Optimal mass transport and density flows

Tryphon Georgiou
Mechanical \& Aerospace Engineering
University of California, Irvine

Joint work with Yongxin Chen (MSKCC), M. Pavon (Padova), A. Tannenbaum (Stony Brook), and Wilfrid Gangbo (UCLA)

LCCC, Lund

June 13, 2017

Plan of the talk:

- Nexus of ideas:

Mass Transport \Leftrightarrow Schrödinger bridges \Leftrightarrow Stochastic control with a bit on LQG, Riccati, etc.

- Discrete-space counterpart:

Markov chains and networks

- Non-commutative counterpart:

Quantum flows \& non-commutative geometry

Density flows

Optimal Mass Transport (OMT)

Gaspard Monge 1781

Leonid Kantorovich 1976

Work in early 1940's, Nobel 1975

CONFIDENTIAL

Leonid Vital'yevich KANTOROVICH
Head, Problems Laboratory of Economic-Mathematical Methods and Operations Research, Institute of Management of the National Economy

An internationally recognized creative genius in the fields of mathematics and the application of electronic ics and the application of electronic
computers to economic affairs, Academician Leonid Kantorovich (pronounced kahntuhROHvich) has worked at the Institute of Management of the National Economy since 1971. He has been involved in ad-
 vanced mathematical research since
the age of 15; in 1939 he invented
linear programming, one of the most significant contributions to economic linear programming, one of the most significant contributions to economic
management in the twentieth century. Kantorovich has spent most of his management in the twentieth century. Kantorovich has spent most of
adult life battling to win acceptance for his revolutionary concept from Soviet academic and economic bureaucracies; the value of linear programming to academic and economic bureaucracies; the value of linear programming to
Soviet economie practices was not really recognized by his country's authorities until 1965, when Kantorovich was awarded a Lenin Prize for his work. International recognition came in October 1975, when the mathematician was awarded the Nobel Prize for Economics jointly with T. C Koopmans, a Dutch-born American economist who discovered the same concept independently a few years after Kantorovich.

In addition to his mathematical research, Kantorovich has been directly involved in developing improved designs for high-speed digital computers, an activity apparently motivated by the Soviet Union's need for improved computers in solving large economic planning problems.

The Institute of Management of the National Economy
The Institute of Management of the National Economy was established to train high-level economic and industrial administrators in modern methods of management, production organization and the use of economicmathematical methods and computers in planning. When the institute opened in early 1971. Premier Aleksey Kosygin and Party Secretary Andrey Kiricnko attended the ceremonies, tus suggesing the iptan modern management treniques to Sovict industrial administration and economic planning.

CONFIDENTIAL CR 77.1070S
CIA file on Kantorovich
(wikipedia)

Monge's formulation

Le mémoire sur les déblais et les remblais
Gaspard Monge 1781

$$
\inf _{T} \int\|x-\underbrace{T(x)}_{y}\|^{2} d \mu(x)
$$

where $\boldsymbol{T} \# \boldsymbol{\mu}=\boldsymbol{\nu}$

Kantorovich's formulation

$$
\inf _{\pi \in \Pi\left(\rho_{0}, \rho_{1}\right)} \iint\|x-y\|^{2} d \pi(x, y)
$$

where $\boldsymbol{\Pi}(\boldsymbol{\mu}, \boldsymbol{\nu})$ are "couplings":

$$
\begin{aligned}
& \int_{y} \pi(d x, d y)=\rho_{0}(x) d x=d \mu(x) \\
& \int_{x} \pi(d x, d y)=\rho_{1}(y) d y=d \nu(y)
\end{aligned}
$$

B\&B's fluid dynamic formulation

Benamou and Brenier (2000):

$$
\begin{aligned}
& \inf _{(\rho, v)} \int_{\mathbb{R}^{n}} \int_{0}^{1}\|v(x, t)\|^{2} \rho(x, t) d t d x \\
& \frac{\partial \rho}{\partial t}+\nabla \cdot(v \rho)=0 \\
& \rho(x, 0)=\rho_{0}(x), \quad \rho(y, 1)=\rho_{1}(y)
\end{aligned}
$$

McCann, Gangbo, Otto, Villani, ...

