
1 
 

 

Convex Optimization for Data Science 

Gasnikov Alexander 

gasnikov.av@mipt.ru 

 

 

Lecture 6. Gradient-free methods. Coordinate descent 
 

 

 

 

 

 

February, 2017

mailto:gasnikov.av@mipt.ru


2 
 

Main books: 
 

Spall J.C. Introduction to stochastic search and optimization: estimation, simula-

tion and control. Wiley, 2003. 

Nesterov Yu. Random gradient-free minimization of convex functions // CORE 

Discussion Paper 2011/1. 2011. 

Nesterov Y.E. Efficiency of coordinate descent methods on large scale optimiza-

tion problem // SIAM Journal on Optimization. 2012. V. 22. № 2. P. 341–362. 

Fercoq O., Richtarik P.  Accelerated, Parallel and Proximal Coordinate Descent 

// e-print, 2013. arXiv:1312.5799 

Duchi J.C., Jordan M.I., Wainwright M.J., Wibisono A. Optimal rates for zero-

order convex optimization: the power of two function evaluations // IEEE Trans. 

of Inf. 2015. V. 61. № 5. P. 2788–2806. 

Wright S.J. Coordinate descent algorithms // e-print, 2015. arXiv:1502.04759  

Gasnikov A.V. Searching equilibriums in large transport networks. Doctoral The-

sis. MIPT, 2016. arXiv:1607.03142  

http://arxiv.org/abs/1312.5799
http://arxiv.org/abs/1502.04759
https://arxiv.org/abs/1607.03142


3 
 

Structure of Lecture 6 
 

 

 Two-points gradient free methods and directional derivative methods 

(Preliminary results) 

 Stochastic Mirror Descent and gradient-free methods 

 The principal difference between one-point and two-points feedbacks 

 Non smooth case (double-smoothing technique) 

 Randomized Similar Triangles Method 

 Randomized coordinate version of Similar Triangles Method 

 Explanations why coordinate descent methods can works better in prac-

tice then its full-gradient variants 

 Nesterov’s examples 

 Typical Data Science problem and its consideration from the (primal / 

dual) randomized coordinate descent point of view 
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Two points gradient-free methods and directional derivative methods 
 

  min.
nx

f x



  

All the results can be generalized for composit case (Lecture 3). We assume that 

  * .NE f x f    
   

N  –  number of required iterations (oracle calls): calculations of f  (realiza-

tions) / directional derivative of f . 

R  – “distance” between starting point and the nearest solution. 
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Stochastic Mirror Descent (SMD) (Lectures 3, 4) 

Consider convex optimization problem 

  min
x Q

f x


 ,                                               (1) 

with stochastic oracle, returns such stochastic subgradient  ,x f x   that: 

   ,xE f x f x      .                                      (2) 

We introduce norm p -norm (  1,2p ) with 1 1 1p q   and assume that 

 
2 2,x q

E f x M   
 

,  2,q  .                            (3) 

We introduce prox-function   0d x   (  0 0d x  ) which is 1-strongly con-

vex due to the p -norm and Bregman’s divergence (Lecture 3) 

       , ,V x z d x d z d z x z     . 
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Method is 

  1= Mirr , ,k

k k k

xx
x h f x        Mirr v argmin v, , .k

k k

x x Q
x x V x x


     

We put  2 0

*,R V x x , where *x  – is the solution of (1) (if *x  isn’t unique 

then we assume that *x  is minimized  0

*,V x x ). If  k  – i.i.d. and 

 2 0

*,R V x x , 
1

0

1 N
N k

k

x x
N





  , 
2

2R
h

M N M


  . 

Then, after (all the result cited below in this Lecture can be expressed in 

terms of probability of high deviations bounds, see Lecture 4) 
2 2

2

2M R
N


  

iterations (oracle calls) 

  *

NE f x f    
  . 
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Idea (randomization!) 

    , : , : ,k k k k k k k k

x

n
f x e f x e e   


    , (one-point feedback)   (4) 

      , : , ,k k k k k k k k

x

n
f x f x e f x e   


    , (two-points feedback) (5) 

   , : , ,k k k k k k

x xf x n f x e e    . (directional derivative feedback)  (6) 

Assume that  ,k kf x   available with (non stochastic) small noise of level  . 

