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Variational Approach to Inference

Given data, fit model (θ) by solving

arg min
θ

Loss(θ; data) + λ · Regularizer(θ)

I Loss: ensures fidelity to observed data
I Based on model of noise that has corrupted observations

I Regularizer: useful to induce desired structure in solution
I Based on prior knowledge, domain expertise



Example

Denoise an image corrupted by noise

I Loss: Euclidean-norm

I Regularizer: L1-norm of wavelet coefficients

I Natural images are typically sparse in wavelet basis

Photo: [Rudin, Osher, Fatemi]



Example

Complete a partially filled survey

Life is Goldfinger Big Shawshank Godfather
Beautiful Lebowski Redemption

Alice 5 4 ? ? ?
Bob ? 4 1 4 ?

Charlie ? 4 4 ? 5
Donna 4 ? ? 5 ?

I Loss: Euclidean / Logistic

I Regularizer: Nuclear-norm of user-preference matrix

I User-preference matrices often well-approximated as low-rank



This Talk

I Question: What if we do not have the domain expertise to
design or select an appropriate regularizer for our task?

I E.g. domains with high-dimensional data comprising different
data types

I Approach: Learn a suitable regularizer from example data
I E.g. Learn a suitable regularizer for denoising images using

examples of clean images

I Geometric picture: Fit a convex set (with suitable facial
structure) to a set of points



This Talk – Pipeline

I Learn: Have access to examples of (relatively) clean example
data. Use examples to learn a suitable regularizer.

I Apply: Faced with subsequent task that involves noisy or
incomplete data. Apply learned regularizer.



Outline

A paradigm for designing regularizers

LP-representable regularizers

SDP-representable regularizers

Summary and future work



Designing Regularizers

I Conceptual question: Given a dataset, how do we identify a
regularizer that is effective at enforcing structure that is
present in the data?

I First Step: What properties of a regularizer make them
effective?



Facial Geometry

Key: Facial geometry of the level sets of the regularizer.

I Optimal solution corresponding to generic data often lie on
low-dimensional faces

I In many applications the low-dimensional faces are the
structured models we wish to recover e.g. images are sparse in
wavelet domain

Approach: Design a regularizer s.t. data lies on low-dimensional
faces of level sets. We do so by using concise representations.



From Concise Representations to Regularizer

Concise representations:

We say that a datapoint (a vector) y ∈ Rd is concisely
represented by a set {ai}i∈I ⊂ Rd (called atoms) if

y =
∑

i∈S,S⊂I
ciai , ci ≥ 0,

for |S| small.

Regularizer:

‖x‖ = inf {t : x ∈ t · conv({ai}), t > 0} .

Smallest “blow-up” of conv({ai}) that includes x

[Maurey, Pisier, Jones...]



Sparse Representations

I Concisely represented data: Sparse vectors
I Linear sum of few standard basis vectors

I Regularizer: L1-norm
I Norm-ball is the convex hull of standard basis vectors

[Donoho, Johnstone, Tibshirani, Chen, Saunders, Candès, Romberg, Tao,

Tanner, Meinhausen, Bühlmann]



Sparse Representations

I Concisely represented data: Low-rank matrices
I Linear sum of few rank-one unit-norm matrices

I Regularizer: Nuclear-norm (sum of singular values)
I Norm-ball is the convex hull of rank-one unit-norm matrices

[Fazel, Boyd, Recht, Parrilo, Candès, Gross, ... ]



From Concise Representations to Regularizer

I From the view-point of optimization, this is the “correct”
convex regularizer to employ

I Low-dimensional faces of conv({ai}) are concisely represented
with {ai}

[Chandrasekaran, Recht, Parrilo, Willsky]



Designing Regularizers

I Conceptual question: Given a dataset, how do we identify a
regularizer that is effective at enforcing structure present in
the data?

I Prior work: If data can be concisely represented wrt a set
{ai} ⊂ Rd then an effective regularizer is available

I It is the norm induced by conv({ai}).

I Approach: Given a dataset, identify a set {ai} ⊂ Rd s.t.
data permits concise representations.



Polyhedral Regularizers

Approach: Given dataset, how do we identify a set {±ai} ⊂ Rd

such that the data permits concise representations?

Assume: |{ai}| is finite.