Stochastic control formulation

$$
\begin{aligned}
& \inf _{v} \mathbb{E}_{\rho}\left\{\int_{0}^{1}\|v(x, t)\|^{2} d t\right\} \\
& \dot{x}(t)=v(x, t) \\
& x(0) \sim \rho_{0}(x) d x \\
& x(1) \sim \rho_{1}(y) d y
\end{aligned}
$$

OMT as a control problem - derivation

$$
\begin{aligned}
& \|x-y\|^{2}=\inf _{\mathrm{x} \in \mathcal{X}_{x y}} \int_{0}^{1}\|\dot{\mathrm{x}}\|^{2} d t \\
& \mathcal{X}_{x y}=\left\{\mathrm{x} \in C^{1} \mid \mathrm{x}(0)=x, \mathrm{x}(1)=y\right\}
\end{aligned}
$$

Inf attained at constant speed geodesic $\mathrm{x}^{*}(\boldsymbol{t})=(1-\boldsymbol{t}) \boldsymbol{x}+\boldsymbol{t y}$

OMT as a control problem - Dirac marginals

Also, Inf $=$ any probabilistic average in $\boldsymbol{\mathcal { X }}_{x y}$

$$
\|x-y\|^{2}=\inf _{P_{x y}} \mathbb{E}_{P_{x y}}\left\{\int_{0}^{1}\|\dot{\mathrm{x}}(t)\|^{2} d t\right\}
$$

$P_{x y} \in \mathbb{D}\left(\delta_{x}, \delta_{y}\right)$: prob. measures on C^{1} with delta marginals

OMT as a control problem - general marginals

$$
\inf _{\pi \in \Pi\left(\rho_{0}, \rho_{1}\right)} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\|x-y\|^{2} d \pi(x, y)=\inf _{P \in \mathbb{D}\left(\rho_{0}, \rho_{1}\right)} \mathbb{E}_{P}\left\{\int_{0}^{1}\|\dot{\mathrm{x}}(t)\|^{2} d t\right\} .
$$

$\Rightarrow \mathrm{OMT} \simeq$ stochastic control problem
with atypical boundary constraints

$$
\begin{aligned}
& \inf _{v} \mathbb{E}\left\{\int_{0}^{1}\|v\|^{2} d t\right\} \\
& \dot{x}(t)=v(x(t), t), \quad \text { a.s., } \quad x(0) \sim \rho_{0} d x, \quad x(1) \sim \rho_{1} d y .
\end{aligned}
$$

Schrödinger's Bridges

$$
\rho=\Psi \bar{\Psi}
$$

$$
\Psi_{t}=U(t) \Psi_{0}
$$

Erwin Schrödinger Work in 1926, Nobel 1935

Bridges 1931/32

Schrödinger's Bridge Problem (SBP)

- Cloud of \boldsymbol{N} independent Brownian particles (\boldsymbol{N} large)
- empirical distr. $\rho_{0}(x) d x$ and $\rho_{1}(y) d y$ at $t=0$ and $t=1$, resp.
- ρ_{0} and ρ_{1} not compatible with transition mechanism

$$
\rho_{1}(y) \neq \int_{0}^{1} p\left(t_{0}, x, t_{1}, y\right) \rho_{0}(x) d x
$$

where

$$
p(s, y, t, x)=[2 \pi(t-s)]^{-\frac{n}{2}} \exp \left[-\frac{|x-y|^{2}}{2(t-s)}\right], \quad s<t
$$

$\underline{\text { Particles have been transported in an unlikely way }}$

Schrödinger (1931): Of the many unlikely ways in which this could have happened, which one is the most likely?

Large deviations formulation of SBP

$$
\text { Minimize } \quad H(Q, W)=E_{Q}\left[\log \frac{d Q}{d W}\right]
$$

over $Q \in \mathbb{D}\left(\rho_{0}, \rho_{1}\right)$ distributions on paths with marginals ρ^{\prime} s
$\boldsymbol{H}(\cdot, \cdot)$: relative entropy

Föllmer 1988: This is a problem of large deviations of the empirical distribution on path space connected through Sanov's theorem to
a maximum entropy problem.

