Fitting Convex Sets to Data via Matrix Factorization

Yong Sheng Soh

LCCC Focus Period - May/June 2017

California Institute of Technology Joint work with Venkat Chandrasekaran

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Variational Approach to Inference

Given <u>data</u>, fit <u>model</u> (θ) by solving

$$\underset{\theta}{\operatorname{arg\,min}} \quad \operatorname{Loss}(\theta; \mathsf{data}) + \lambda \cdot \operatorname{Regularizer}(\theta)$$

- Loss: ensures fidelity to observed data
 - Based on model of noise that has corrupted observations

- Regularizer: useful to induce desired structure in solution
 - Based on prior knowledge, domain expertise

Example

Denoise an image corrupted by noise

Original

Noisy image

Denoised image

- Loss: Euclidean-norm
- Regularizer: L1-norm of wavelet coefficients
- Natural images are typically sparse in wavelet basis

Photo: [Rudin, Osher, Fatemi]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Example

Complete a partially filled survey

	Life is	Goldfinger	Big	Shawshank	Godfather
	Beautiful		Lebowski	Redemption	
Alice	5	4	?	?	?
Bob	?	4	1	4	?
Charlie	?	4	4	?	5
Donna	4	?	?	5	?

Loss: Euclidean / Logistic

- Regularizer: Nuclear-norm of user-preference matrix
- User-preference matrices often well-approximated as low-rank

・ロト・日本・モート モー うへぐ

This Talk

- Question: What if we do not have the domain expertise to design or select an appropriate regularizer for our task?
 - E.g. domains with high-dimensional data comprising different data types
- ► Approach: Learn a suitable regularizer from example data
 - E.g. Learn a suitable regularizer for denoising images using examples of clean images
- Geometric picture: Fit a convex set (with suitable facial structure) to a set of points

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Learn: Have access to examples of (relatively) clean example data. Use examples to learn a suitable regularizer.
- Apply: Faced with subsequent task that involves noisy or incomplete data. Apply learned regularizer.

Outline

A paradigm for designing regularizers

LP-representable regularizers

SDP-representable regularizers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary and future work

Designing Regularizers

Conceptual question: Given a dataset, how do we identify a regularizer that is effective at enforcing structure that is present in the data?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

First Step: What properties of a regularizer make them effective?

Facial Geometry

Key: Facial geometry of the level sets of the regularizer.

- Optimal solution corresponding to generic data often lie on low-dimensional faces
- In many applications the low-dimensional faces are the structured models we wish to recover e.g. images are sparse in wavelet domain

Approach: Design a regularizer s.t. **data** lies on **low-dimensional faces** of **level sets**. We do so by using **concise representations**.

From Concise Representations to Regularizer

Concise representations:

We say that a datapoint (a vector) $\mathbf{y} \in \mathbb{R}^d$ is concisely represented by a set $\{\mathbf{a}_i\}_{i \in \mathcal{I}} \subset \mathbb{R}^d$ (called atoms) if

$$oldsymbol{y} = \sum_{i \in \mathcal{S}, \mathcal{S} \subset \mathcal{I}} c_i oldsymbol{a}_i, \quad c_i \geq 0,$$

for $|\mathcal{S}|$ small.

Regularizer:

$$\|\boldsymbol{x}\| = \inf \left\{ t : \boldsymbol{x} \in t \cdot \operatorname{conv}(\{\boldsymbol{a}_i\}), t > 0 \right\}.$$

Smallest "blow-up" of $conv(\{a_i\})$ that includes x

[Maurey, Pisier, Jones...]

Sparse Representations

Concisely represented data: Sparse vectors

Linear sum of few standard basis vectors

Regularizer: L1-norm

Norm-ball is the convex hull of standard basis vectors

[Donoho, Johnstone, Tibshirani, Chen, Saunders, Candès, Romberg, Tao, Tanner, Meinhausen, Bühlmann]

Sparse Representations

Concisely represented data: Low-rank matrices

- Linear sum of few <u>rank-one unit-norm matrices</u>
- Regularizer: Nuclear-norm (sum of singular values)
 - Norm-ball is the convex hull of <u>rank-one unit-norm matrices</u>

[Fazel, Boyd, Recht, Parrilo, Candès, Gross, ...]

