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The three components for estimation

Data: X ∼ P ∗ is a r.v. with a sample space (X ,X ).
P ∗ is unknown.

Model:
I P a collection of probability measures P : X → [0, 1].
I Parametrized by Θ; ∃ an injective map Θ→P : θ → Pθ.
I Dominated: ∃λ s.t. Pθ � λ with pθ = dPθ/dλ.

(Point) Estimator: A map P̂ : X →P. The best guess P̂ ∈P
for P ∗ based on X, e.g.

θ̂(X) = sup
θ∈Θ

pθ(X)



Bayesian Methods

The parameter is a r.v. ϑ taking values in (Θ,T ).

There is a probability measure on X ×Θ with F = σ(X ×T ),

Π : F → [0, 1],

Model: The distribution of X conditioned on ϑ, ΠX|ϑ.

Prior: The marginal of Π on ϑ, Π : T → [0, 1].

Posterior: The distribution Πϑ|X : T ×X → [0, 1]. In particular,

Π(ϑ ∈ B|X) =

∫
B pθ(X)dΠ(θ)∫
Θ pθ(X)dΠ(θ)

.



One can construct the MAP or MMSE estimators as:

θ̂MAP(X) = arg max
θ∈Θ

Π(θ|X)

θ̂MMSE(X) =

∫
θ∈Θ

θdΠ(θ|X)



The Belief Notation

We are interested in computing posterior distributions. Thus,
lets define the belief density on a hypothesis θ ∈ Θ at time k as

dµk(θ) = dΠ(θ|X1, . . . , Xk)

∝
k∏
i=1

pθ(Xi)dΠ(θ)

= pθ(Xk)dµk−1(θ)

This defines a iterative algorithm
dµk+1(θ) ∝ dµk(θ)pθ(xk+1)

We will say that, we learn a parameter θ∗ if
lim
k→∞

µk(θ
∗) = 1 a.s. (usually)

We hope that Pθ∗ is the closest to P ∗ (in a sense defined later).



Example: Estimating the Mean of a Gaussian Model

Data: Assume we receive a sample x1, . . . , xk, where
Xk ∼ N (θ∗, σ2). σ2 is known and we want to estimate θ∗.

Model: The collection of all Normal distributions with
variance σ2, i.e. Pθ = {N (θ, σ2)}.

Prior: Our prior is the standard Normal distribution
dµ0(θ) = N (0, 1).

Posterior: The posterior is defined as

dµk(θ) ∝ dµ0(θ)

k∏
t=1

pθ(xt)

= N

(∑k
t=1 xt

σ2 + k
,

σ2

σ2 + k

)
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Geometric Interpretation for Finite Hypotheses

Variancedµ1
dµ0

Mean
θ∗



Bayes’ Theorem Belongs to
Stochastic Approximations



Consider the following optimization problem

min
θ∈Θ

F (θ) = DKL(P‖Pθ), (1)

We can rewrite Eq. (1) as

min
θ∈Θ

DKL(P‖Pθ) = min
π∈∆Θ

EπDKL(P‖Pθ) where θ ∼ π

= min
π∈∆Θ

EπEP
[
− log

dPθ
dP

]
,

Moreover,

arg min
θ∈Θ

DKL(P‖Pθ) = arg min
π∈∆Θ

EπEP [− log pθ(X)] , θ ∼ π,X ∼ P

= arg min
π∈∆Θ

EPEπ [− log pθ(X)] , θ ∼ π,X ∼ P.



Consider the following optimization problem

min
x∈Z

E [F (x,Ξ)] ,

The stochastic mirror descent approach constructs a sequence
{xk} as follows:

xk+1 = arg min
x∈Z

{
〈∇F (x, ξk), x〉+

1

αk
Dw(x, xk)

}
,

Recall our original problem

min
π∈∆Θ

EPEπ [− log pθ(X)] , θ ∼ π,X ∼ P. (2)

For Eq. (2), Stochastic Mirror Descent generates a sequence of
densities {dµk}, as follows:

dµk+1 = arg min
π∈∆Θ

{
〈− log pθ(xk+1), π〉+

1

αk
Dw(π, dµk)

}
, θ ∼ π.

(3)



dµk+1 = arg min
π∈∆Θ

{〈− log pθ(xk+1), π〉+DKL(π‖dµk)} , θ ∼ π.

