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The three components for estimation

Data: X ~ P*is ar.v. with a sample space (X, 2").
P* is unknown.

Model:
» Z a collection of probability measures P : 2~ — [0, 1].
» Parametrized by ©; 3 an injective map © — & : § — P,.
» Dominated: 3\ s.t. Py < A with pg = dPy/dA.

(Point) Estimator: Amap P : X — 2. The best guess P € &
for P* based on X, e.g.

A~

0(X) = zggpe(X)



Bayesian Methods

The parameter is a r.v. ¥ taking values in (0, 7).
There is a probability measure on X x © with .% = o(2" x 7),

Im: % —1[0,1],

Model: The distribution of X conditioned on ¥, ILy y.
Prior: The marginal of ITon ¢, IT: .7 — [0, 1].

Posterior: The distribution Iy x : 7 x 2~ — [0,1]. In particular,

_ Jppe(X)dI(6)
(Y € B|X) = m.



One can construct the MAP or MMSE estimators as:

Onap (X ) = arg max I1(6| X)
0cO

Omse (X) = 0dI1(0]X)
9o



The Belief Notation

We are interested in computing posterior distributions. Thus,
lets define the belief density on a hypothesis 6§ € © at time k as

g (6) = dTT(0]X,, . ., Xp)
k
x Hpe(Xi)dH(e)
i—1

= po(Xi)dpr—1(0)

This defines a iterative algorithm
dpur+1(0) o< dpur(0)po(T+1)

We will say that, we learn a parameter 0% if
klim up(6%) =1 a.s. (usually)
—00

We hope that Py is the closest to P* (in a sense defined later).



Example: Estimating the Mean of a Gaussian Model

Data: Assume we receive a sample z1, ..., xx, Where
X ~ N(6*,0?). 02 is known and we want to estimate 6*.

Model: The collection of all Normal distributions with
variance o2, i.e. Zy = {N(0,02)}.

Prior: Our prior is the standard Normal distribution
dpo(9) = N'(0,1).

Posterior: The posterior is defined as

dpu(6) o< dpo(0 Hpe Tt)

=N Zt:lxt o?
o2+4+k’c2+k
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Geometric Interpretation for Finite Hypotheses
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Bayes’ Theorem Belongs to
Stochastic Approximations




Consider the following optimization problem

min F(0) = Dk(P| Pp), (1)

We can rewrite Eq. (1) as

minDKL(PHPg) = in ]EWDKL(PHPQ) where 0 ~
0co TEAg
. dPy
= E.Ep |—log —2
rehy T P[ ©8 dP}’
Moreover,

argmin Dy (P||Py) = argmin E;Ep [—logpg(X)],0 ~ 1, X ~ P
[USS) T€Ag

=argminEpE, [~ logpg(X)],0 ~ 7, X ~ P.
TEAQ



Consider the following optimization problem

inE[F(z,=
min [F(z,Z)],

The stochastic mirror descent approach constructs a sequence
{z} as follows:

1
Th41 = arg min {<VF<x,sk>,x> i Dw@:,wk)} |
xeZ (677

Recall our original problem

min EpE, [—logpg(X)],0 ~ 7, X ~ P. 2)

TE€EAQ

For Eq. (2), Stochastic Mirror Descent generates a sequence of
densities {dux}, as follows:

. 1

dug+1 = arg min {(— log pg(xps1), m) + Dw(w,duk)} 0 ~ .
TEAg QL

3)



dpugey1 = arg min {(—log pp(zx11), 7) + D (wl|dpu)}, 0 ~ .

TE€EAg

Choose w(z) = [ zlog z, then the corresponding Bregman
distance is the Kullback-Leibler (KL) divergence Dy ..
Additionally, by selecting o, = 1 then for each 6 € O,

dpur+1(0) o< po(wp+1)dpk(0)

Bayesian Posterior




Distributed Inference Setup



Distributed Inference Setup

>

vV v VY

v

nagents: V ={1,2,--- ,n}

Agent i observes X} : Q — X, X| ~ P

Agent i has a model about P?, 2' = {P}|0 € ©}
Agent i has a local belief density du (6)

Agents share beliefs over the network (connected, fixed,
undirected)

a;j € (0,1) is how agent i weights agent j information,

doaij =1

Agents want to collectively solve the following optimization
problem

géiélF@ £ Dgr (P|Py) = ;DKL(Pinei)- (4)

Consensus Learning: du’_ (6*) = 1 for all i.



Our approach

Include beliefs of other agents in the regularization term:

Distributed Stochastic Entropic Mirror-descent

iy = argmin {Z%DKL (i) — B [t (o (v.1))] }

TE€Ag j=1

dpt 1 (0) o H dy, (0) ply (241 (5)

Q1. Does (5) achieves consensus learning?
Q2. If Q1 is positive, at what rate does this happens?



A finite set ©

Extensive literature for finite parameter sets ©

v

The network is static/time-varying.

The network is directed/undirected.

Prove consistency of the algorithm.