Precise mathematical formulation:

Given data {y (j)}nj=1 ⊂ Rd , find {ai}qi=1 ⊂ Rd so that

y
(j) ≈

∑
x
(j)
i ai , where x

(j)
i are mostly zero

= Ax (j) where A = [a1| . . . |aq], and x
(j) is sparse,

for each j .



Polyhedral Regularizers

Given data {y (j)}nj=1 ⊂ Rd , find A ∈ Rq 7→ Rd so that

y
(j) ≈ Ax (j), where x

(j) is sparse ∀j .

Regularizer:
Natural choice of regularizer is the norm induced by

conv({±ai}),

or equivalently

A(L1 norm ball), where A = [a1| . . . |aq].

The regularizer can be expressed as a linear program (LP).



Polyhedral Regularizers – Dictionary Learning

Given data {y (j)}nj=1 ⊂ Rd , find A ∈ Rq 7→ Rd so that

y
(j) ≈ Ax (j), where x

(j) is sparse ∀j .

Studied elsewhere as:
I ‘Dictionary Learning’ or ‘Sparse Coding’

I Olshausen, Field (’96); Aharon, Elad, Bruckstein (’06), Spielman,
Wang, Wright (’12); Arora, Ge, Moitra (’13); Agarwal,
Anandkumar, Netrapalli, Jain (’13); Barak, Kelner, Steurer (’14); ...

I Developed as a procedure for automatically discovering sparse
representations with finite dictionaries



Learning an Infinite Set of Atoms?

So far:

I Learning a regularizer corresponds to computing a matrix
factorization

I Finite set of atoms = dictionary learning

Question: Can we learn an infinite set of atoms?

I Richer family of concise representations
I Require

I Compact description of atoms
I Computationally tractable description of the convex hull

Remainder of the talk:

I Specify infinite atomic set as a algebraic variety whose
convex hull is computable via semidefinite programming



From dictionary learning to our work

Dictionary learning Our work

Atoms {±Ae(i) | e(i) ∈ Rp is a {A(U) | U ∈ Rq×q,
standard basis vector} U unit-norm rank-one}

A : Rp → Rd A : Rq×q → Rd

Compute Find A s.t. Find A s.t.

regularizer y
(j) ≈ Ax (j) for y

(j) ≈ A(X (j)) for

by sparse x
(j) low-rank X (j)

Level set A(L1-norm ball) A(nuclear norm ball)

Regularizer Linear Semidefinite
expressed Programming (LP) Programming (SDP)

via



Empirical results – Set-up

I Learn: Learn a collection of regularizers of varying
complexities from 6500 example image patches.

I Apply: Denoise 720 new data points corrupted by additive
Gaussian noise.



Empirical results – Comparison
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Computational cost of proximal operator

Denoise 720 new data
points corrupted by addi-
tive Gaussian noise

Polyhedral regularizer,
i.e. dictionary learning
Semidefinite-
representable regularizer

Apply proximal denoising

(squared-loss + regularizer)

Cost is derived by computing

proximal operator via an interior

point scheme



Semidefinite-Representable Regularizers

Goal: Compute a matrix factorization problem

Given data {y (j)}nj=1 ⊂ Rd and a target dimension q, find A :

Rq×q 7→ Rd so that

y
(j) ≈ A(X (j)) for low-rank X (j) ∈ Rq×q,

for each j .

Obstruction: This is a matrix factorization problem. The factors
A and {X (j)}nj=1 are both unknown, and hence any factorization is
not unique.



Identifiablity Issues

I Given a factorization of {y (j)}nj=1 ⊂ Rd as y
(j) = A(X (j)) for

low-rank X (j), there are many equivalent factorizations

I Let M : Rq×q 7→ Rq×q be an invertible linear operator that
preserves the rank of matrices

I Transpose operator M(X ) = X ′

I Conjugation by invertible matrices M(X ) = PXQ ′

Then
y
(j) = A ◦M−1︸ ︷︷ ︸

Linear map

( M(X (j))︸ ︷︷ ︸
Low rank matrix

)

specifies an equally valid factorization!