Choose w(x) =
∫
x log x, then the corresponding Bregman

distance is the Kullback-Leibler (KL) divergence DKL.
Additionally, by selecting αk = 1 then for each θ ∈ Θ,

dµk+1(θ) ∝ pθ(xk+1)dµk(θ)︸ ︷︷ ︸
Bayesian Posterior



Distributed Inference Setup



Distributed Inference Setup
I n agents: V = {1, 2, · · · , n}
I Agent i observes Xi

k : Ω→ X i, Xi
k ∼ P i

I Agent i has a model about P i, P i = {P iθ |θ ∈ Θ}
I Agent i has a local belief density dµik (θ)

I Agents share beliefs over the network (connected, fixed,
undirected)

I aij ∈ (0, 1) is how agent i weights agent j information,∑
aij = 1

Agents want to collectively solve the following optimization
problem

min
θ∈Θ

F (θ) , DKL (P ‖P θ) =

n∑
i=1

DKL(P i‖P iθ). (4)

Consensus Learning: dµi∞ (θ∗) = 1 for all i.



Our approach

Include beliefs of other agents in the regularization term:

Distributed Stochastic Entropic Mirror-descent

dµik+1 = arg min
π∈∆Θ


n∑
j=1

aijDKL

(
π‖dµjk

)
− Eπ

[
log
(
piθ
(
xik+1

))]

dµik+1(θ) ∝
n∏
j=1

dµjk (θ)aij piθ
(
xik+1

)
(5)

Q1. Does (5) achieves consensus learning?
Q2. If Q1 is positive, at what rate does this happens?



A finite set Θ

Extensive literature for finite parameter sets Θ

I The network is static/time-varying.
I The network is directed/undirected.
I Prove consistency of the algorithm.
I Prove asymptotic/non-asymptotic convergence rates.

Shahrampour, Rahimian, Jadbabaie, Lalitha, Sarwate, Javidi,
Su, Vaidya, Qipeng, Bandyopadhyay, Sahu, Kar, Sayed,
Chazelle, Olshevsky, Nedić, U.



Geometric Interpretation for Finite Hypotheses
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P θ3

P θ1
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Distributed Source Localization
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Distributed Source Localization

Figure: Belief distribution of one agent over the hypotheses grid.



Distributed Source Localization

(a) Network of Agents

Figure: Figure (a) shows a network of agents as well as the belief
distribution over the hypothesis set.



Our results for three different problems

1. Time-varying undirected graphs (Nedić,Olshevsky,U to
appear TAC)

I Ak is doubly-stochastic with [Ak]ij > 0 if (i, j) ∈ Ek.

2. Time-varying directed graphs (Nedić,Olshevsky,U in
ACC16)

I [Ak]ij =

{
1

djk
if j ∈ inN i

k

0 if otherwise
dik is the out degree of node i at time k.
inN i

k is the set of in neighbors of node i.
3. Acceleration in static graphs (Nedić,Olshevsky,U to appear

TAC)

I Āij =

{ 1
max{di,dj} if (i, j) ∈ E,
0 if (i, j) /∈ E,

di degree of the node i.
A = 1

2I + 1
2 Ā,



Time-Varying
µik+1(θ) ∝

∏n
j=1 µ

j
k(θ)

[Ak]ijpiθ(x
i
k+1)Undirected

Fixed Undirected µik+1(θ) ∝

n∏
j=1

µjk(θ)(1+σ)Āij piθ(xik+1)

n∏
j=1

(µjk−1(θ)pjθ(xjk))
σĀij

Time-Varying yik+1 =
∑
j∈N i

k

yjk
djk

Directed µik+1 (θ) ∝

 ∏
j∈N i

k

µjk (θ)

y
j
k

d
j
k piθ

(
xik+1

)
1

yi
k+1



General form of Theorems

YYN

µik+1(θ) ≤ exp(−kγ2 + γ1)

Under appropriate assumptions, a group of agents following
algorithm X. There is a time N(n, λ, ρ) such that with
probability 1− ρ for all k ≥ N(n, λ, ρ) for all θ /∈ Θ∗,

µik (θ) ≤ exp (−kγ2 + γ1) for all i = 1, . . . , n,



After a time N(n, λ, ρ) such that with probability 1− ρ for all
k ≥ N(n, λ, ρ), for all θ /∈ Θ∗,

µik+1 (θ) ≤ exp (−kγ2 + γ1) for all i = 1, . . . , n.

Graph N γ1 γ2 δ

Time-Varying
O(log 1/ρ) O(n

2

η log n) O(1)
Undirected

· · · + Metropolis O(log 1/ρ) O(n2 log n) O(1)

Time-Varying 1
δ2O(log 1/ρ) O(nn log n) O(1) δ ≥ 1

nnDirected
· · · + regular O(log 1/ρ) O(n3 log n) O(1) 1

Fixed
O(log 1/ρ) O(n log n) O(1)

Undirected
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(a) Path Graph
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(c) Grid Graph

Figure: Empirical mean over 50 Monte Carlo runs of the number of
iterations required for µik(θ) < ε for all agents on θ /∈ Θ∗. All agents
but one have all their hypotheses to be observationally equivalent.
Dotted line for the algorithm proposed by Jadbabaie et al. Dashed
line no acceleration and solid line for acceleration.