Relative entropy w.r.t. Wiener measure
$d X=v d t+d B$

Girsanov:

$$
E_{Q}\left[\log \frac{d Q}{d W}\right]=E_{Q}\left[\frac{1}{2} \int_{0}^{t}\|v\|^{2} d s\right]
$$

is a quadratic cost!!!

SBP as a stochastic control problem

$$
\begin{aligned}
& \inf _{(\rho, v)} \int_{\mathbb{R}^{n}} \int_{0}^{1}\|v(x, t)\|^{2} \rho(x, t) d t d x \\
& \frac{\partial \rho}{\partial t}+\nabla \cdot(v \rho)=\frac{1}{2} \Delta \rho \\
& \rho(x, 0)=\rho_{0}(x), \quad \rho(y, 1)=\rho_{1}(y)
\end{aligned}
$$

Blaquière, Dai Pra, ...
compare with OMT:

$$
\begin{aligned}
& \inf _{(\rho, v)} \int_{\mathbb{R}^{n}} \int_{0}^{1} \frac{1}{2}\|v(x, t)\|^{2} \rho(x, t) d t d x \\
& \frac{\partial \rho}{\partial t}+\nabla \cdot(v \rho)=0 \\
& \rho(x, 0)=\rho_{0}(x), \quad \rho(y, 1)=\rho_{1}(y)
\end{aligned}
$$

Fluid-dynamic formulation of SBP

(time-symmetric)

$$
\begin{aligned}
& \inf _{(\rho, v)} \int_{\mathbb{R}^{n}} \int_{0}^{1}\left[\|v(x, t)\|^{2}+\left\|\frac{1}{2} \nabla \log \rho(x, t)\right\|^{2}\right] \rho(x, t) d t d x \\
& \frac{\partial \rho}{\partial t}+\nabla \cdot(v \rho)=0 \\
& \rho(0, x)=\rho_{0}(x), \quad \rho(1, y)=\rho_{1}(y)
\end{aligned}
$$

$\left\|\frac{1}{2} \nabla \log \rho(x, t)\right\|^{2}$: Fisher information, Nelson's osmotic power

Chen-Georgiou-Pavon, On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint, J. Opt. Theory Appl., 2015

Mikami 2004, Mikami-Thieullen 2006,2008, Léonard 2012

Erwin Schrödinger's insight on SBP

the density factors into

$$
\rho(x, t)=\varphi(x, t) \hat{\varphi}(x, t)
$$

where φ and $\hat{\varphi}$ solve (Schrödinger's system):

$$
\begin{aligned}
\varphi(x, t) & =\int p(t, x, 1, y) \varphi(y, 1) d y,
\end{aligned} \quad \varphi(x, 0) \hat{\varphi}(x, 0)=\rho_{0}(x), ~ l p(0, y, t, x) \hat{\varphi}(y, 0) d y, \quad \varphi(x, 1) \hat{\varphi}(x, 1)=\rho_{1}(x) .
$$

compare with $\Psi \bar{\Psi}=\rho$

Existence and uniqueness for Schrödinger's system:
Fortet 1940, Beurling 1960, Jamison 1974/75, Föllmer 1988.
~ Sinkhorn iteration \& Quantum version: Georgiou-Pavon 2015

SBP schematic

SBP schematic

SBP schematic

SBP schematic

Schrödinger system

$$
\begin{array}{r}
-\frac{\partial \varphi}{\partial t}(t, x)=\frac{1}{2} \Delta \varphi(t, x) \\
\frac{\partial \hat{\varphi}}{\partial t}(t, x)=\frac{1}{2} \Delta \hat{\varphi}(t, x) \\
\varphi(0, x) \hat{\varphi}(0, x)=\rho_{0}(x) \\
\varphi(1, x) \hat{\varphi}(1, x)=\rho_{1}(x)
\end{array}
$$

Existence \& uniqueness (Sinkhorn scaling)

$$
\begin{array}{r}
-\frac{\partial \varphi}{\partial t}(t, x)=\frac{1}{2} \Delta \varphi(t, x) \\
\frac{\partial \hat{\varphi}}{\partial t}(t, x)=\frac{1}{2} \Delta \hat{\varphi}(t, x) \\
\varphi(0, x) \hat{\varphi}(0, x)=\rho_{0}(x) \\
\varphi(1, x) \hat{\varphi}(1, x)=\rho_{1}(x)
\end{array}
$$

iteration is contractive in the Hilbert metric!