I {A ◦M−1} specifies family of regularizers – require a
canonical choice of factorization to uniquely specify a
regularizer



Identifiablity Issues

Theorem (Marcus and Moyls (’59)): An invertible linear operator
M : Rq×q 7→ Rq×q preserves the rank of matrices ⇔ composi-
tion of

I Transpose operator M(X ) = X ′

I Conjugation by invertible matrices M(X ) = PXQ ′

In our context, the regularizer is induced by

A ◦M−1(nuclear norm ball)

I M is transpose operator: leaves nuclear norm invariant
I M is conjugation by invertible matrices: apply polar

decomposition to orthogonal + positive definite
I Orthogonal matrices also leave nuclear norm invariant
I Ambiguity down to conjugation by positive definite matrices



Identifiablity Issues

Definition: A linear map A : Rq×q 7→ Rd is normalized if

d∑
k=1

AkA′k =
d∑

k=1

A′kAk = I

where Ak ∈ Rq×q is the k-th component linear functional of A.

One should think of A as

A(X ) =

 〈A1,X 〉
...

〈Ad ,X 〉





Identifiablity Issues

Definition: A linear map A : Rq×q 7→ Rd is normalized if

d∑
k=1

AkA′k =
d∑

k=1

A′kAk = I

where Ak ∈ Rq×q is the k-th component linear functional of A.

Given a generic linear map A : Rq×q 7→ Rd , normalization entails
finding a rank-preserver M so that

A ◦M is normalized.

Rank-preserver is unique, and can be computed via Operator
Sinkhorn Scaling [Gurvits (’04)].



Operator Sinkhorn Scaling

I Matrix Scaling: Given matrix M ∈ Rq×q, Mij > 0, find
diag(D1), diag(D2) so that

diag(D1)Mdiag(D2) is doubly-stochastic

I Operator Sinkhorn Scaling: Operator analog of Matrix
Scaling

I Edmond’s problem: Given subspace of Fq×q, decide if there
exists nonsingular matrix.



Algorithm – Overview

I Goal: Compute A and X (j)’s so that

{y (j)}nj=1 ≈ A({X (j)}nj=1)

I Approach: alternating updates

I Input: Data {y (j)}nj=1, initial estimate of A

I Alternate between updating {X (j)}nj=1, and updating A

I Generalizes previous algorithms for classical dictionary learning



Algorithm

Input: Data {y (j)}nj=1, initial estimate of A

1. Fix A, update X (j)

X (j) ← arg min
X
‖y (j) −A(X )‖22 subject to rank(X ) ≤ r

I Computationally intractable in general.
I Tractable approximations with guarantees available, e.g.

convex relaxation (Recht, Fazel, Parrilo (’07)), singular-value
projection (Meka, Jain, Dhillon (’10))

I Updates occur in parallel

2. ...

3. ...



Algorithm

Input: Data {y (j)}nj=1, initial estimate of A
1. ...

2. Fix X (j), update A, e.g. least squares

A ← arg min
A

∑
j

‖y (j) −A(X (j))‖22

3. ...



Algorithm

Input: Data {y (j)}nj=1, initial estimate of A
1. ...

2. ...

3. Normalize using Operator Sinkhorn Scaling described earlier



Algorithm

Input: Data {y (j)}nj=1, initial estimate of A

1. Fix A, update X (j): Affine-rank minimization

X (j) ← arg min
X
‖y (j) −A(X )‖22 subject to rank(X ) ≤ r

2. Fix X (j), update A: Least-squares

A ← arg min
A

∑
j

‖y (j) −A(X (j))‖22

3. Normalize via Operator Sinkhorn Scaling



Analysis – High Level Description

Assumptions: Data is generated by a model

Guarantee: Algorithm recovers the true regularizer with suitable
initialization



Analysis

Suppose: Data {y (j)}nj=1 is generated as y
(j) = A(X (j))

I A : Rq×q 7→ Rd is normalized and satisfies restricted isometry
property [Recht, Fazel, Parrilo]

I X (j) ∼ UV ′ where U,V ∈ Rq×r are partial orthogonal
matrices distributed u.a.r.,

If:

I # data-points is sufficiently many (& q10/d),

I Lifted dimension is not too high (. d2/r2).

Guarantee: Algorithm is locally linearly convergent and
recovers the same regularizer as A w.h.p..

Here, d = dim of ambient space, and r = rank.



Summary and Future work

Summary

I Described an approach for learning regularizer from data by
computing a structured matrix factorization

I # atoms being finite = polyhedral regularizer

I Described a special case with infinite atoms where learned
regularizer is computable via SDP

Future work

I Applying our algorithm as a building block in more complex
learning algorithms

I Informed strategies for initializing alternating minimization
procedure

arXiv: 1701.01207
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