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I have to give a talk in 3 months.
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TWO MOTIVATORS
• We have a ton of cells, and 

finite experimental time!  
(can record from an organism 
for a very short period of 
time)

• We now have fine-grained 
control over the neurons via 
optogenetics — we can use 
lasers to turn on and off 
individual cells or 
subpopulations of cells

How do we learn as much about the 
system as quickly as possible? 



SINGLE CELL  
RESPONDING TO VISUAL INPUT

Start simple:



MOTIVATING WORKS

Sequential Optimal Experiment Design  
for Neurophysiological Experiments  

Lewi, Butera, and Paninski 2009

Adaptive Bayesian Methods for Closed-loop Neurophysiology  
Pillow and Park 2016



A SIMPLE EXAMPLE
showing the adaptive measurement paradigm
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trial t

1. present stimulus, observe response

Figure 2: Active learning of 1D parametric tuning curve using MCMC sampling. The true tuning curve (black)
has preferred stimulus µ = 3.4, tuning width � = 1, amplitude A = 50, and baseline firing rate b = 2.
We placed a uniform prior on each of these parameters: µ 2 [�10, 10], � 2 [0.1, 20], A 2 [1, 200], and
b 2 [0.1, 50]. Top row: True tuning curve (black) and Bayes’ least-squares (BLS) estimate (red), shown
along with 50 samples from the posterior (gray traces) after 3, 4, 5, 10, and 50 trials. (50-trial figure at right
generated from an independent run). Bottom row: Expected information gain for each candidate stimulus
given the data so far in the experiment. Black asterisk indicates location of the selected stimulus, which is
presented on the next trial. Bottom right: Comparison of mean absolute error between true tuning curve and
BLS estimate under random (black) and Bayesian active learning stimulus election (yellow), averaged over
250 runs of each method. The active method achieves a maximal speedup factor of 2.5, with an error after
10 trials approximately equal to the random sampling error after 25 trials.

where the marginal response distribution is given by the mean over MCMC samples:

p(r|x⇤
) =

1

m

mX

i=1

p(r|x⇤, ✓(i)) (18)

for each response value r. The resulting algorithm is remarkably simple, and may be implemented
with fewer than 150 lines of code in Matlab using a 2D grid over stimulus locations and spike counts r.
(Code available from http://pillowlab.princeton.edu/code_activelearningTCs.html).

Figure 2 shows an illustration of this algorithm in a simulated experiment for estimating a 1D Gaussian
tuning curve with baseline, parametrized as:

f(x; ✓) = b+A exp

⇣
� 1

2�2 (x� µ)2
⌘

(19)

where the parameters ✓ include a preferred stimulus µ, tuning width �, amplitude A, and baseline firing
rate b. We obtained samples from the posterior with a standard implementation of slice sampling.

The first column of Fig. 2 shows a snapshot of the algorithm after 3 trials of the experiment. The
top plot shows the three observed stimulus-response pairs (black dots), the true tuning curve (black
trace), and m=100 posterior samples f (i) (gray traces), given by f(x|✓(i)) for each sample ✓(i) from the
posterior (eq. 1). The posterior mean ˆf (red trace) is the mean of the samples 1

m

P
i

f (i). The bottom
plot shows the expected information gain, computed using (eq. 17), for each stimulus x on a grid over
the stimulus range [�10, 10]. Intuitively, the expected information gain for each stimulus is related to
the spread of the sample tuning functions at that location (gray traces in the top plots); the more the
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3.1 Poisson encoding model

We will model a neuron’s average response to a stimulus x by a nonlinear function f(x), known as
the tuning curve, and assume that the response is corrupted by Poisson noise. The resulting encoding
model is given by:

� = f(x) (14)

p(r|x) =

1
r!�

re��. (15)

Let D
t

= {(x
i

, r
i

)}t
i=1 denote the data collected up to time t in an experiment. Then we have log-

likelihood function
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t

) = log p(R
t
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t
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>
log�

t

� 1
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, (16)

where R
t

= (r1, . . . , rt)
> is the vector of responses, �

t

= (f(x1), . . . , f(xt

))

> is the vector of spike
rates for the stimuli presented, and 1 is a vector of ones. We have ignored a constant that does not
depend on f .

