ACTIVE MEASUREMENT FOR NEUROSCIENCE

Ross Boczar

PhD Student boczar@berkeley.edu

Berkeley Center for Computational maging

(Towards)

LCCC Focus Period on Large-Scale and Distributed Optimization June 2017

Eric onas

Ben Recht

. . .

- Problem Statement
- Motivating Science
- Motivating Works
- Some Things to Try

THISTALK

PyWren: A Shameless Plug

PROBLEM STATEMENT

• March 2017:

PROBLEM STATEMENT

• March 2017:

PROBLEM STATEMENT

I have to give a talk in 3 months.

TWO MOTIVATORS

• We have a ton of cells, and finite experimental time! (can record from an organism for a very short period of time)

 We now have fine-grained control over the neurons via optogenetics — we can use lasers to turn on and off individual cells or subpopulations of cells

How do we learn as much about the system as quickly as possible?

Start simple: SINGLE CELL RESPONDING TO VISUAL INPUT

MOTIVATING WORKS

Sequential Optimal Experiment Design for Neurophysiological Experiments Lewi, Butera, and Paninski 2009

Adaptive Bayesian Methods for Closed-loop Neurophysiology Pillow and Park 2016

A SIMPLE EXAMPLE showing the adaptive measurement paradigm

1. present stimulus, observe response

Pillow and Park 2016

Parameter space small enough to grid in this case (**not typical**)

Log-likelihood based on observed responses: $\mathcal{L}(\boldsymbol{\lambda}_t | \mathcal{D}_t) = \log p(R_t | \boldsymbol{\lambda}_t) = R_t^{\top} \log \boldsymbol{\lambda}_t - \mathbf{1}^{\top} \boldsymbol{\lambda}_t,$

Pillow and Park 2016

3. maximize expected utility

One of multiple criteria to optimize (MMSE, prediction error, ...)

Requires integrating over parameter and response spaces, can use MCMC / bag of samples, in this example we can numerically integrate (**not typical**)

$$\text{``Infomax learning''} \\ U_{\text{infomax}}(\mathbf{x}|\mathcal{D}_t) = \mathbb{E}_{r,\theta} \Big[\log \frac{p(\theta|r, \mathbf{x}, \mathcal{D}_t)}{p(\theta|\mathcal{D}_t)} \Big]$$

Pillow and Park 2016

0.0	2.5	5.0	7.5	10	

Pillow and Park 2016, Fig. 1

1. present stimulus, observe response

Generate the next x_t in a smart, fast way

 $\bullet r_t$

trial t

Update your belief state

Pillow and Park 2016, Fig. 1

ANOTHER VIEW

Lewi et al. 2009, Fig. 2

ANOTHER VIEW

 $logp(\vec{\theta}|\vec{\mu}_{t-1}, C_{t-1}) + logp(r_t|\vec{s}_t, \vec{\theta}) = logp(\vec{\theta}|\vec{s}_t, r_t, \vec{\mu}_{t-1}, C_{t-1}) \approx logp(\vec{\theta}|\vec{\mu}_t, C_t)$

CURRENT APPROACH

More complicated example: Lewi-09 (visual receptive fields)

 Laplace approximation for belief state (2nd order statistics) gives a compact representation for the parameter distribution

- based on heuristics (i.i.d. is bad!)
- models, ...

CURRENT APPROACH

 Have to solve high-dimensional non-convex optimization and/or integration to solve for the next x — have to grid or sample

• Drawbacks: Curse of dimensionality, problems with EM / MCMC sampling, certain ops can get computationally (and financially!) expensive, would like to deal with more complicated

• Would like a lot of cores **now**, suitable for prototyping and exploration for these computationally intensive tasks, many of which are "embarrassingly parallel"

CURRENT APPROACH

PYWREN: A POSSIBLE (PARTIAL) PANACEA

PREVIOUSLY, AT COMP IMAGING LUNCH

Why is there no ''cloud button''?

When to use the Cloud ?

Data

- Large amounts of data. Can't store locally

es)

- Shared data across users

- Long term storage Compute

- Need lots of CPUs for she

- Varying comp

- No admin of

My background: formerly mostly controls, now mostly ML and optimization

My background: formerly mostly controls, now mostly ML and optimization

Eric: How do you get busy physicists and electrical engineers to give up Matlab?

MATLAB

"Most wrens are small and rather inconspicuous, except for their loud and often complex songs."

PYWREN: THE API

```
import pywren
import numpy as np

def addone(x):
    return x + 1

wrenexec = pywren.default_executor()
xlist = np.arange(10)
futures = wrenexec.map(addone, xlist)
print [f.result() for f in futures]
```

The output is as expected:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

USING "SERVERLESS INFRASTRUCTURE"

ANACONDA®

Powered by Continuum Analytics

AWS Lambda

Run code without thinking about servers. Pay for only the compute time you consume.

Get started with AWS Lambda

(Leptotyphlops carlae)

Want our runtime to include

conda clean

eliminate pkg

Delete non-AVX2 MKL

strip shared libs

510MB

delete pyc

441MB

- 300 seconds single-core (AVX2)
- 512 MB in /tmp
- I.5GB RAM
- Python, Java, Node

AWS LAMBDA

- 300 seconds single-core (AVX2)
- 512 MB in /tmp
- I.5GB RAM
- Python, Java, Node

AWS LAMBDA

LAMBDA SCALABILITY

00 1500 2000 2500 3000 workers

SOMETHINGSTOTRY

MPC-INSPIRED SEARCH

Current parameter distribution

MPC-INSPIRED SEARCH X**X**2

Current parameter distribution

Possible sample locations

X3

X4

MPC-INSPIRED SEARCH XI **X**2

Current parameter distribution

Possible sample locations

X3

X4

Dream about the future

XI **X**2

Current parameter distribution

Possible sample locations

X3

X4

Dream about the future

MPC-INSPIRED SEARCH

X2

Current parameter distribution

FUNCTION APPROXIMATION

policies:

 $\pi_1(x_{1:t}, r_{1:t}; \hat{b}(\theta)_{t-1}) \to \hat{b}(\theta)_t$ Belief update function

 $\pi_2(x_{1:t}, r_{1:t}; \hat{b}(\theta)_t) \rightarrow x_{t+1}$

Adaptive measurement function

Use Lambda services to generate rollouts to learn

FUNCTION APPROXIMATION

 Fit with ML / adaptive control / reinforcement learning / deep learning technique based on problem

FUNCTION APPROXIMATION

- Fit with ML / adaptive control / reinforcement
- An aside: DFO works again! http://www.argmin.net/2017/04/03/evolution/

learning / deep learning technique based on problem

• Here all month :)

• <u>boczar@berkeley.edu</u>

• pywren.io

http://www.argmin.net/2017/04/03/evolution/

THANKS!