Convex Optimization with Abstract Linear Operators

Stephen Boyd and Steven Diamond EE & CS Departments Stanford University

Workshop on Large-Scale and Distributed Optimization Lund, June 15 2017 Outline

Convex Optimization

Examples

Matrix-Free Methods

Outline

Convex Optimization

Examples

Matrix-Free Methods

Summary

Convex optimization problem — Classical form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

• variable
$$x \in \mathbf{R}^n$$

equality constraints are linear

•
$$f_0, \ldots, f_m$$
 are **convex**: for $\theta \in [0, 1]$,

$$f_i(heta x + (1 - heta)y) \leq heta f_i(x) + (1 - heta)f_i(y)$$

i.e., f_i have nonnegative (upward) curvature

Convex optimization — Cone form

$$\begin{array}{ll} \text{minimize} & c^{\mathsf{T}}x\\ \text{subject to} & x \in K\\ & Ax = b \end{array}$$

• variable $x \in \mathbf{R}^n$

- $K \subset \mathbf{R}^n$ is a proper cone
 - K nonnegative orthant $\longrightarrow LP$
 - *K* Lorentz cone \longrightarrow SOCP
 - K positive semidefinite matrices \longrightarrow SDP
- the 'modern' canonical form

Medium-scale solvers

- ▶ 1000s-10000s variables, constraints
- reliably solved by interior-point methods on single machine (especially for problems in standard cone form)
- exploit problem sparsity

Medium-scale solvers

- ▶ 1000s-10000s variables, constraints
- reliably solved by interior-point methods on single machine (especially for problems in standard cone form)
- exploit problem sparsity

- no algorithm tuning/babysitting needed
- not quite a technology, but getting there
- ▶ used in control, finance, engineering design, ...

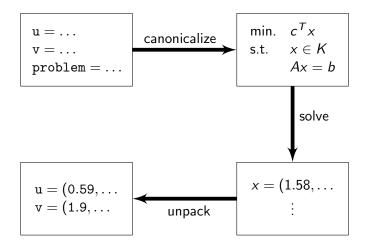
Large-scale solvers

- ▶ 100k 1B variables, constraints
- solved using custom (often problem specific) methods
 - Iimited memory BFGS
 - stochastic subgradient
 - block coordinate descent
 - operator splitting methods
- ▶ (when possible) exploit fast transforms (FFT, ...)
- require custom implementation, tuning for each problem
- used in machine learning, image processing, ...

Modeling languages

- (new) high level language support for convex optimization
 - describe problem in high level language
 - description automatically transformed to a standard form
 - solved by standard solver, transformed back to original form

Modeling languages



Implementations

convex optimization modeling language implementations

- YALMIP, CVX (Matlab)
- CVXPY (Python)
- Convex.jl (Julia)

widely used for applications with medium scale problems

CVX

(Grant & Boyd, 2005)

```
cvx_begin
variable x(n) % declare vector variable
minimize sum(square(A*x-b)) + gamma*norm(x,1)
subject to norm(x,inf) <= 1
cvx_end</pre>
```

- A, b, gamma are constants (gamma nonnegative)
- after cvx_end
 - problem is converted to standard form and solved
 - ▶ variable x is over-written with (numerical) solution

CVXPY

```
(Diamond & Boyd, 2013)
```

- A, b, gamma are constants (gamma nonnegative)
- solve method converts problem to standard form, solves, assigns value attributes

Modeling languages

- enable rapid prototyping (for small and medium problems)
- ideal for teaching (can do a lot with short scripts)
- shifts focus from how to solve to what to solve
- slower than custom methods, but often not much

Modeling languages

- enable rapid prototyping (for small and medium problems)
- ideal for teaching (can do a lot with short scripts)
- shifts focus from how to solve to what to solve
- slower than custom methods, but often not much

this talk:

how to extend CVXPY to large problems, fast operators

Outline

Convex Optimization

Examples

Matrix-Free Methods

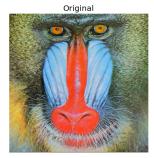
Summary

Colorization

- given B&W (scalar) pixel values, and a few colored pixels
- ► choose color pixel values x_{ij} ∈ R³ to minimize TV(x) subject to given B&W values
- ▶ a convex problem [Blomgren and Chan 98]

CVXPY code

 512×512 B&W image, with some color pixels given



Black and White

2% color pixels given

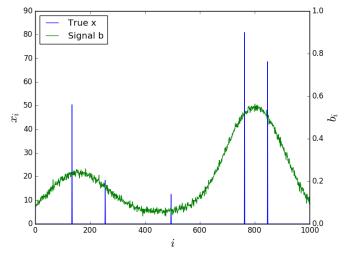
Colorized

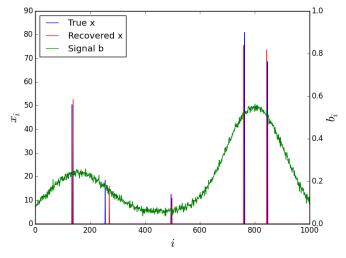
0.1% color pixels given

Nonnegative deconvolution

 $\begin{array}{ll} \text{minimize} & \|c \ast x - b\|_2\\ \text{subject to} & x \ge 0 \end{array}$

variable $x \in \mathbf{R}^n$; data $c \in \mathbf{R}^n$, $b \in \mathbf{R}^{2n-1}$