From Concise Representations to Regularizer

- From the view-point of optimization, this is the "correct" convex regularizer to employ
 - Low-dimensional faces of conv({a_i}) are concisely represented with {a_i}

[Chandrasekaran, Recht, Parrilo, Willsky]

Designing Regularizers

- Conceptual question: Given a dataset, how do we identify a regularizer that is effective at enforcing structure present in the data?
- ▶ **Prior work:** If data can be concisely represented wrt a set $\{a_i\} \subset \mathbb{R}^d$ then an effective regularizer is **available**
 - It is the norm induced by $conv(\{a_i\})$.
- ► Approach: Given a dataset, identify a set {a_i} ⊂ ℝ^d s.t. data permits concise representations.

Polyhedral Regularizers

Approach: Given dataset, how do we identify a set $\{\pm a_i\} \subset \mathbb{R}^d$ such that the data permits concise representations?

Assume: $|\{a_i\}|$ is finite.

Precise mathematical formulation:

Given data
$$\{\mathbf{y}^{(j)}\}_{j=1}^{n} \subset \mathbb{R}^{d}$$
, find $\{\mathbf{a}_{i}\}_{i=1}^{q} \subset \mathbb{R}^{d}$ so that
 $\mathbf{y}^{(j)} \approx \sum_{i} x_{i}^{(j)} \mathbf{a}_{i}$, where $x_{i}^{(j)}$ are mostly zero
 $= A\mathbf{x}^{(j)}$ where $A = [\mathbf{a}_{1}| \dots |\mathbf{a}_{q}]$, and $\mathbf{x}^{(j)}$ is sparse,
for each j .

Polyhedral Regularizers

Given data
$$\{\mathbf{y}^{(j)}\}_{j=1}^n \subset \mathbb{R}^d$$
, find $A \in \mathbb{R}^q \mapsto \mathbb{R}^d$ so that
 $\mathbf{y}^{(j)} \approx A\mathbf{x}^{(j)}$, where $\mathbf{x}^{(j)}$ is sparse $\forall j$.

Regularizer:

Natural choice of regularizer is the norm induced by

 $\operatorname{conv}(\{\pm \boldsymbol{a}_i\}),$

or equivalently

$$A(L1 \text{ norm ball}), \text{ where } A = [\mathbf{a}_1 | \dots | \mathbf{a}_q].$$

The regularizer can be expressed as a linear program (LP).

Polyhedral Regularizers – Dictionary Learning

Given data
$$\{\mathbf{y}^{(j)}\}_{i=1}^n \subset \mathbb{R}^d$$
, find $A \in \mathbb{R}^q \mapsto \mathbb{R}^d$ so that

 $\mathbf{y}^{(j)} \approx A\mathbf{x}^{(j)}$, where $\mathbf{x}^{(j)}$ is sparse $\forall j$.

Studied elsewhere as:

- 'Dictionary Learning' or 'Sparse Coding'
 - Olshausen, Field ('96); Aharon, Elad, Bruckstein ('06), Spielman, Wang, Wright ('12); Arora, Ge, Moitra ('13); Agarwal, Anandkumar, Netrapalli, Jain ('13); Barak, Kelner, Steurer ('14); ...

 Developed as a procedure for automatically discovering sparse representations with finite dictionaries

Learning an Infinite Set of Atoms?

So far:

- Learning a regularizer corresponds to computing a matrix factorization
- Finite set of atoms = dictionary learning

Question: Can we learn an infinite set of atoms?

- Richer family of concise representations
- Require
 - Compact description of atoms
 - Computationally tractable description of the convex hull

Remainder of the talk:

 Specify infinite atomic set as a algebraic variety whose convex hull is computable via semidefinite programming

From dictionary learning to our work

	Dictionary learning	Our work
Atoms	$\{\pm A oldsymbol{e}^{(i)} \mid oldsymbol{e}^{(i)} \in \mathbb{R}^p ext{ is a }$	$\{\mathcal{A}(U) \mid U \in \mathbb{R}^{q \times q},$
	standard basis vector}	U unit-norm rank-one}
	$A:\mathbb{R}^p ightarrow\mathbb{R}^d$	$\mathcal{A}:\mathbb{R}^{q imes q} ightarrow\mathbb{R}^{d}$
Compute	Find A s.t.	Find \mathcal{A} s.t.
regularizer	$m{y}^{(j)}pprox Am{x}^{(j)}$ for	$oldsymbol{y}^{(j)}pprox \mathcal{A}(X^{(j)})$ for
by	sparse $x^{(j)}$	low-rank X ^(j)
Level set	A(L1-norm ball)	$\mathcal{A}($ nuclear norm ball $)$
Regularizer	Linear	Semidefinite
expressed	Programming (LP)	Programming (SDP)
via		

Empirical results - Set-up

- Learn: Learn a collection of regularizers of varying complexities from 6500 example image patches.
- Apply: Denoise 720 new data points corrupted by additive Gaussian noise.