Prove asymptotic/non-asymptotic convergence rates.

v

v

v

Shahrampour, Rahimian, Jadbabaie, Lalitha, Sarwate, Javidi,
Su, Vaidya, Qipeng, Bandyopadhyay, Sahu, Kar, Sayed,
Chazelle, Olshevsky, Nedi¢, U.



Geometric Interpretation for Finite Hypotheses




Distributed Source Localization
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Distributed Source Localization

y-position

© Agent
Y Source

x-position




Distributed Source Localization
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Our results for three different problems

1. Time-varying undirected graphs (Nedi¢,Olshevsky,U to
appear TAC)

> Ay is doubly-stochastic with [Ax];; > 01if (i, j) € Ej.

2. Time-varying directed graphs (Nedi¢,Olshevsky,U in
ACC16)

> [Ar];; =

ij

1 H in a1
0 if otherwise

dj, is the out degree of node i at time .
"N} is the set of in neighbors of node 1.

3. Acceleration in static graphs (Nedi¢,Olshevsky,U to appear
TAC)

1
> Aij = { g‘ax{diadj}

d’ degree of the node i.
A=11+1A4,

if (i,5) € E,
if (i,7) ¢ E,



Time-Varying ; N
Undirected His1 (0) o< Tl TAGES TPy(T)y1)

4 fﬁ Mi(9y1+o)Aul%(xz+l)
Fixed Undirected p 1 (0) o< =

3

jzl(“ifl (H)P?}(xi))ggij

J
. . ; y
Time-Varying Yi1 = D, &
jeEN 7k
. 1
v

A ko ' y2+1
Directed iy (0) o ( [T w4, (6)% pj ($2+1)>

JEN]



General form of Theorems

Hq1(0) < exp(—kvz 4+ 1)

\ 4

Under appropriate assumptions, a group of agents following
algorithm X. There is a time N (n, A, p) such that with
probability 1 — p for all k > N(n, A, p) for all § ¢ ©*,

1y, (0) < exp(—kyz+m) foralli=1,...,n,



After a time N(n, A, p) such that with probability 1 — p for all
k> N(n,\ p), forall 6 ¢ ©%,

fh 1 (0) < exp (—ky2 +71)

Graph

N

foralli=1,...,n

V2 o
Time-Varying n2
Undirected Ollog1/p) Oy logn) — O(1)
-+ Metropolis | O(log1/p)  O(n’logn) O(1)
Time-Varying | | n 1
Directed 5z0(log1/p) O(n"logn) O(1) 62> .5
-+ regular O(log1/p)  O(n3logn) O(1) 1
Fixed
Undirected Oflog1/p) ~ Onlogn) — O(1)
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Figure: Empirical mean over 50 Monte Carlo runs of the number of
iterations required for i} () < e for all agents on ¢ ¢ ©*. All agents
but one have all their hypotheses to be observationally equivalent.
Dotted line for the algorithm proposed by Jadbabaie et al. Dashed
line no acceleration and solid line for acceleration.



A particularly bad graph
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A problem with compact sets of Hypotheses

In particular, after a transient time depending on ~1, the
convergence rate is geometric with rate ~s.
1 n
= — mi Dy r(P'||P}) — Dgr((PY|| P

%= min 121( kL(P'|Py) — Drr((P'||Py-))
~2 is the average distance between the second best
hypotheses and the optimal one. This term goes to zero if there
is a continuum of hypotheses, e.g. © € R%.

Q3. Can we derive nonasymptotic geometric concentration
rates for the proposed learning rule?



A compact set of hypotheses: © c R?

LeCam+Birgé
» Birgé, "Model selection via testing: an alternative to
(penalized) maximum likelihood estimators.”, 2006.
» Birgé, "About the non-asymptotic behaviour of Bayes
estimators.”, 2015.
» LeCam, "Convergence of estimates under dimensionality
restrictions.”, 1973.



A couple of definitions first

Define an n-Hellinger ball of radius r centered at 6 as

Jiizn;hz (P Py) < r}

B,(0) = {é €0




A covering for BS N ©

Let » > 0 and {r;} be a finite strictly decreasing sequence such
thatr; =1landry, =r. Let /i = B, \ B,

+1"




A covering for BS N ©

For each 7, find a maximal ¢;-separated set S;,, with K; = |5, |.

]:3,m -/—"l,nL = -/—"l N BEL (m S SEZ)
. L—1
BT = Ul:l Umesgl ]:l,m




A condition on the initial beliefs

The initial beliefs of all agents are equal and have the following
property:

For any constants C € (0, 1] and r € (0, 1] there exists a finite
positive integer K, such that

2
140 <B\%) > exp (—k;2> forall k > K.



Concentration Result for Compact Hypotheses sets

The beliefs {1}, generated by the update rule in Eq. (5) have
the following property: with probability 1 — o,

; k
Wiy1(Br) > 1 — xexp <_16r2) forall i and all £ > max{N, K}

where

Nzinf{tZl

14logn) <= t o o
exp logal_(S ZKlexp —3—2rl+1 <§ ,

=1
with K as defined initial condition assumption,
X = Z exp(— 167“z+1) and 0 = 1 — n/n?, where 7 is the smallest

l_
positive element of the matrix A.