3.2 Parametric tuning curves

In many settings, the experimenter has a particular parametric tuning curve in mind (e.g., a von-Mises
function for a V1 orientation tuning curve, or a Naka-Rushton function for a contrast-response function).
This approach confers advantages in terms of speed: by making strong assumptions about the form of
the tuning curve, active learning algorithms can rule out many functions a priori and more quickly identify
regions of stimulus space that are informative about the parameters. For example, if the desired tuning
curve is a Gaussian bump, Bayesian active learning will not waste time trying to determine if there are
other bumps in unexplored regions of parameter space once a single bump has been identified. The
potential disadvantage of this approach is that it may fail when tuning curves violate the assumptions of
the parametric model. If a neuron has a bimodal tuning curve, for example, an active learning algorithm
designed for unimodal function may never discover the second mode.

Here we describe a simple approach for infomax learning of a parametric tuning curve f(x; ✓), which
describes the mean response to a stimulus x and is described by parameters ✓. In general, the log-
likelihood (eq. 16) is not convex as a function of ✓, and gradient ascent methods may therefore not find
the global maximum of the likelihood. We therefore use Markov Chain Monte Carlo (MCMC) sampling
to obtain samples from the posterior distribution over ✓, an approach used previously for Bayesian
tuning curve inference in a fixed design setting [39].

We can use a standard MCMC sampling method (e.g., Metropolis-Hastings or slice sampling) to obtain
a set of m samples {✓(i)} ⇠ p(✓|D

t

) from the posterior given the data so far in the experiment (eq. 1).
We can then evaluate the expected information gain for any candidate stimulus x

⇤ using a grid over
spike counts r 2 {0, 1, . . . r

max

} to compute the marginal and conditional response entropies. We set
r
max

to some suitably high value (e.g., 200 spikes) based on the current posterior over spike rates.
Mutual information is given by the difference of these entropies:
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) +
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r
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p(r|x⇤, ✓(i)) log p(r|x⇤, ✓(i)), (17)
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2. update posterior
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Parameter space small enough to grid in 
this case (not typical)

Log-likelihood based on observed responses:
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3. maximize expected utility

Figure 1: Schematic of Bayesian active learning for closed-loop neurophysiology experiments. At time step
t of the experiment, we present stimulus xt and record neural response rt. Then, we then update the
posterior p(✓|Dt) by combining the likelihood p(rt|xt, ✓) with the prior p(✓|Dt�1), which is the posterior from
the previous time step. Finally, we search for the stimulus xt+1 that maximizes the expected utility U(x|Dt),
which quantifies the learning objective in terms of a utility function integrated over the joint distribution of r
and ✓ given the data. These steps are repeated until some stopping criterion.

selects stimuli that maximize the mutual information between response r and the parameters ✓, which
is equivalent to minimizing the expected entropy of the posterior distribution.

Formally, infomax learning arises from a utility function given by the log ratio of the posterior to the prior,

u(✓, r,x|D
t

) = log

p(✓|r,x,D
t

)

p(✓|D
t

)

, (6)

where the numerator is the updated posterior after observing a new stimulus-response pair (x, r), and
the denominator is the prior, given by the posterior at trial t. The expected utility is therefore the mutual
information between r and ✓:
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) to denote the conditional entropy of ✓ given r for fixed x and D
t

, and
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t

) is the entropy of the posterior after the previous trial. Note that we can perform infomax
learning by selecting the stimulus that minimizes H(✓; r

��
x,D

t

), since H(✓|D
t

) is independent of the
stimulus and response on the current trial. The mutual information utility function is also commonly
referred to as the expected information gain, since it is the expected change in the posterior entropy
from a single stimulus-response pair [7, 27].

