# Fitting Convex Sets to Data via Matrix Factorization 

Yong Sheng Soh

LCCC Focus Period - May/June 2017<br>California Institute of Technology<br>Joint work with Venkat Chandrasekaran

## Variational Approach to Inference

Given data, fit model ( $\theta$ ) by solving

$$
\underset{o}{\arg \min } \operatorname{Loss}(\theta ; \text { data })+\lambda \cdot \operatorname{Regularizer}(\theta)
$$

- Loss: ensures fidelity to observed data
- Based on model of noise that has corrupted observations
- Regularizer: useful to induce desired structure in solution
- Based on prior knowledge, domain expertise


## Example

Denoise an image corrupted by noise


- Loss: Euclidean-norm
- Regularizer: L1-norm of wavelet coefficients
- Natural images are typically sparse in wavelet basis

Photo: [Rudin, Osher, Fatemi]

## Example

## Complete a partially filled survey

|  | Life is <br> Beautiful | Goldfinger | Big <br> Lebowski | Shawshank <br> Redemption | Godfather |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alice | 5 | 4 | $?$ | $?$ | $?$ |
| Bob | $?$ | 4 | 1 | 4 | $?$ |
| Charlie | $?$ | 4 | 4 | $?$ | 5 |
| Donna | 4 | $?$ | $?$ | 5 | $?$ |

- Loss: Euclidean / Logistic
- Regularizer: Nuclear-norm of user-preference matrix
- User-preference matrices often well-approximated as low-rank


## This Talk

- Question: What if we do not have the domain expertise to design or select an appropriate regularizer for our task?
- E.g. domains with high-dimensional data comprising different data types
- Approach: Learn a suitable regularizer from example data
- E.g. Learn a suitable regularizer for denoising images using examples of clean images
- Geometric picture: Fit a convex set (with suitable facial structure) to a set of points


## This Talk - Pipeline

- Learn: Have access to examples of (relatively) clean example data. Use examples to learn a suitable regularizer.
- Apply: Faced with subsequent task that involves noisy or incomplete data. Apply learned regularizer.


## Outline

A paradigm for designing regularizers

LP-representable regularizers

SDP-representable regularizers

Summary and future work

## Designing Regularizers

- Conceptual question: Given a dataset, how do we identify a regularizer that is effective at enforcing structure that is present in the data?
- First Step: What properties of a regularizer make them effective?


## Facial Geometry



Key: Facial geometry of the level sets of the regularizer.

- Optimal solution corresponding to generic data often lie on low-dimensional faces
- In many applications the low-dimensional faces are the structured models we wish to recover e.g. images are sparse in wavelet domain

Approach: Design a regularizer s.t. data lies on low-dimensional faces of level sets. We do so by using concise representations.

## From Concise Representations to Regularizer

Concise representations:
We say that a datapoint (a vector) $\boldsymbol{y} \in \mathbb{R}^{d}$ is concisely represented by a set $\left\{\boldsymbol{a}_{i}\right\}_{i \in \mathcal{I}} \subset \mathbb{R}^{d}$ (called atoms) if

$$
\boldsymbol{y}=\sum_{i \in \mathcal{S}, \mathcal{S} \subset \mathcal{I}} c_{i} \boldsymbol{a}_{i}, \quad c_{i} \geq 0
$$

for $|\mathcal{S}|$ small.

## Regularizer:

$$
\|\boldsymbol{x}\|=\inf \left\{t: \boldsymbol{x} \in t \cdot \operatorname{conv}\left(\left\{\boldsymbol{a}_{i}\right\}\right), t>0\right\}
$$

Smallest "blow-up" of $\operatorname{conv}\left(\left\{\boldsymbol{a}_{i}\right\}\right)$ that includes $\boldsymbol{x}$
[Maurey, Pisier, Jones...]