A particularly bad graph





A problem with compact sets of Hypotheses

In particular, after a transient time depending on γ1, the
convergence rate is geometric with rate γ2.

γ2 =
1

n
min
θ/∈Θ∗

n∑
i=1

(
DKL(P i‖P iθ)−DKL((P i‖P iθ∗)

)
γ2 is the average distance between the second best
hypotheses and the optimal one. This term goes to zero if there
is a continuum of hypotheses, e.g. Θ ∈ Rd.

Q3. Can we derive nonasymptotic geometric concentration
rates for the proposed learning rule?

µik+1 (B) ∝
∫
θ∈B

n∏
j=1

(
dµjk (θ)

)aij
piθ(x

i
k+1) (6)



A compact set of hypotheses: Θ ⊂ Rd

LeCam+Birgé

I Birgé, ”Model selection via testing: an alternative to
(penalized) maximum likelihood estimators.”, 2006.

I Birgé, ”About the non-asymptotic behaviour of Bayes
estimators.”, 2015.

I LeCam, ”Convergence of estimates under dimensionality
restrictions.”, 1973.



A couple of definitions first

Define an n-Hellinger ball of radius r centered at θ as

Br(θ) =

θ̂ ∈ Θ

∣∣∣∣∣∣
√√√√ 1

n

n∑
i=1

h2
(
P iθ , P

i
θ̂

)
≤ r





A covering for Bcr ∩Θ

Let r > 0 and {rl} be a finite strictly decreasing sequence such
that r1 = 1 and rL = r. Let Fl = Brl \ Brl+1

.

BrΘ

F1

F2

F3

F4

F1 F2

F3 F4

Pθ∗



A covering for Bcr ∩Θ

For each Fl find a maximal εl-separated set Sεl , with Kl = |Sεl |.

F3,m Fl,m = Fl ∩ Bεl(m ∈ Sεl)

Bcr =
⋃L−1
l=1

⋃
m∈Sεl

Fl,m



A condition on the initial beliefs

The initial beliefs of all agents are equal and have the following
property:
For any constants C ∈ (0, 1] and r ∈ (0, 1] there exists a finite
positive integer K, such that

µ0

(
B C√

k

)
≥ exp

(
−k r

2

32

)
for all k ≥ K.



Concentration Result for Compact Hypotheses sets

The beliefs {µik}, generated by the update rule in Eq. (5) have
the following property: with probability 1− σ,

µik+1(Br) ≥ 1− χ exp

(
− k

16
r2

)
for all i and all k ≥ max{N,K}

where

N = inf

{
t ≥ 1

∣∣∣∣∣ exp

(
log

1

α

4 log n

1− δ

) L−1∑
l=1

Kl exp

(
− t

32
r2
l+1

)
<
σ

2

}
,

with K as defined initial condition assumption,

χ =
L−1∑
l=1

exp(− 1
16r

2
l+1) and δ = 1− η/n2, where η is the smallest

positive element of the matrix A.



Distributed estimation for the exponential family
The exponential family, for a parameter θ = [θ1, θ2, . . . , θs]′, is
the set of probability distributions whose density can be
represented as

pχ,ν(θ) = f(χ, ν) exp(θ′χ− νC(θ)),

We say, a prior is conjugate if for a likelihood of the form
pθ(x) = H(x) exp(θ′T (x)− C(θ)), the posterior distribution is

pχ+T (x),ν+1(θ|x) ∝ pθ(x)pχ,ν(θ).

In our case, if all agents have conjugate beliefs to their
corresponding models then, dµik(θ) = pχik,ν

i
k
(θ|xik)

χik+1 =

n∑
j=1

aijχ
j
k + T i(xi), νik+1 =

n∑
j=1

aijν
j
k + 1



Gaussians: estimating the Mean with known variance

min
θ

n∑
i=1

DKL(N (θi, (σi)2)‖N (θ, (σi)2))

which is equivalent to

min
θ

n∑
i=1

(σi)−2(θi − θ)2∑n
j=1(σj)−2

then

τ ik+1 =
n∑
j=1

aijτ
j
k + τ i

θik+1 =

n∑
j=1

aijτ
j
kθ
j
k + xik+1τ

i

τ ik+1

where τ ik = 1
(σik)2 .