How to choose i.i.d. 
ke ? Two main approaches: 

 2 1k ne RS  – ke  is equiprobable distributed on a unit Euclidian sphere in 
n ; 

 0,...,0,1,0,...,0k

i

e    – with probability 1 n (coordinate descent) for (5), (6). 
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Note, that (we can’t tend 0    in (5) because of    in (7)) 

        , , ,k

k k k k k k

x xe
E n f x e e f x    

 
, (see (2)) 

    
2

2
2 2 2

2

3
, ,

4
k

k k k k k k k

e q
q

n
E f x e f x e n L E e   



 
          

 

 
2 2

2
2

2
2

2
3 , , 12 k

k k k k k

e qx q
n E f x e e

n
E e




    

   
. (see (3))    (7) 

If  
2

2,k

kE f x B


  
  

 then 

 
2 2 2

2

2
, k

k k k k k

e q
q

n n B
E f x e e E e 

 

 
        

. (see (3))           (8) 

For coordinate descent randomization it’s optimal to choose 2p q  . The results 

will be the same as for  2 1k ne RS . Since that we concentrate on  2 1k ne RS .  
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If  2 1ne RS  then due to the measure concentration phenomena (I. Usmanova) 

 
2

1
2

min 1,4ln q

q
E e q n n



    
 

, 
2 2 1

2
,E c e c n  

 
, 2 q  ,                               

 
2

2
2 2 2

2

4
, min 1,4ln

3

q

q
E c e e c q n n



    
 

, 2 q  .              

So the choice of  1,2p  (  2,q  ) is already nontrivial! For example, for 

 1nQ S  – unit simplex in 
n , it’s natural to choose 1p   (q  ). 

For the function’s values feedback ((4), (5)) we have biased estimation of gra-

dient ((2) isn’t still the truth). So one’ve to generalize mentioned above approach 

      
if 0

, , ,k k

k k k k k k k k k k

e e

n n
E f x e e E f x e f x e


    

 

   
       

   
 

 , ,k

k k k k

xe
E n f x e e  

 
. // because 0    and 0   
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Assume, that instead of real (unbiased) stochastic gradients  ,k k

x f x   (see (2)) 

it’s only available biased ones  ,k k

x f x  , that satisfy (3) and additionally 

  
   

1 1

1

1 1

*

1,...,

1
sup , , ,..., , ,k

N
k k k

k

N
k k k k k k

x x

kx x

E E f x f x x x
N 

 

    








 
      

 
   

then 

  *

NE f x f      
  . 

If    is small enough, then one can show (by the optimal choice of  ) that for (4): 

N  (  2
2 0

* p
R x x   )  
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2
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
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 
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2 2 1 2

2

3
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

 
 
 

  

 f x  – 2 -strongly convex in 
2
 2 2 2

2

3

2

B M n

 

 
 
 

  
2 2

2

2

2

B L n

 

 
 
 

  
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 For directional derivative feedback (6) one can obtain: 

N  (  2
2 0

* p
R x x   )  

2 2

22
,xE f x M  

 
     2 22

f y f x L y x     (stochastic) 
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 
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 
 

  
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2

M n

 

 
 
 

  
2

2

2

M n

 

 
 
 

  

But for the two-points feedback (5) if    is small enough  

2min ,
16 96

M

R n n




 
  

 
, 

then by the optimal choice of  : 

2

2 2 2

1
min max , ,

2 6

M

M L L n

 


   
    

   

, // 
3 2

216R L n


  . 
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one can prove that only the last column of this table is truth. As for non-

smooth case one should replace (5) by (see arXiv:1701.03821) 

      1 1 2 2 2 1 2

2

, : , , ,k k k k k k k k k k

x

n
f x f x e e f x e e     


         

where  1 2 1k ne RB  ( 1

ke  is equiprobable distributed on a unit euclidian sphere 

in 
n ),  2 2 1k ne RS  and  1 2, ,k k k

k
e e   are independent in total. If    is small 

enough 
2

3 2

256M Rn


  , // compare with 

3 2

216R L n


   

then by the optimal choice of 1 , 2 : 

1

24M


  , 2

24M n


  , 

one can prove that the middle column of the table above is also truth. 

https://arxiv.org/abs/1701.03821
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Conclusions and Remarks for SMD approach 

 One-point feedback is much worse than two-points feedback. Two-points 

feedback (under rather small noise) is equivalent to the directional derivative 

feedback. The last one (in the worth case) is n-times slower (in terms of the 

oracle calls) then full (sub-)gradient approach. Moreover, k -points feedback 

is 2n k -times slower than full (sub-)gradient approach. 

 In non-euclidian set-up (  1,2p ) this additional n-factor (multiplier) is 

reduced up to a ln n-factor when 1p   (q  ), but 2M M . 

 All the estimations in the last table are unimprovable up to a ln n-factor. 