Empirical results - Comparison

Denoise 720 new data points corrupted by additive Gaussian noise

Polyhedral regularizer, i.e. dictionary learning Semidefiniterepresentable regularizer

Apply proximal denoising (squared-loss + regularizer) Cost is derived by computing proximal operator via an interior point scheme

Semidefinite-Representable Regularizers

Goal: Compute a matrix factorization problem

Given data $\{\mathbf{y}^{(j)}\}_{j=1}^n \subset \mathbb{R}^d$ and a target dimension q, find \mathcal{A} : $\mathbb{R}^{q \times q} \mapsto \mathbb{R}^d$ so that $\mathbf{y}^{(j)} \approx \mathcal{A}(X^{(j)})$ for low-rank $X^{(j)} \in \mathbb{R}^{q \times q}$, for each j.

Obstruction: This is a matrix factorization problem. The factors \mathcal{A} and $\{X^{(j)}\}_{j=1}^{n}$ are both unknown, and hence any factorization is **not unique**.

- Given a factorization of {y^(j)}_{j=1}ⁿ ⊂ ℝ^d as y^(j) = A(X^(j)) for low-rank X^(j), there are many equivalent factorizations
- ▶ Let $\mathcal{M} : \mathbb{R}^{q \times q} \mapsto \mathbb{R}^{q \times q}$ be an invertible linear operator that preserves the rank of matrices
 - Transpose operator $\mathcal{M}(X) = X'$
 - ► Conjugation by invertible matrices M(X) = PXQ'

Then

$$\boldsymbol{y}^{(j)} = \underbrace{\mathcal{A} \circ \mathcal{M}^{-1}}_{\text{Linear map}} (\underbrace{\mathcal{M}(\boldsymbol{X}^{(j)})}_{\text{Low rank matrix}})$$

specifies an equally valid factorization!

► {A ∘ M⁻¹} specifies family of regularizers – require a canonical choice of factorization to uniquely specify a regularizer

Theorem (Marcus and Moyls ('59)): An invertible linear operator $\mathcal{M}: \mathbb{R}^{q \times q} \mapsto \mathbb{R}^{q \times q}$ preserves the rank of matrices \Leftrightarrow composition of

- Transpose operator $\mathcal{M}(X) = X'$
- Conjugation by invertible matrices $\mathcal{M}(X) = PXQ'$

In our context, the regularizer is induced by

 $\mathcal{A} \circ \mathcal{M}^{-1}$ (nuclear norm ball)

- \mathcal{M} is transpose operator: leaves nuclear norm invariant
- ► *M* is conjugation by invertible matrices: apply polar decomposition to orthogonal + positive definite
 - Orthogonal matrices also leave nuclear norm invariant
 - Ambiguity down to conjugation by positive definite matrices

Definition: A linear map $\mathcal{A} : \mathbb{R}^{q \times q} \mapsto \mathbb{R}^d$ is **normalized** if $\sum_{k=1}^d \mathcal{A}_k \mathcal{A}'_k = \sum_{k=1}^d \mathcal{A}'_k \mathcal{A}_k = I$ where $\mathcal{A}_k \in \mathbb{R}^{q \times q}$ is the k-th component linear functional of \mathcal{A} .

One should think of ${\mathcal A}$ as

$$\mathcal{A}(X) = \left(egin{array}{c} \langle \mathcal{A}_1, X
angle \ dots \ \langle \mathcal{A}_d, X
angle \end{array}
ight)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition: A linear map $\mathcal{A} : \mathbb{R}^{q \times q} \mapsto \mathbb{R}^d$ is normalized if $\sum_{k=1}^d \mathcal{A}_k \mathcal{A}'_k = \sum_{k=1}^d \mathcal{A}'_k \mathcal{A}_k = I$

where $\mathcal{A}_k \in \mathbb{R}^{q \times q}$ is the *k*-th component linear functional of \mathcal{A} .

Given a generic linear map $\mathcal{A} : \mathbb{R}^{q \times q} \mapsto \mathbb{R}^d$, normalization entails finding a rank-preserver \mathcal{M} so that

 $\mathcal{A} \circ \mathcal{M}$ is normalized.

Rank-preserver is unique, and can be computed via Operator Sinkhorn Scaling [Gurvits ('04)].