## Sparse Representations



- Concisely represented data: Sparse vectors
- Linear sum of few standard basis vectors
- Regularizer: L1-norm
- Norm-ball is the convex hull of standard basis vectors
[Donoho, Johnstone, Tibshirani, Chen, Saunders, Candès, Romberg, Tao,
Tanner, Meinhausen, Bühlmann]


## Sparse Representations



- Concisely represented data: Low-rank matrices
- Linear sum of few rank-one unit-norm matrices
- Regularizer: Nuclear-norm (sum of singular values)
- Norm-ball is the convex hull of rank-one unit-norm matrices
[Fazel, Boyd, Recht, Parrilo, Candès, Gross, ... ]


## From Concise Representations to Regularizer

- From the view-point of optimization, this is the "correct" convex regularizer to employ
- Low-dimensional faces of $\operatorname{conv}\left(\left\{\boldsymbol{a}_{i}\right\}\right)$ are concisely represented with $\left\{\boldsymbol{a}_{i}\right\}$
[Chandrasekaran, Recht, Parrilo, Willsky]


## Designing Regularizers

- Conceptual question: Given a dataset, how do we identify a regularizer that is effective at enforcing structure present in the data?
- Prior work: If data can be concisely represented wrt a set $\left\{\boldsymbol{a}_{i}\right\} \subset \mathbb{R}^{d}$ then an effective regularizer is available
- It is the norm induced by $\operatorname{conv}\left(\left\{\boldsymbol{a}_{i}\right\}\right)$.
- Approach: Given a dataset, identify a set $\left\{\boldsymbol{a}_{i}\right\} \subset \mathbb{R}^{d}$ s.t. data permits concise representations.


## Polyhedral Regularizers

Approach: Given dataset, how do we identify a set $\left\{ \pm \boldsymbol{a}_{i}\right\} \subset \mathbb{R}^{d}$ such that the data permits concise representations?

Assume: $\left|\left\{\boldsymbol{a}_{i}\right\}\right|$ is finite.
Precise mathematical formulation:
Given data $\left\{\boldsymbol{y}^{(j)}\right\}_{j=1}^{n} \subset \mathbb{R}^{d}$, find $\left\{\boldsymbol{a}_{i}\right\}_{i=1}^{q} \subset \mathbb{R}^{d}$ so that
$\boldsymbol{y}^{(j)} \approx \sum x_{i}^{(j)} \boldsymbol{a}_{i}, \quad$ where $x_{i}^{(j)}$ are mostly zero
$=A \boldsymbol{x}^{(j)}$ where $A=\left[\boldsymbol{a}_{1}|\ldots| \boldsymbol{a}_{q}\right]$, and $\boldsymbol{x}^{(j)}$ is sparse,
for each $j$.

## Polyhedral Regularizers

Given data $\left\{\boldsymbol{y}^{(j)}\right\}_{j=1}^{n} \subset \mathbb{R}^{d}$, find $A \in \mathbb{R}^{q} \mapsto \mathbb{R}^{d}$ so that

$$
\boldsymbol{y}^{(j)} \approx A \boldsymbol{x}^{(j)}, \text { where } \boldsymbol{x}^{(j)} \text { is sparse } \forall j
$$

## Regularizer:

Natural choice of regularizer is the norm induced by

$$
\operatorname{conv}\left(\left\{ \pm \boldsymbol{a}_{i}\right\}\right)
$$

or equivalently

$$
A(\mathrm{~L} 1 \text { norm ball }), \text { where } A=\left[\boldsymbol{a}_{1}|\ldots| \boldsymbol{a}_{q}\right] .
$$

The regularizer can be expressed as a linear program (LP).

## Polyhedral Regularizers - Dictionary Learning

Given data $\left\{\boldsymbol{y}^{(j)}\right\}_{j=1}^{n} \subset \mathbb{R}^{d}$, find $A \in \mathbb{R}^{q} \mapsto \mathbb{R}^{d}$ so that

$$
\boldsymbol{y}^{(j)} \approx A \boldsymbol{x}^{(j)}, \text { where } \boldsymbol{x}^{(j)} \text { is sparse } \forall j .
$$

## Studied elsewhere as:

- 'Dictionary Learning' or 'Sparse Coding'
- Olshausen, Field ('96); Aharon, Elad, Bruckstein ('06), Spielman, Wang, Wright ('12); Arora, Ge, Moitra ('13); Agarwal, Anandkumar, Netrapalli, Jain ('13); Barak, Kelner, Steurer ('14); ...
- Developed as a procedure for automatically discovering sparse representations with finite dictionaries


## Learning an Infinite Set of Atoms?

So far:

- Learning a regularizer corresponds to computing a matrix factorization
- Finite set of atoms = dictionary learning

Question: Can we learn an infinite set of atoms?