Outline

Convex Optimization

Examples

Matrix-Free Methods

Summary

Abstract linear operator

linear function f(x) = Ax

- idea: don't form, store, or use the matrix A
- forward-adjoint oracle (FAO): access f only via its
 - forward operator, $x \rightarrow f(x) = Ax$
 - adjoint operator, $y \to f^*(y) = A^T y$
- we are interested in cases where this is more efficient (in memory or computation) than forming and using A
- key to scaling to (some) large problems

Examples of FAOs

- convolution, DFT
- Gauss, Wavelet, and other transforms
- Lyapunov, Sylvester mappings $X \rightarrow AXB$
- sparse matrix multiply
- inverse of sparse triangular matrix

 $O(n \log n)$ O(n) $O(n^{1.5})$ O(nnz(A))O(nnz(A))

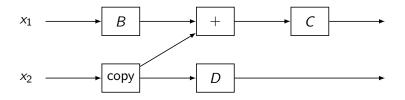
Compositions of FAOs

represent linear function f as computation graph

- graph inputs represent x
- graph outputs represent y
- nodes store FAOs
- edges store partial results
- to evaluate f(x): evaluate node forward operators in order
- to evaluate $f^*(y)$: evaluate node adjoints in reverse order

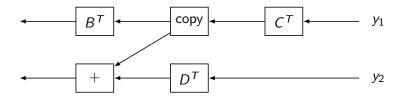
Forward graph

$$Ax = \left[\begin{array}{c} C(Bx_1 + x_2) \\ Dx_2 \end{array}\right]$$



Adjoint graph

$$A^{\mathsf{T}}y = \left[\begin{array}{c}B^{\mathsf{T}}C^{\mathsf{T}}y_1\\C^{\mathsf{T}}y_1 + D^{\mathsf{T}}y_2\end{array}\right]$$



Matrix-free methods

- matrix-free algorithm uses FAO representations of linear functions
- oldest example: conjugate gradients (CG)
 - minimizes $||Ax b||_2^2$ using only $x \to Ax$ and $y \to A^T y$
 - in theory, finite algorithm
 - in practice, not so much
- many matrix-free methods for other convex problems (Pock-Chambolle, Beck-Teboulle, Osher, Gondzio, ...)
- can deliver modest accuracy in 100s or 1000s of iterations
- need good preconditioner, tuning

Matrix-free cone solvers

- matrix-free interior-point [Gondzio]
- matrix-free SCS [Diamond, O'Donoghue, Boyd] (serial CPU implementation)
- matrix-free POGS [Fougner, Diamond, Boyd] (GPU implementation)

for use as a modeling language back end, we are interested only in general preconditioners

Matrix-free CVXPY

preliminary version [Diamond]

- canonicalizes to a matrix-free cone program
- solves using matrix-free SCS or POGS

Matrix-free CVXPY

preliminary version [Diamond]

- canonicalizes to a matrix-free cone program
- solves using matrix-free SCS or POGS

our (modest?) goals: MF-CVXPY should often

- work without algorithm tuning
- \blacktriangleright be no more than 10× slower than a custom method

Example: Nonnegative deconvolution

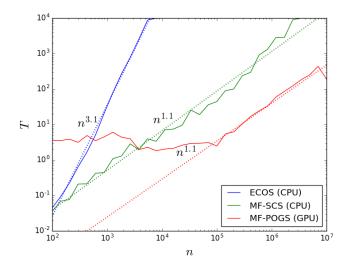
 $\begin{array}{ll} \text{minimize} & \|c * x - b\|_2\\ \text{subject to} & x \ge 0 \end{array}$

variable $x \in \mathbf{R}^n$; data $c \in \mathbf{R}^n$, $b \in \mathbf{R}^{2n-1}$

standard (matrix) method

- represent c* as $(2n-1) \times n$ Toeplitz matrix
- memory is order n^2 , solve is order n^3
- matrix-free method
 - represent c* as FAO (implemented via FFT)
 - memory is order n, solve is order n log n

Nonnegative deconvolution timings



Sylvester LP

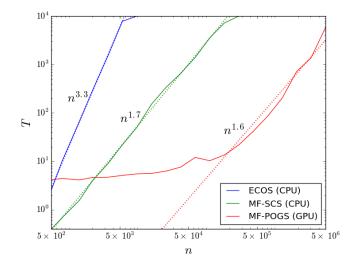
minimize
$$\mathbf{Tr}(D^T X)$$

subject to $AXB \leq C$
 $X \geq 0$,

variable $X \in \mathbb{R}^{p \times q}$; data $A \in \mathbb{R}^{p \times p}$, $B \in \mathbb{R}^{q \times q}$, $C, D \in \mathbb{R}^{p \times q}$ n = pq variables, 2n linear inequalities

- standard method
 - represent f(X) = AXB as $pq \times pq$ Kronecker product
 - memory is order n^2 , solve is order n^3
- matrix-free method
 - represent f(X) = AXB as FAO
 - memory is order n, solve is order $n^{1.5}$

Sylvester LP timings



Outline

Convex Optimization

Examples

Matrix-Free Methods

Summary

Summary

- convex optimization problems arise in many applications
- small and medium size problems can be solved effectively and conveniently using domain-specific languages, general solvers

Summary

- convex optimization problems arise in many applications
- small and medium size problems can be solved effectively and conveniently using domain-specific languages, general solvers

 we hope to extend this to large scale problems, fast operators

Resources

all available online

- Convex Optimization (book)
- ► EE364a (course slides, videos, code, homework, ...)
- CVX, CVXPY, Convex.jl, SCS, POGS (code)
- preliminary version of MF-CVXPY (and SCS and POGS): https://github.com/SteveDiamond/cvxpy