It is worth noting that the mutual information can also be written as

I(✓, r
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) = H(r
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4

“Infomax learning”

One of multiple criteria to optimize (MMSE, prediction error,…)

Requires integrating over parameter and response spaces, can 
use MCMC / bag of samples, in this example we can numerically 

integrate (not typical)
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In general:

Generate the next xt  
in a smart, fast way  

Update your belief 
state



ANOTHER VIEW

Lewi et al. 2009, Fig. 2
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CURRENT APPROACH
• More complicated example: Lewi-09 (visual receptive fields)

• Laplace approximation for belief state (2nd order statistics) gives 
a compact representation for the parameter distribution

626 J. Lewi, R. Butera, and L. Paninski

Figure 3: Schematic illustrating the procedure for recursively constructing the
gaussian approximation of the true posterior; dim(θ⃗ ) = 2. The images are con-
tour plots of the log prior, log likelihoods, log posterior, and log of the gaussian
approximation of the posterior (see text for details). The key point is that since
p(rt | s⃗t, θ⃗ ) is one-dimensional with respect to θ⃗ , when we approximate the log
posterior at time t using our gaussian approximation, p(θ⃗ | µ⃗t−1, Ct−1), we need
to do only a one-dimensional search to find the peak of the log posterior at time
t. The gray and black dots in the figure illustrate the location of µ⃗t−1 and µ⃗t ,
respectively.

3 Representing and Updating the Posterior

Our first computational challenge is representing and updating the poste-
rior distribution on the parameters, p(θ⃗ | r1:t, s1:t). We use a fast, sequential
procedure for constructing a gaussian approximation of the posterior, (see
Figure 3). This gaussian approximation leads to an update that is both
efficient and accurate enough to be used online for picking optimal stimuli.

A gaussian approximation of the posterior is justified by the fact that
the posterior is the product of two smooth, log-concave terms—the GLM
likelihood function and the prior (which we assume to be gaussian, for
simplicity). As a result, the log posterior is concave (i.e., it always curves
downward) and can be well approximated by the quadratic expression for
the log of a gaussian. Furthermore, the main result of Paninski (2005) is
a central limit-like theorem for optimal experiments based on maximizing
the mutual information. This theorem guarantees that asymptotically, the
gaussian approximation of the posterior will be accurate.

We recursively construct a gaussian approximation to the posterior by
first approximating the posterior using our posterior from the previous
trial (see Figure 3). Since the gaussian approximation of the posterior at
time t − 1, p(θ⃗ | µ⃗t−1, Ct−1), summarizes the information in the first t − 1
trials, we can use this distribution to approximate the log posterior after the



CURRENT APPROACH
• Have to solve high-dimensional non-convex optimization and/or 

integration to solve for the next x — have to grid or sample 
based on heuristics (i.i.d. is bad!)

• Drawbacks: Curse of dimensionality, problems with EM / 
MCMC sampling, certain ops can get computationally (and 
financially!) expensive, would like to deal with more complicated 
models, …



CURRENT APPROACH

• Would like a lot of cores now, suitable for prototyping and 
exploration for these computationally intensive tasks, many of 
which are “embarrassingly parallel”



PYWREN:
A POSSIBLE (PARTIAL) PANACEA 



Why is there no 
“cloud button”?

PREVIOUSLY, AT 
COMP IMAGING 

LUNCH



My background: 
formerly mostly 

controls, now mostly 
ML and optimization



Eric: How do you 
get busy physicists 

and electrical 
engineers to give 

up Matlab? 

My background: 
formerly mostly 

controls, now mostly 
ML and optimization



“Most wrens are small and rather inconspicuous, except 
for their loud and often complex songs.”

PyWren
pywren.io



PYWREN: THE API



USING “SERVERLESS 
INFRASTRUCTURE” 



Powered by Continuum Analytics

+



(Leptotyphlops carlae) 

Start

Delete non-AVX2 MKL

strip shared libs

conda clean

eliminate pkg

delete pyc

977 MB

1205MB

441MB

946 MB

670 MB

510MB

Want our runtime to include 



• 300 seconds  
single-core (AVX2) 

• 512 MB in /tmp

• 1.5GB RAM

• Python, Java, Node

AWS LAMBDA
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LAMBDA SCALABILITY