Operator Sinkhorn Scaling

▶ Matrix Scaling: Given matrix $M \in \mathbb{R}^{q \times q}$, $M_{ij} > 0$, find $\operatorname{diag}(D_1), \operatorname{diag}(D_2)$ so that

 $\operatorname{diag}(D_1)M\operatorname{diag}(D_2)$ is doubly-stochastic

- Operator Sinkhorn Scaling: Operator analog of Matrix Scaling
 - ► Edmond's problem: Given subspace of $\mathbb{F}^{q \times q}$, decide if there exists nonsingular matrix.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Algorithm – Overview

► Goal: Compute A and X^(j)'s so that

$$\{\mathbf{y}^{(j)}\}_{j=1}^n \approx \mathcal{A}(\{X^{(j)}\}_{j=1}^n)$$

Approach: alternating updates

- Input: Data $\{\mathbf{y}^{(j)}\}_{j=1}^n$, initial estimate of \mathcal{A}
- Alternate between updating $\{X^{(j)}\}_{i=1}^{n}$, and updating \mathcal{A}
- Generalizes previous algorithms for classical dictionary learning

Input: Data $\{y^{(j)}\}_{j=1}^{n}$, initial estimate of \mathcal{A} 1. Fix \mathcal{A} , update $X^{(j)}$ $X^{(j)} \leftarrow \arg\min_{X} ||y^{(j)} - \mathcal{A}(X)||_{2}^{2}$ subject to $\operatorname{rank}(X) \leq r$ • Computationally intractable in general.

 Tractable approximations with guarantees available, e.g. convex relaxation (Recht, Fazel, Parrilo ('07)), singular-value projection (Meka, Jain, Dhillon ('10))

Updates occur in parallel

3. ...

2. ...

Input: Data
$$\{\mathbf{y}^{(j)}\}_{j=1}^{n}$$
, initial estimate of \mathcal{A}
1. ...
2. Fix $X^{(j)}$, update \mathcal{A} , e.g. least squares
 $\mathcal{A} \leftarrow \arg\min_{\mathcal{A}} \sum_{j} \|\mathbf{y}^{(j)} - \mathcal{A}(X^{(j)})\|_{2}^{2}$
3. ...

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Input: Data $\{y^{(j)}\}_{i=1}^{n}$, initial estimate of \mathcal{A} 1. Fix A. update $X^{(j)}$: Affine-rank minimization $X^{(j)} \leftarrow \underset{\mathbf{x}}{\operatorname{arg\,min}} \| \mathbf{y}^{(j)} - \mathcal{A}(X) \|_2^2 \quad \text{subject to} \quad \operatorname{rank}(X) \leq r$ 2. Fix $X^{(j)}$, update \mathcal{A} : Least-squares $\mathcal{A} \leftarrow \operatorname*{arg\,min}_{\mathcal{A}} \sum_{i} \| \boldsymbol{y}^{(j)} - \mathcal{A}(X^{(j)}) \|_{2}^{2}$ 3. Normalize via Operator Sinkhorn Scaling

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Analysis – High Level Description

Assumptions: Data is generated by a model

<u>Guarantee</u>: Algorithm recovers the true regularizer with suitable initialization

Analysis

Suppose: Data $\{y^{(j)}\}_{j=1}^n$ is generated as $y^{(j)} = \mathcal{A}(X^{(j)})$

• $\mathcal{A} : \mathbb{R}^{q \times q} \mapsto \mathbb{R}^d$ is normalized and satisfies restricted isometry property [Recht, Fazel, Parrilo]

 X^(j) ~ UV' where U, V ∈ ℝ^{q×r} are partial orthogonal matrices distributed u.a.r.,

<u>lf</u>:

- # data-points is sufficiently many ($\gtrsim q^{10}/d$),
- Lifted dimension is not too high ($\leq d^2/r^2$).

<u>**Guarantee:**</u> Algorithm is **locally linearly convergent** and recovers the **same regularizer** as \mathcal{A} w.h.p..

Here, $d = \dim$ of ambient space, and $r = \operatorname{rank}$.

Summary and Future work

Summary

- Described an approach for learning regularizer from data by computing a structured matrix factorization
- # atoms being finite = polyhedral regularizer
- Described a special case with infinite atoms where learned regularizer is computable via SDP

Future work

- Applying our algorithm as a building block in more complex learning algorithms
- Informed strategies for initializing alternating minimization procedure

arXiv: 1701.01207