$$
\begin{aligned}
d_{H}(p, q) & =\log \frac{M(p, q)}{m(p, q)} \\
M(p, q) & :=\inf \{\lambda \mid p \leq \lambda q\} \\
m(p, q) & :=\sup \{\lambda \mid \lambda q \leq p\}
\end{aligned}
$$

Chen-Georgiou-Pavon, Entropic and displacement interpolation: a computational

OMT as limit to SBP: numerics in general

Marginal distributions

OMT interpolation:
$\rho_{t}+\nabla \cdot \rho v=0$

$$
\rho_{t}+\nabla \cdot \rho v=\epsilon \Delta \rho, \text { varying } \epsilon
$$

Applications: Image interpolation

Interpolation of 2D images to a 3D model:

LQG - covariance control

$$
\min _{u} \mathbb{E}\left\{\int_{0}^{T}\|u(t)\|^{2} d t\right\}
$$

s.t.
$d X=A X d t+B u d t+B d W$
$\boldsymbol{X}(0) \sim \mathcal{N}\left(0, \Sigma_{0}\right), \quad \boldsymbol{X}(\boldsymbol{T}) \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{1}}\right) \quad \Leftarrow$ these are the ρ 's

Beghi (1996), Grigoriadis- Skelton (1997)
Brockett $(2007,2012)$, Vladimirov-Petersen $(2010,2015)$

Bridges - LQG - covariance control in general

$$
\min _{u} \mathbb{E}\left\{\int_{0}^{T}\|u(t)\|^{2} d t\right\}
$$

s.t.
$d X=A X d t+B u d t+B_{1} d W$
$X(0) \sim \mathcal{N}\left(0, \Sigma_{0}\right), \quad X(T) \sim \mathcal{N}\left(0, \Sigma_{1}\right)$
connection with SBP $\Rightarrow \phi(t, x)=\exp \left(-\|x\|_{Q(t)^{-1}}^{2}\right) \&$ Riccati's

SBP Riccati's

- nonlinearly coupled Riccati equations \equiv Schrödinger system

$$
\begin{aligned}
\dot{\Pi}= & -A^{\prime} \Pi-\Pi A+\Pi B B^{\prime} \Pi \\
\dot{\mathrm{H}}= & -A^{\prime} \mathbf{H}-\mathbf{H A}-\mathbf{H} B B^{\prime} \mathbf{H} \\
& \quad+(\Pi+\mathbf{H})\left(B B^{\prime}-B_{1} B_{1}^{\prime}\right)(\Pi+\mathbf{H}) . \\
& =\Pi(0)+\mathbf{H}(0) \\
\Sigma_{0}^{-1}= & \Pi(T)+\mathbf{H}(T) .
\end{aligned}
$$

$\log (\rho)=\log (\phi)+\log (\hat{\phi}) \Leftrightarrow \Sigma^{-1}=\Pi+\mathbf{H}$

Chen-Georgiou-Pavon, Optimal steering of a linear stochastic
system to a final probability distribution, IEEE Trans. Aut. Control, May 2016

stationary SBP

When can Σ be a stationary state-covariance for

$$
d x(t)=(A-B K) x(t) d t+B_{1} d w(t) ?
$$

i.e., when is $\boldsymbol{\Sigma}=\boldsymbol{E} \boldsymbol{x} \boldsymbol{x}^{\prime}$, for suitable choice of \boldsymbol{K} ?

- not all Σ can be realized by state feedback

stationary SBP

When can Σ be a stationary state-covariance for

$$
d x(t)=(A-B K) x(t) d t+B_{1} d w(t) ?
$$

This is so iff

$$
\operatorname{rank}\left[\begin{array}{cc}
A \Sigma+\Sigma A^{\prime}+B_{1} B_{1}^{\prime} & B \\
B & 0
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
0 & B \\
B & 0
\end{array}\right] .
$$