Distributed estimation for the exponential family

The exponential family, for a parameter 6 = [9%,62,...,6%], is
the set of probability distributions whose density can be
represented as

Py (0) = f(x,v) exp(8'x —vC(0)),

We say, a prior is conjugate if for a likelihood of the form
po(x) = H(x)exp(0'T (x) — C(0)), the posterior distribution is

Px+T(z),v+1 (9|1‘) X Po ('T)px,l/(e) .

In our case, if all agents have conjugate beliefs to their
corresponding models then, du (0) = Pyi i (02%)

n n
i _ J ) i J
Xkt1 = E Jaigx, +T'(z'), Vpt1 = E Jaivl 41
= j=1



Gaussians: estimating the Mean with known variance

mmZDKL ))HN( (o )))

which is equivalent to

then
n
_ ]
Thil = ZaUTk +7
Jj=1
S j i ;
231 aijTi Oy + Thq T
i J=
9k+1 - 7
Th+1
1
where 70 = —+.
k (Uk)2



Unknown Variance, known mean

manDKL ) )”-/\/’(9Z (o ) )

3 ()2 (02
which is equivalent to min,2 nlogo? 4+ =L IGE

then pé = Inv—2(vi, (11)?)
Vi1 = Zaijvi +1

n . . . .
Z (I,Z'j?}i(T]z)Q + (T — 0')?

7
Vi1



Distributed Poisson Filter

mgn Zl D 1, (Poisson(\*) ||Poisson()\))

which is equivalent to

n
min—ZAilog)\—F)\
A =1
then ui = Gamma(al, 8%)
n . .
Ofyr =Y 50! + )
j=1

n
Bl =Y aigf +1
j=1



Distributed Gaussian Filter: Unknown Mean, Unknown
Variance

gl;gZDKL " )?)|IN (8, (0)?))
then
; ; ; >0y aigTi b + T
Tht1 = Zaiﬂ;ﬁ +1, b= 75 ’

Tk-i—l

n n L N iV AV

i iLq/0 gL — j > e @iy (@ g — 6)

Q1 = Y aigag +1/2, Biy =Y aiBl+ o :
j=1 ; Tkt1



Conclusion

We studied the problem of distributed estimation. Starting from
a variational interpretation of Bayes’ Theorem, we propose a
set of new algorithms with provable performance for a variety of
graphs. We show non-asymptotic, explicit and geometric
concentration rates around the correct hypotheses.



Questions?

If enough time, we can talk about two open problems on the
relation with Linear Regression and the Kalman filter :).



Linear Observations and the Regression Problem

Consider two multivariate Normal distributions P = N (6, 30)
and Q = N (01,%1)

1 e det™
Dk1(P.Q) = 5 (tr(EllEo) — (61— 00)'S7 (61 — 6p) — k +1n <det21>)

In particular, the multivariate mean estimation problem is

argmin Dy (P, Pp) = argminE;Ep|| X — 031,60 ~ 7, X ~ P
ISS] TEA

This is the centralized problem where X, = 6* + ¢, with
er ~N(0,%)



Linear Observations and the Regression Problem

Now consider the network estimation problem were
Xi =C"9+ ¢, where § € R™, C' ¢ R™ and ¢, ~ NV(0,%). The
optimization problem to be solved is then

min [0~ 0" 2 1

and the resulting algorithm is

(Zhr1)” Z aii ()7 + Ci(zh) e

i1 = Sk (Z ag; ZJ 19] +C7(7)” $k+1)

7=1



Distributed Tracking and the Kalman Filter

Assume 6, is a Markov process, and z;, are the observed
states, then

(O] o oy, (211) /@ DB 10)d1 (61 2*)

From the belief update perspective, we can express this
prediction+update procedure as

Prediction :djiy, = / p(10)dun ()
(C]

Update :dpk+1 = argmin {(—log pg(2x+1), 7) + D (7| dfixs1)}

€A



One particular case is when 6, and z;, evolve as a discrete-time
Linear Gaussian system, where

Or+1 = Al + W
X =Crl, + V3

with Wy, ~ N(O, Qr) and Vj, ~ N(O, Ry). .

Starting with a Gaussian prior dyo = N (6ojo, Xoj0)
dfu, = N (Al _1p—1, AxSh_ 1k 1A% + Qr)
dpe = N Oy, Sigr)

and

Bk = 2% — Cibyp Sk = HpXyp—1 Hy, + Ry
Ky = Ek|k71Hl/cSk_1
Oplle = Opji—1 + KiZp Y = (I — K Hg) Zgji—1



A distributed Kalman filter

If the predicted beliefs are shared, we can propose a distributed
Kalman filter of the form

il = [ PCI0)L0)

d,uz_H = arg min {< log pg(zk+1), ™) + ZaijDKL(ﬂ'dﬂiH)}

T€Ag j=1