SOME THINGS TO TRY



MPC-INSPIRED SEARCH ridge prior
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Figure 6: Effects of the prior distributions on active learning of RFs. (A) An isotropic Gaussian prior (top)
has comparatively large prior entropy, and will thus require a lot of data to achieve a concentrated posterior.
A “structured” prior (below), however, concentrates prior probability mass closer to the region of likely RF
shapes, so less data is required to concentrate the posterior if the true RF lies close to this region. (B)
Graphical model for ridge regression prior, which models all RF coefficients as iid Gaussian. RF samples
from this prior (right) are simply Gaussian white noise. (C) Graphical model for localized prior from [54].
The prior simultaneously encourages localized support in space (left) and in the Fourier domain (right), with
support controlled by hyperparameters ✓s and ✓f for each domain, respectively. The support depicted in
this diagram assigns high prior probability to a Gabor filter (bottom), and samples from the prior conditioned
on these hyperparameters exhibit similar spatial location, frequency content, and orientation (right). The
full hierarchical prior consists of a mixture of these conditional distributions for hyperparameters covering all
locations, frequencies, and orientations, and includes the ridge prior as a special case.

structure in a way that speeds up learning when such structure is present (e.g., smoothness, sparsity,
locality), but defaults to an uninformative prior when it is not.

For simplicity, we use a linear-Gaussian encoding model, which can be viewed as a GLM with “identity”
nonlinearity and Gaussian noise:

r = k

>
x+ ✏, ✏ ⇠ N (0,�2

), (38)

where ✏ is zero-mean Gaussian noise with variance �2. While this provides a less accurate statistical
model of spike responses than the Poisson GLM used in [7], it simplifies the problem of computing and
optimizing the posterior expectations needed for active learning.

We consider a “structured”, hierarchical, conditionally Gaussian prior of the form:

k | ✓ ⇠ N (0, C
✓

), ✓ ⇠ p
✓

, (39)

where C
✓

is a prior covariance matrix that depends on hyperparameters ✓, and p
✓

is a hyper-prior over ✓.
The effective prior over k is a mixture-of-Gaussians, also known as a covariance mixture of Gaussians
because the component distributions are zero-mean Gaussians with difference covariances:

p(k) =

Z
p(k|✓)p(✓)d✓ =

Z
N (0, C

✓

) p
✓

(✓)d✓. (40)

16

Current parameter 
distribution
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this diagram assigns high prior probability to a Gabor filter (bottom), and samples from the prior conditioned
on these hyperparameters exhibit similar spatial location, frequency content, and orientation (right). The
full hierarchical prior consists of a mixture of these conditional distributions for hyperparameters covering all
locations, frequencies, and orientations, and includes the ridge prior as a special case.

structure in a way that speeds up learning when such structure is present (e.g., smoothness, sparsity,
locality), but defaults to an uninformative prior when it is not.

For simplicity, we use a linear-Gaussian encoding model, which can be viewed as a GLM with “identity”
nonlinearity and Gaussian noise:

r = k

>
x+ ✏, ✏ ⇠ N (0,�2

), (38)

where ✏ is zero-mean Gaussian noise with variance �2. While this provides a less accurate statistical
model of spike responses than the Poisson GLM used in [7], it simplifies the problem of computing and
optimizing the posterior expectations needed for active learning.

We consider a “structured”, hierarchical, conditionally Gaussian prior of the form:

k | ✓ ⇠ N (0, C
✓

), ✓ ⇠ p
✓

, (39)

where C
✓

is a prior covariance matrix that depends on hyperparameters ✓, and p
✓

is a hyper-prior over ✓.
The effective prior over k is a mixture-of-Gaussians, also known as a covariance mixture of Gaussians
because the component distributions are zero-mean Gaussians with difference covariances:

p(k) =

Z
p(k|✓)p(✓)d✓ =

Z
N (0, C

✓

) p
✓

(✓)d✓. (40)
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Figure 6: Effects of the prior distributions on active learning of RFs. (A) An isotropic Gaussian prior (top)
has comparatively large prior entropy, and will thus require a lot of data to achieve a concentrated posterior.
A “structured” prior (below), however, concentrates prior probability mass closer to the region of likely RF
shapes, so less data is required to concentrate the posterior if the true RF lies close to this region. (B)
Graphical model for ridge regression prior, which models all RF coefficients as iid Gaussian. RF samples
from this prior (right) are simply Gaussian white noise. (C) Graphical model for localized prior from [54].
The prior simultaneously encourages localized support in space (left) and in the Fourier domain (right), with
support controlled by hyperparameters ✓s and ✓f for each domain, respectively. The support depicted in
this diagram assigns high prior probability to a Gabor filter (bottom), and samples from the prior conditioned
on these hyperparameters exhibit similar spatial location, frequency content, and orientation (right). The
full hierarchical prior consists of a mixture of these conditional distributions for hyperparameters covering all
locations, frequencies, and orientations, and includes the ridge prior as a special case.

structure in a way that speeds up learning when such structure is present (e.g., smoothness, sparsity,
locality), but defaults to an uninformative prior when it is not.