- Chen-Georgiou-Pavon, Optimal steering..., Part II IEEE TAC, May 2016
- Georgiou, Structure of state covariances... TAC 2002
- recent work with Mihailo Jovanovic etal. on inverse problems, etc., 2016, 2017

stationary SBP

Assuming

$$
\operatorname{rank}\left[\begin{array}{cc}
A \Sigma+\Sigma A^{\prime}+B_{1} B_{1}^{\prime} & B \\
B & 0
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
0 & B \\
B & 0
\end{array}\right]
$$

find \boldsymbol{K} so that
for $\boldsymbol{u}=-\boldsymbol{K} \boldsymbol{x}$ and $\boldsymbol{d} \boldsymbol{x}=(\boldsymbol{A}-\boldsymbol{B K}) \boldsymbol{x} d t+\boldsymbol{B}_{1} d \boldsymbol{w}$, we have:

$$
\Sigma=\boldsymbol{E} \boldsymbol{x} \boldsymbol{x}^{\prime} \text { and } J_{\text {power }}(u):=\mathbb{E}\left\{\|u\|^{2}\right\} \text { is minimal }
$$

Via semidefinite programming:

- Chen-Georgiou-Pavon, Optimal steering..., Part II IEEE TAC, May 2016.

Application: Cooling

Efficient steering from initial condition ρ_{0} to ρ_{1} at finite time

- Efficient stationary state of stochastic oscillators to desired ρ_{1}
- thermodynamic systems, controlling collective response
- magnetization distribution in NMR spectroscopy,..
- Chen-Georgiou-Pavon

Fast cooling for a system of stochastic oscillators, J. Math. Phys. Nov. 2015.

Cooling (cont'd)

Nyquist-Johnson noise driven oscillator

$$
\begin{aligned}
L d i_{L}(t) & =v_{C}(t) d t \\
R C d v_{C}(t) & =-v_{C}(t) d t-R i_{L}(t) d t+u(t) d t+d w(t)
\end{aligned}
$$

Cooling \& keeping it cool!

Inertial particles with stochastic excitation

trajectories in phase space transparent tube: " 3σ region"

Application: OMT with dynamics via SBP

Schrödinger bridge with $\epsilon=9$

Schrödinger bridge with $\epsilon=4$

Schrödinger bridge with $\epsilon=0.01$

Optimal transport with prior

Discrete space: SBP and OMT on graph

Chen-G-Pavon-Tannenbaum, Robust transport over networks TAC to appear in March

Flow on Graphs - transportation

Graph:
nodes $\mathcal{X}=\{1,2,3,4\}$
edges $\mathcal{E}=\{(1,2),(1,4), \ldots\}$
paths: $(1,4,2),(1,4,3,2), \ldots$ transport cost $\boldsymbol{i} \rightarrow \boldsymbol{j}: \boldsymbol{U}_{i j}$

Markov chain
transition mechanism $Q_{i j} \quad \operatorname{Prob}(i \rightarrow j)$ portion of mass passing from \boldsymbol{i} to \boldsymbol{j}.
$\rho(t, x)$
$\operatorname{Prob}(X(t)=x)$
"mass" at time t sitting at node \boldsymbol{x}
$\rho_{0}\left(x_{0}\right) Q_{x_{0} x_{1}} \cdots Q_{x_{N-1} x_{N}} \quad \operatorname{Prob}\left(X(0)=x_{0} X(1)=x_{1} \cdots X(N)=x_{N}\right.$ portion of mass traveling along $x_{0} x_{1} \cdots x_{N}$

Schrödinger bridges on graphs

initial \& final distributions: ρ_{0} and ρ_{N}
transition probabilities $Q_{i j}$ (prior)
that may not be consistent with the marginals, i.e.,

$$
\rho_{N}\left(x_{N}\right) \neq \sum_{x_{0}, x_{1}, \ldots, x_{N-1}} \rho_{0}\left(x_{0}\right) Q_{x_{0} x_{1}} Q_{x_{1} x_{2}} \cdots Q_{x_{N-1} x_{N}}
$$

Determine

$$
P^{\mathrm{opt}}=\operatorname{argmin}\left\{H(P, Q) \mid P \in \mathbb{D}\left(\rho_{0}, \rho_{N}\right)\right\}
$$

$\boldsymbol{H}(\boldsymbol{P}, Q)$ relative entropy/KL divergence

- Choice of prior influences transport properties! Ruelle-Bowen transition probabilites \Rightarrow "equalize" usage of all alternative paths \Rightarrow dispersive transportation, robustness
- Computations via iterative scaling (Sinkhorn-like)