- Richer family of concise representations
- Require
- Compact description of atoms
- Computationally tractable description of the convex hull


## Remainder of the talk:

- Specify infinite atomic set as a algebraic variety whose convex hull is computable via semidefinite programming


## From dictionary learning to our work

|  | Dictionary learning | Our work |
| :---: | :---: | :---: |
| Atoms | $\left\{ \pm A \boldsymbol{e}^{(i)} \mid \boldsymbol{e}^{(i)} \in \mathbb{R}^{p}\right.$ is a standard basis vector $\}$ $A: \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}$ | $\left\{\mathcal{A}(U) \mid U \in \mathbb{R}^{q \times q}\right.$, $U$ unit-norm rank-one $\}$ $\mathcal{A}: \mathbb{R}^{q \times q} \rightarrow \mathbb{R}^{d}$ |
| Compute regularizer by | Find $A$ s.t. $\boldsymbol{y}^{(j)} \approx A \boldsymbol{x}^{(j)}$ for sparse $\boldsymbol{x}^{(j)}$ | $\begin{aligned} & \text { Find } \mathcal{A} \text { s.t. } \\ & \boldsymbol{y}^{(j)} \approx \mathcal{A}\left(X^{(j)}\right) \text { for } \end{aligned}$ $\text { low-rank } X^{(j)}$ |
| Level set | $A($ L1-norm ball) | $\mathcal{A}$ (nuclear norm ball) |
| Regularizer expressed via | $\begin{gathered} \text { Linear } \\ \text { Programming (LP) } \end{gathered}$ | Semidefinite Programming (SDP) |

## Empirical results - Set-up



- Learn: Learn a collection of regularizers of varying complexities from 6500 example image patches.
- Apply: Denoise 720 new data points corrupted by additive Gaussian noise.


## Empirical results - Comparison



Denoise 720 new data points corrupted by additive Gaussian noise

Polyhedral regularizer, i.e. dictionary learning Semidefiniterepresentable regularizer

Apply proximal denoising (squared-loss + regularizer)
Cost is derived by computing proximal operator via an interior point scheme

## Semidefinite-Representable Regularizers

Goal: Compute a matrix factorization problem

```
Given data {\mp@subsup{\boldsymbol{y}}{}{(j)}\mp@subsup{}}{j=1}{n}\subset\mp@subsup{\mathbb{R}}{}{d}\mathrm{ and a target dimension q, find }\mathcal{A}:
\mp@subsup{\mathbb{R}}{}{q\timesq}}\mapsto\mp@subsup{\mathbb{R}}{}{d}\mathrm{ so that
    \mp@subsup{y}{}{(j)}\approx\mathcal{A}(\mp@subsup{X}{}{(j)}) for low-rank }\mp@subsup{X}{}{(j)}\in\mp@subsup{\mathbb{R}}{}{q\timesq}
for each j.
```

Obstruction: This is a matrix factorization problem. The factors $\mathcal{A}$ and $\left\{X^{(j)}\right\}_{j=1}^{n}$ are both unknown, and hence any factorization is not unique.

## Identifiablity Issues

- Given a factorization of $\left\{\boldsymbol{y}^{(j)}\right\}_{j=1}^{n} \subset \mathbb{R}^{d}$ as $\boldsymbol{y}^{(j)}=\mathcal{A}\left(X^{(j)}\right)$ for low-rank $X^{(j)}$, there are many equivalent factorizations
- Let $\mathcal{M}: \mathbb{R}^{q \times q} \mapsto \mathbb{R}^{\boldsymbol{q} \times \boldsymbol{q}}$ be an invertible linear operator that preserves the rank of matrices
- Transpose operator $\mathcal{M}(X)=X^{\prime}$
- Conjugation by invertible matrices $\mathcal{M}(X)=P X Q^{\prime}$

Then

$$
\boldsymbol{y}^{(j)}=\underbrace{\mathcal{A} \circ \mathcal{M}^{-1}}_{\text {Linear map }}(\underbrace{\mathcal{M}\left(X^{(j)}\right)}_{\text {Low rank matrix }})
$$

specifies an equally valid factorization!