For simplicity, we use a linear-Gaussian encoding model, which can be viewed as a GLM with “identity”
nonlinearity and Gaussian noise:

r = k

>
x+ ✏, ✏ ⇠ N (0,�2

), (38)

where ✏ is zero-mean Gaussian noise with variance �2. While this provides a less accurate statistical
model of spike responses than the Poisson GLM used in [7], it simplifies the problem of computing and
optimizing the posterior expectations needed for active learning.

We consider a “structured”, hierarchical, conditionally Gaussian prior of the form:

k | ✓ ⇠ N (0, C
✓

), ✓ ⇠ p
✓

, (39)

where C
✓

is a prior covariance matrix that depends on hyperparameters ✓, and p
✓

is a hyper-prior over ✓.
The effective prior over k is a mixture-of-Gaussians, also known as a covariance mixture of Gaussians
because the component distributions are zero-mean Gaussians with difference covariances:

p(k) =

Z
p(k|✓)p(✓)d✓ =

Z
N (0, C

✓
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✓
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Figure 6: Effects of the prior distributions on active learning of RFs. (A) An isotropic Gaussian prior (top)
has comparatively large prior entropy, and will thus require a lot of data to achieve a concentrated posterior.
A “structured” prior (below), however, concentrates prior probability mass closer to the region of likely RF
shapes, so less data is required to concentrate the posterior if the true RF lies close to this region. (B)
Graphical model for ridge regression prior, which models all RF coefficients as iid Gaussian. RF samples
from this prior (right) are simply Gaussian white noise. (C) Graphical model for localized prior from [54].
The prior simultaneously encourages localized support in space (left) and in the Fourier domain (right), with
support controlled by hyperparameters ✓s and ✓f for each domain, respectively. The support depicted in
this diagram assigns high prior probability to a Gabor filter (bottom), and samples from the prior conditioned
on these hyperparameters exhibit similar spatial location, frequency content, and orientation (right). The
full hierarchical prior consists of a mixture of these conditional distributions for hyperparameters covering all
locations, frequencies, and orientations, and includes the ridge prior as a special case.

structure in a way that speeds up learning when such structure is present (e.g., smoothness, sparsity,
locality), but defaults to an uninformative prior when it is not.

For simplicity, we use a linear-Gaussian encoding model, which can be viewed as a GLM with “identity”
nonlinearity and Gaussian noise:

r = k

>
x+ ✏, ✏ ⇠ N (0,�2

), (38)

where ✏ is zero-mean Gaussian noise with variance �2. While this provides a less accurate statistical
model of spike responses than the Poisson GLM used in [7], it simplifies the problem of computing and
optimizing the posterior expectations needed for active learning.

We consider a “structured”, hierarchical, conditionally Gaussian prior of the form:

k | ✓ ⇠ N (0, C
✓

), ✓ ⇠ p
✓

, (39)

where C
✓

is a prior covariance matrix that depends on hyperparameters ✓, and p
✓

is a hyper-prior over ✓.
The effective prior over k is a mixture-of-Gaussians, also known as a covariance mixture of Gaussians
because the component distributions are zero-mean Gaussians with difference covariances:

p(k) =
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FUNCTION APPROXIMATION

• Use Lambda services to generate rollouts to learn 
policies:

π1(x1:t, r1:t ; b̂(θ)t−1) → b̂(θ)t
Belief update function

π2(x1:t, r1:t ; b̂(θ)t) → xt+1

Adaptive measurement function
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• Fit with ML / adaptive control / reinforcement 
learning / deep learning technique based on problem
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• Fit with ML / adaptive control / reinforcement 
learning / deep learning technique based on problem

• An aside: DFO works again!  
http://www.argmin.net/2017/04/03/evolution/



THANKS!

• Here all month :)

• boczar@berkeley.edu

• pywren.io

• http://www.argmin.net/2017/04/03/evolution/
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