Trading cost vs. robustness

cost $\boldsymbol{U}_{i j}$ in traversing edge (i, j) :

$$
U\left(x_{0}, x_{1}, \cdots, x_{N}\right)=\sum_{t=0}^{N-1} U_{x_{t} x_{t+1}}
$$

cost of transportation:

$$
\mathcal{U}(P):=\sum_{\left\{\left(x_{0} \cdots x_{N}\right)\right\}} P\left(x_{0}, x_{1}, \cdots, x_{N}\right) U\left(x_{0}, x_{1}, \cdots, x_{N}\right)
$$

minimize "free energy"

$$
\begin{aligned}
\mathcal{F}(P) & :=\mathcal{U}(P)-T \mathcal{S}(P) \\
& =-\sum_{\{\text {paths }\}} P \log \left(e^{-U}\right)+T \sum P \log (P) \quad=T H\left(P \mid e^{-U / T}\right)
\end{aligned}
$$

"temperature" \boldsymbol{T} : tradeoff between \mathcal{U} and \mathcal{S}
i.e., tradeoff between cost \& "dispersiveness/robustness"

Application: transport scheduling

Move a unit mass
from node 1 to node 9 in three steps:

Available paths $\quad\left\{\begin{array}{l}(1-2-7-9) \\ (1-3-8-9) \\ (1-4-8-9)\end{array}\right.$

Solution $\rho(t, x)$: equal usage of the three options.

Matrix-valued OMT \& SBP

our goal

extend the fluid dynamics framework to

- Hermitian matrices
- matrix-valued distributions
I.e., formulate for matrices...

$$
\begin{gathered}
\inf \int_{\text {space }} \int_{0}^{1} \rho(t, x)\|v(t, x)\|^{2} d t d x \\
\frac{\partial \rho}{\partial t}+\nabla_{x} \cdot(\rho v)=0 \\
\rho(0, \cdot)=\rho_{0}, \rho(1, \cdot)=\rho_{1}
\end{gathered}
$$

Quantum mechanics

Starting point: Lindblad equation Hermitian ≥ 0 (trace 1): density matrices

$$
\begin{aligned}
\dot{\rho}= & -[i H, \rho] \\
& +\sum_{k=1}^{N}\left(L_{k} \rho L_{k}-\frac{1}{2} \rho L_{k} L_{k}-\frac{1}{2} L_{k} L_{k} \rho\right),
\end{aligned}
$$

compare with

$$
\rho_{t}=-\nabla \cdot(\rho v)
$$

Some calculus

for ordinary functions:

$$
\begin{aligned}
& f(x): g(x) \mapsto f(x) g(x) \\
& \partial_{x}: g(x) \mapsto \partial_{x} g(x) \\
& {\left[\partial_{x}, f(x)\right]: g(x) \mapsto \partial_{x} f(x) g(x)-f(x) \partial_{x} g(x)=\left(\partial_{x} f(x)\right) g(x)}
\end{aligned}
$$

For matrices:

$$
\partial_{L_{i}} X=\left[L_{i}, X\right]=\left[L_{i} X-X L_{i}\right] \quad \text { and } \quad \nabla_{L}: X \mapsto\left[\begin{array}{c}
L_{1} X-X L_{1} \\
\vdots \\
L_{N} X-X L_{N}
\end{array}\right]
$$

and more calculus!

∇_{L} satisfies

$$
\nabla_{L}(X Y)=\left(\nabla_{L} X\right) Y+X\left(\nabla_{L} Y\right)
$$

divergence:

$$
\nabla_{L}^{*}: \mathcal{S}^{N} \rightarrow \mathcal{H}, \boldsymbol{Y}=\left[\begin{array}{c}
Y_{1} \\
\vdots \\
\boldsymbol{Y}_{N}
\end{array}\right] \mapsto \sum_{k}^{N} L_{k} Y_{k}-Y_{k} L_{k}
$$

i.e., using $\langle\boldsymbol{X}, \boldsymbol{Y}\rangle=\sum_{k=1}^{N} \operatorname{tr}\left(X_{k}^{*} \boldsymbol{Y}_{k}\right)$

$$
\left\langle\nabla_{L} X, Y\right\rangle=\left\langle X, \nabla_{L}^{*} Y\right\rangle
$$