Unknown Variance, known mean

min
σ2

n∑
i=1

DKL(N (θi, (σi)2)‖N (θi, (σ)2))

which is equivalent to minσ2 n log σ2 +

n∑
i=1

(σi)2+4(θi)2

2(σ)2

then µik = Inv−χ2(νik, (τ
i
k)

2)

νik+1 =

n∑
j=1

aijv
j
k + 1

(τ ik+1)2 =

n∑
j=1

aijv
j
k(τ

j
k)2 + (xik+1 − θi)2

νik+1



Distributed Poisson Filter

min
λ

n∑
i=1

DKL(Poisson(λi)‖Poisson(λ))

which is equivalent to

min
λ
−

n∑
i=1

λi log λ+ λ

then µik = Gamma(αik, β
i
k)

αik+1 =

n∑
j=1

aijα
j + xik+1

βik+1 =
n∑
j=1

aijβ
j + 1



Distributed Gaussian Filter: Unknown Mean, Unknown
Variance

min
θ,σ2

n∑
i=1

DKL(N (θi, (σi)2)‖N (θ, (σ)2))

then

τ ik+1 =

n∑
j=1

aijτ
j
k + 1, θik+1 =

∑n
j=1 aijτ

j
kθ
j
k + xik+1

τ ik+1

,

αik+1 =

n∑
j=1

aijα
j
k + 1/2, βik+1 =

n∑
j=1

aijβ
j
k +

∑n
j=1 aijτ

j
k(xik+1 − θ

j
k)

2

2τ ik+1

.



Conclusion

We studied the problem of distributed estimation. Starting from
a variational interpretation of Bayes’ Theorem, we propose a
set of new algorithms with provable performance for a variety of
graphs. We show non-asymptotic, explicit and geometric
concentration rates around the correct hypotheses.



Questions?

If enough time, we can talk about two open problems on the
relation with Linear Regression and the Kalman filter :).



Linear Observations and the Regression Problem

Consider two multivariate Normal distributions P = N (θ0,Σ0)
and Q = N (θ1,Σ1)

DKL(P,Q) =
1

2

(
tr(Σ−11 Σ0)− (θ1 − θ0)′Σ−11 (θ1 − θ0)− k + ln

(
detΣ1

detΣ1

))
In particular, the multivariate mean estimation problem is

arg min
θ∈Θ

DKL(P, Pθ) = arg min
π∈∆Θ

EπEP ‖X − θ‖2Σ−1 , θ ∼ π,X ∼ P

This is the centralized problem where Xk = θ∗ + εk, with
εk ∼ N (0,Σ)



Linear Observations and the Regression Problem

Now consider the network estimation problem were
Xi
k = Ci

′
θ + εik, where θ ∈ Rm, Ci ∈ Rm and εik ∼ N (0,Σ). The

optimization problem to be solved is then

min
θ
‖θ − θ∗‖2CΣ−1C′

and the resulting algorithm is

(Σi
k+1)−1 =

n∑
j=1

aij(Σ
j
k)
−1 + Ci(Σi)−1Ci

′

θik+1 = Σi
k+1

 n∑
j=1

aij(Σ
j
k)
−1θjk + Ci

′
(Σi)−1xik+1





Distributed Tracking and the Kalman Filter

Assume θk is a Markov process, and xk are the observed
states, then

Π(θk+1|xk+1) ∝ pθk+1
(xk+1)

∫
Θ
p(θk+1|θk)dΠ(θk|xk)

From the belief update perspective, we can express this
prediction+update procedure as

Prediction :dµ̂k+1 =

∫
Θ
p(·|θ)dµk(θ)

Update :dµk+1 = arg min
π∈∆Θ

{〈− log pθ(xk+1), π〉+DKL(π‖dµ̂k+1)}



One particular case is when θk and xk evolve as a discrete-time
Linear Gaussian system, where

θk+1 = Akθk +Wk

Xk = Ckθk + Vk

with Wk ∼ N (0, Qk) and Vk ∼ N (0, Rk).
Starting with a Gaussian prior dµ0 = N (θ̂0|0,Σ0|0)

dµ̂k = N (Akθ̂k−1|k−1, AkΣk−1|k−1A
′
k +Qk)

dµk = N (θ̂k|k,Σk|k)

and

x̃k = xk − Ckθ̂k|k−1 Sk = HkΣk|k−1H
′
k +Rk

Kk = Σk|k−1H
′
kS
−1
k

θ̂k|k = θ̂k|k−1 +Kkx̃k Σk|k = (I −KkHk)Σk|k−1



A distributed Kalman filter

If the predicted beliefs are shared, we can propose a distributed
Kalman filter of the form

dµ̂ik+1 =

∫
Θ
p(·|θ)dµik(θ)

dµik+1 = arg min
π∈∆Θ

〈− log pθ(xk+1), π〉+

n∑
j=1

aijDKL(π‖dµ̂jk+1)