Note that denotation    (we’ve used above) is equivalent to    up to a 

ln n-factor. For one-points feedback one can improve the results in terms of   

by degradations in terms of n  (arXiv:1502.06398 , arXiv:1607.03084). 

 All the results will be also true in the online context (arXiv:1607.03142). 

 Using the restart-technique (see Lecture 5) one can generalize the results 

for non-euclidian set-up (in non online context).  

https://arxiv.org/abs/1502.06398
https://arxiv.org/abs/1607.03084
https://arxiv.org/abs/1607.03142
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Similar Triangles Methods (STM) nQ   , 2p   (Lecture 3) 

STM Randomized STM 

  

1 1

1

1 1

1

1
1 1

1

,

Mirr ,

.

k

k k
k k k
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k k
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k k k
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 
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 
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 
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
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


   

1 1
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1 1 1

1

1
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1

,
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k k
k k k
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k k k

k yu

k k
k k k
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u A x
y
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u f y

u A x
x

A



 



 



  




 






 




  

1

0 L  , 2

k kA L ,  

2

1 2

1 1
.

2 4
k k

L L
      

 
1

2

0 Ln


 , 2 2

k kA Ln ,  

 
2

1 22
2

1 1
.

2 4
k k

Ln Ln
      

 1 1,k k

y f y    is determines by (4) – (6) (in practice interesting only (5), (6)). 
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This method works (with (5) and (6)) by the formula in yellow cell 

N   
2 2

22
,xE f x M  

 
     2 22

f y f x L y x        
2

2
,xE f x f x D   

 
 

 f x  convex 2 2

2

2

M
n

R


  

2

2n
L R


  

2 2

2

2
max ,

L R
n

DR

 

  
 



 

 

 f x  – 2 -strongly 

convex in 
2
 

2

2

2

n
M

 
  

2

2 2

2

ln
L R

n


 

  
  



 

 
2

2 2

2 2

max ln ,
L R D

n


   

    
   

   




 

Using restart-technique one can obtain method that works by the formula in 

green cell. Based on these two methods by using mini-batch’ing technique 

(see Lecture 5) one can obtain methods that work by the formula in blue cells. 

Here it doesn’t matter what kind of two described above ways of choosing 
ke  we will use. If we use (5) one should say that   is small enough. 

Unfortunately, here in the prove it is significant that 1k ku u   is collinear 

to 
y f . Sufficient condition for that is  nQ   .  
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An open question is to generalize these results for arbitrary convex set Q  

and  1,2p .  

Hypothesis is that – in colored cells in the table above multiplier n  for 

 1,2p  (  2,q  ) should be replaced by 1 qn . Note that by using SMD 

we’ve already shown that in the grey cells multiplier n  for  1,2p  

(  2,q  ) should be replaced by 1 1 2qn  . 

Following by the Lectures 3, 5 one can generalize mentioned above re-

sults (obtained around STM) on USTM and its intermediate variant. 

Now we lead a general randomized block-coordinate descent scheme, 

based on STM, that allows us to obtain more precise results. 

In the following we concentrated only on coordinate descent randomization 

because this typically allows to fulfill one iteration for  n  and if 

   
1

m
T

k k

k

f x f a x


  with  
1

m
T

k k
a


 – s-sparse in average – for  s  (Lee–Sidford).  
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Block-Coordinate Randomized Similar Triangles Method (CSTM) 

Suppose that 
1

n

i

i

Q Q


 , where in

iQ   . Let’s put 
22 1 2

1

n

i i i
i

x L x



 , 

   1 2

1

, ,
n

i i i i

i

V x y L V x y



 ,  0,1  , where 
i
 – norm in the corresponding 

i -block in ,  ,i i iV x y  – corresponding Bregman’s divergence and         

     
*,

.i i i i i ii i
f x he f x L h e      

Let’s introduce vector  i f x  that has zero’s components except the posi-

tions correspond to block i  for these components: i f f  . We put 

1

n

L i

i

n L



 , i i Lp L n  . For 0   we have Ln n , 1ip n . This case (with 

1in   and simpler prox-structure) we’ve already considered above. 
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CSTM  

Choose independently at random 1ki   (  1k

iP i i p   ) 

  

 
1

1

1 1

1

1 1

1

1 1 11

1

,

Mirr ,

1
.

k k

k

k k
k k k

k

k k kk

ki

k k

ku i

k

u A x
y

A

u f

y u
p A

y

x u




 



 



 



 








 

  

 

 
1

2

0 Ln


  , 2 2

k k LA n  , 

 
2

1 22
2

1 1
.