Back to Lindblad's equation!

$$
\dot{\rho}+\nabla_{i H}^{*} \rho=\underbrace{-\nabla_{L}^{*} \nabla_{L} \rho}_{-\Delta \rho}
$$

Schrödinger's equation: $\dot{\rho}+\nabla_{i H}^{*} \rho=0$

Matrix continuity equation in general

$$
\dot{\rho}+\nabla_{L}^{*}(\rho \circ v)=0
$$

choices of non-commutative "momentum"
$(\rho \circ v)=$

$$
\begin{array}{ll}
\frac{1}{2}(\rho v+v \rho) & \text { ("anti-commutator") } \\
\int_{0}^{1} \rho^{s} v \rho^{1-s} d s & \quad \text { (Kubo-Mori) } \\
\rho^{1 / 2} v \rho^{1 / 2}
\end{array}
$$

Matrix OMT (... and SB)

$$
\begin{aligned}
& \min _{\rho, v} \int_{0}^{1} \operatorname{tr}\left(\rho v^{*} v\right) d t \\
& \dot{\rho}=\frac{1}{2} \nabla_{L}^{*}(\rho v+v \rho) \\
& \rho(0)=\rho_{0}, \quad \rho(1)=\rho_{1}
\end{aligned}
$$

v : vector of matrices
$v^{*} v=\sum_{k=1}^{N} v_{k}^{*} v_{k}$

L: "non-commutative coordinates" (in place of x_{1}, x_{2}, \ldots)

matrix-OMT geometry, gradient flows, and more

Quantum:
Lindblad's equation $=$ gradient flow of the von Neumann entropy

Yongxin Chen, TTG \& Allen Tannenbaum
"Matrix OMT: a Quantum Mechanical approach," 2016

Eric Carlen \& Jan Maas
"Gradient flow and entropic inequalities...," 2016

Markus Mittnenzweig \& Alexander Mielke
"An entropic gradient structure for Lindblad...," 2016.

Yongxin Chen, W. Gangbo, TTG \& Allen Tannenbaum
"On the matrix Monge-Kantorovich"

Gradient flow of Entropy

$$
\begin{aligned}
\frac{d S(\rho(t))}{d t} & =\ldots \\
& =-\operatorname{tr}\left(\left(\nabla_{L} \log \rho\right)^{*} \int_{0}^{1} \rho^{s} v \rho^{1-s} d s\right)
\end{aligned}
$$

\Rightarrow greatest ascent direction $v=-\nabla_{L} \log \rho$.
non-commutative analog of: $\left.\partial_{x} \rho=\rho \partial_{x}(\log \rho)\right)$:

$$
\nabla_{L} \rho=\int_{0}^{1} \rho^{s}\left(\nabla_{L} \log \rho\right) \rho^{1-s} d s
$$

Gradient flow:

$$
\dot{\rho}=-\nabla_{L}^{*} \int_{0}^{1} \rho^{s}\left(\nabla_{L} \log \rho\right) \rho^{1-s} d s=-\nabla_{L}^{*} \nabla_{L} \rho=\Delta_{L} \rho
$$

Linear heat equation (now Lindblad) just as in the scalar case!

matrix-OMT geometry, gradient flows, and more

Quantum:
Lindblad's equation $=$ gradient flow of the von Neumann entropy

Medical imaging (DTI imaging): matricial geodesics

Time series (matrix-spectrograms): non-stationary processes

arXiv 2016:
Chen-G-Tannenbaum
Chen-Gangbo-G-Tannenbaum
also Carlen-Maas, Mittnenzweig-Mielke

Concluding remarks

Control problem:
steering flow between specified marginals
Modeling/interpolation problem:
reconciling flow with the known prior
Metrics, metrics, metrics:
for interpolation, smoothing, etc.

Applications:

- time-series analysis, spectral flows,...(original motivation)
- control of collective motion of particles, agents,..
- transportation of resources with end-point specs
- tradeoffs between cost and robustness in transport problems
- thermodynamics, quantum

Thank you for your attention

Yongxin Chen

Michele Pavon

Wilfrid Gangbo

Allen Tannenbaum

