(X ) for low-rank X (9) ¢ Ra%4

o Deployment phase: use image of nuclear norm ball under learned
map A as unit ball of regularizer




Learning Semidefinite Regularizers

o Learning phase:

Given{y\/) }i_1 C R9 and target dimension g, find A : R7%9 — R4
such that each y) ~ A(X ) for low-rank X () ¢ RI*4

o Obstruction: This is a matrix factorization problem. The factors
are not-unique.




Addressing Identifiability Issues

o Characterize the degrees of ambiguities in any factorization

o Propose a normalization scheme

o Selects a unique choice of regularizer

o Normalization scheme is computable via Operator Sinkhorn
Scaling



Identifiability Issues

o Given a factorization of {y("}7_, c R? as yU/) &~ A(X 1)) for
low-rank X (9) € R7%9 there are many equivalent factorizations

o For any linear map M : R?*% — R9*9 that is a rank-preserver,
an equivalent factorization is y) = AM~1(MX 1))

o Eg., transpose, conjugation by non-singular matrices

o Thm [Marcus, Moyls ('59)]: A linear map M : R?7*7 — R9*? js a rank-
preserver if and only if we have that (i) M (X) = W; XW5 or
(ii) M(X) = W, X'W5; for non-singular W7, Wy € R7%4



Identifiability Issues

o For a given factorization, the regularizer is specified by

AMH(®)

o Normalization entails selecting M so that AM~1( @
uniquely specified



Identifiability Issues

o Def: A linear map A : R4%9 — R%is normalized if

d d
Y AAL =D AA=1
k=1 k=1

where A; € R7°? js the i’th component linear functional of A

o Think of A as:

(A1, X)
A(X) = E
(Ad, X)



Identifiability Issues

o Def: A linear map A : R9%49 — R%s normalized if

d d
> ARAL =D AAe=1
k=1 k=1

where A; € R7°? js the i’th component linear functional of A

o Analogous to unit-norm columns in dictionary learning

o Generic A normalizable by conjugating A/s by PD matrices
o Such a conjugation is unique
o Computed via Operator Sinkhorn Scaling [Gurvits ("03)]
o Developed for matroid problems, operator analogs of matching, ...



Algorithm for Learning Semidefinite Regularizer

Given{y(j)};f":1 C R%and target dimension ¢, find A : R7%9 — R4
such that each y(j) ~ ,A(X(j)) for low-rank X(j) c RI%4q

Alternating updates

1) Updating X U) s - affine rank-minimization problems
o NP-hard, but many relaxations available with performance guarantees

2) Updating A -- least-squares + Operator Sinkhorn scaling

o Direct generalization of dictionary learning algorithms




Convergence Result

o Suppose data {y(j)}}z’zl c R? generated as y/) = A* (X))
o A* : R?? — R%is a random Gaussian map

o rank (XU)*) — r with uniform-at-random row/column spaces

o Theorem: Then our algorithm is locally linearly convergent
w.h.p. to the correct regularizer if d > rq, n > ¢'"/d

o Recovery for ‘most’ regularizers



Experiments — Setup

o Pictures taken by Yong Sheng Soh

o Supplied 8x8 patches and their rotations
as training set to our algorithm




Experiments — Approximation Power

o Train: 6500 points (centered, normalized)
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Representation complexity

o Best over many random initializations



Experiments — Denoising Performance
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Computational complexity of regularizer

o Test: 720 points corrupted by Gaussian noise
o Denoise with Euclidean loss, learned regularizer

o Blue —linear programming (dictionary learning)

o Red — semidefinite programming (our idea)



Comparison of Atomic Structure
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Summary

o Learning semidefinite programming regularizers from data

o Generalize dictionary learning, which gives linear programming
regularizers

o Q: Data more likely to lie near faces of certain convex sets?
A( 4 ) VS A( )

o What do high-dimensional data really look like?

o Can physics help us answer this question?

users.cms.caltech.edu/~venkatc