- $\left\{\mathcal{A} \circ \mathcal{M}^{-1}\right\}$ specifies family of regularizers - require a canonical choice of factorization to uniquely specify a regularizer


## Identifiablity Issues

Theorem (Marcus and Moyls ('59)): An invertible linear operator $\mathcal{M}: \mathbb{R}^{q \times q} \mapsto \mathbb{R}^{q \times q}$ preserves the rank of matrices $\Leftrightarrow$ composition of

- Transpose operator $\mathcal{M}(X)=X^{\prime}$
- Conjugation by invertible matrices $\mathcal{M}(X)=P X Q^{\prime}$

In our context, the regularizer is induced by

$$
\mathcal{A} \circ \mathcal{M}^{-1}(\text { nuclear norm ball })
$$

- $\mathcal{M}$ is transpose operator: leaves nuclear norm invariant
- $\mathcal{M}$ is conjugation by invertible matrices: apply polar decomposition to orthogonal + positive definite
- Orthogonal matrices also leave nuclear norm invariant
- Ambiguity down to conjugation by positive definite matrices


## Identifiablity Issues

Definition: A linear map $\mathcal{A}: \mathbb{R}^{q \times q} \mapsto \mathbb{R}^{d}$ is normalized if

$$
\sum_{k=1}^{d} \mathcal{A}_{k} \mathcal{A}_{k}^{\prime}=\sum_{k=1}^{d} \mathcal{A}_{k}^{\prime} \mathcal{A}_{k}=l
$$

where $\mathcal{A}_{k} \in \mathbb{R}^{q \times q}$ is the $k$-th component linear functional of $\mathcal{A}$.

One should think of $\mathcal{A}$ as

$$
\mathcal{A}(X)=\left(\begin{array}{c}
\left\langle\mathcal{A}_{1}, X\right\rangle \\
\vdots \\
\left\langle\mathcal{A}_{d}, X\right\rangle
\end{array}\right)
$$

## Identifiablity Issues

Definition: A linear map $\mathcal{A}: \mathbb{R}^{q \times q} \mapsto \mathbb{R}^{d}$ is normalized if

$$
\sum_{k=1}^{d} \mathcal{A}_{k} \mathcal{A}_{k}^{\prime}=\sum_{k=1}^{d} \mathcal{A}_{k}^{\prime} \mathcal{A}_{k}=l
$$

where $\mathcal{A}_{k} \in \mathbb{R}^{q \times q}$ is the $k$-th component linear functional of $\mathcal{A}$.

Given a generic linear map $\mathcal{A}: \mathbb{R}^{q \times q} \mapsto \mathbb{R}^{d}$, normalization entails finding a rank-preserver $\mathcal{M}$ so that
$\mathcal{A} \circ \mathcal{M}$ is normalized.
Rank-preserver is unique, and can be computed via Operator Sinkhorn Scaling [Gurvits ('04)].

## Operator Sinkhorn Scaling

- Matrix Scaling: Given matrix $M \in \mathbb{R}^{q \times q}, M_{i j}>0$, find $\operatorname{diag}\left(D_{1}\right), \operatorname{diag}\left(D_{2}\right)$ so that
$\operatorname{diag}\left(D_{1}\right) M \operatorname{diag}\left(D_{2}\right) \quad$ is doubly-stochastic
- Operator Sinkhorn Scaling: Operator analog of Matrix Scaling
- Edmond's problem: Given subspace of $\mathbb{F}^{q \times q}$, decide if there exists nonsingular matrix.


## Algorithm - Overview

- Goal: Compute $\mathcal{A}$ and $X^{(j)}$ 's so that

$$
\left\{\boldsymbol{y}^{(j)}\right\}_{j=1}^{n} \approx \mathcal{A}\left(\left\{X^{(j)}\right\}_{j=1}^{n}\right)
$$

- Approach: alternating updates
- Input: Data $\left\{\boldsymbol{y}^{(j)}\right\}_{j=1}^{n}$, initial estimate of $\mathcal{A}$
- Alternate between updating $\left\{X^{(j)}\right\}_{j=1}^{n}$, and updating $\mathcal{A}$
- Generalizes previous algorithms for classical dictionary learning


## Algorithm

Input: Data $\left\{\boldsymbol{y}^{(j)}\right\}_{j=1}^{n}$, initial estimate of $\mathcal{A}$

1. Fix $\mathcal{A}$, update $X^{(j)}$

$$
X^{(j)} \leftarrow \underset{X}{\arg \min }\left\|\boldsymbol{y}^{(j)}-\mathcal{A}(X)\right\|_{2}^{2} \quad \text { subject to } \quad \operatorname{rank}(X) \leq r
$$

- Computationally intractable in general.
- Tractable approximations with guarantees available, e.g. convex relaxation (Recht, Fazel, Parrilo ('07)), singular-value projection (Meka, Jain, Dhillon ('10))
- Updates occur in parallel

2. ...
3. 

## Algorithm

Input: Data $\left\{\boldsymbol{y}^{(j)}\right\}_{j=1}^{n}$, initial estimate of $\mathcal{A}$ 1. ...
2. Fix $X^{(j)}$, update $\mathcal{A}$, e.g. least squares

$$
\mathcal{A} \leftarrow \underset{\mathcal{A}}{\arg \min } \sum_{j}\left\|\boldsymbol{y}^{(j)}-\mathcal{A}\left(X^{(j)}\right)\right\|_{2}^{2}
$$

3. 

## Algorithm

Input: Data $\left\{\boldsymbol{y}^{(j)}\right\}_{j=1}^{n}$, initial estimate of $\mathcal{A}$

1. ...
2. ...
3. Normalize using Operator Sinkhorn Scaling described earlier

## Algorithm

Input: Data $\left\{\boldsymbol{y}^{(j)}\right\}_{j=1}^{n}$, initial estimate of $\mathcal{A}$

1. Fix $\mathcal{A}$, update $X^{(j)}$ : Affine-rank minimization

$$
X^{(j)} \leftarrow \underset{X}{\arg \min }\left\|\boldsymbol{y}^{(j)}-\mathcal{A}(X)\right\|_{2}^{2} \quad \text { subject to } \quad \operatorname{rank}(X) \leq r
$$

2. Fix $X^{(j)}$, update $\mathcal{A}$ : Least-squares

$$
\mathcal{A} \leftarrow \underset{\mathcal{A}}{\arg \min } \sum_{j}\left\|\boldsymbol{y}^{(j)}-\mathcal{A}\left(X^{(j)}\right)\right\|_{2}^{2}
$$

3. Normalize via Operator Sinkhorn Scaling

## Analysis - High Level Description

Assumptions: Data is generated by a model
Guarantee: Algorithm recovers the true regularizer with suitable initialization

## Analysis

Suppose: Data $\left\{\boldsymbol{y}^{(j)}\right\}_{j=1}^{n}$ is generated as $\boldsymbol{y}^{(j)}=\mathcal{A}\left(X^{(j)}\right)$

- $\mathcal{A}: \mathbb{R}^{\boldsymbol{q} \times \boldsymbol{q}} \mapsto \mathbb{R}^{\boldsymbol{d}}$ is normalized and satisfies restricted isometry property [Recht, Fazel, Parrilo]
- $X^{(j)} \sim U V^{\prime}$ where $U, V \in \mathbb{R}^{q \times r}$ are partial orthogonal matrices distributed u.a.r.,

If:

- \# data-points is sufficiently many ( $\gtrsim q^{10} / d$ ),
- Lifted dimension is not too high $\left(\lesssim d^{2} / r^{2}\right)$.

Guarantee: Algorithm is locally linearly convergent and recovers the same regularizer as $\mathcal{A}$ w.h.p..

Here, $d=\operatorname{dim}$ of ambient space, and $r=$ rank.

## Summary and Future work

## Summary

- Described an approach for learning regularizer from data by computing a structured matrix factorization
- \# atoms being finite = polyhedral regularizer
- Described a special case with infinite atoms where learned regularizer is computable via SDP


## Future work

- Applying our algorithm as a building block in more complex learning algorithms
- Informed strategies for initializing alternating minimization procedure