2 4
k k

L
L

n n
    

 
 

Note that for 0    

 
1

1

1

1 1 11

k

k k kk

ki

k y u u
p

x
A





  



    

1
1 1

1

k k
k k k

k

u A x
x

A

 
 




 . 
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The rate of convergence 

2

L
LN

R
n



 
  

 







 ,  2 0

*,LR V x y . 

One can generalize this result for strongly convex case. Nontrivial (but poss-

ible – A. Turin & P. Dvurechensky, 2016) to generalize CSTM on adaptive 

variant (the values  
1

n

i i
L


 are not available a priori). This can be combined 

with block-separable composite type optimization (Lecture 3). As far as we 

know in this case it would be the most general block-coordinate primal-dual 

descent method with optimal rate of convergence. Moreover one can post-

pone this method for stochastic optimization problems (with general inexact 

oracle – see Lecture 5; say, for (5) error in f  could be 3 n  ,   ). 

Typically one should use 0  , 1 2   (Yu. Nesterov, 2010, 2015). 
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Why coordinate descent method works good in practice? 

Answer: Because of the cheap iteration! 

Let’s explain this fact. Due to the (fast) automatic differentiation (AD) 

arXiv:1502.05767 and http://www.ccas.ru/personal/evtush/p/198.pdf 

it seems that the cost of one iteration (the main part of this cost is oracle call) 

is of order of calculation of the gradient of f , because typically gradient can 

be calculate at most 4-times expensive then the value of f . But first of all 

AD requires a big memory (and sometimes it could be a serious problem, see 

arXiv:1701.02595), secondly for CSTM we need partial derivative (not the 

value of the function). For example, for   Tf x x Ax , nx , with dense 

matrix A,  f x  can be calculated for 22n  a.o. but   1f x x   – for 2n  a.o. 

But this is not general situation: see, for example,    
1

ln exp
n

k

k

f x x


 
  

 
 . 

https://arxiv.org/abs/1502.05767
http://www.ccas.ru/personal/evtush/p/198.pdf
https://arxiv.org/abs/1701.02595
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But the main thing is that – we need recalculation of block coordinates,  

instead of calculation as it would be for the first time! 

Example 1 (Yu. Nesterov, 2015). Assume that 

   ,f x F Ax x , nx , my Ax  . 

The value  ,F y x  (and due to AD also  ,F y x ) can be calculated for 

 m n  . Let at least one of the following conditions is true: 

1)  n m  ; 

2) calculation of  ,yF y x  costs  m  and 
 ,

j

F y x

x




 – costs  m .  

Then the average cost of one iteration of CSTM ( 1in  ) is  m . □ 
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Example 2 (Yu. Nesterov, 2015). Assume that 

 
1

, ,
2

f x x Sx b x  , 

where S  – positive semi-definite matrix with elements lies between 1 and 2. 

We use CSTM with 1 2   ( 1in  ). One can show that   

   max max 1 1T

n nL S n    , 

but 2i iiL S  . So CSTM is faster STM n -times (
1

2
n

L i

i

n L n


  ): 

 

2
0

* 2
CSTM

x y
T nn



 
 

  
 
 
 

,  

2
0

* 22

STM

n x y
T n



 
 

  
 
 
 

. 
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 In general it’s useful to note, that 

     max

1
tr trS S S

n
  ,  

1 1

1 1 1
tr

n n

i i

i i

L L S
n n n 

   . 

Hence 

    max2 2
tr

CSTM STM

S n S
T n n T



 

    
      

  
  

  . 

Note that profit n -times is maximal possible and reach when  max S  and 

 tr S  are close to each other. Say, if eigenvalues of S  are  1,...,n , then 

 max S n   and   2tr S n , so one need more asymmetry.  

This is also can be generalized for the sparse matrix. □ 



24 
 

Example 3 (strongly convex case). Let’s consider the problem (Q  – sim-

ple structure convex set) 

   
1

min
m

T

k k
x Q

k

f A x g x




  , 

where    
1

n

i i

i

g x g x


 . Gradients of the convex function kf  can be calcu-

lated for  1  a.o. and all of these functions have Lipchitz constant of gra-

dient L  in 2-norm.  Function  g x  is assumed to be strongly convex in p -

norm with constant  . Let’s introduce matrix  1,...,
T

mA A A . For simplicity 

we restrict ourselves here by the following two examples (see Lecture 2) 

1) 
22

2 2
min

2 2 ng
x

L
Ax b x x




   


,  2) 

 

2

2 1
1

ln min
2 n

n

k k
x S

k

L
Ax b x x




   . 
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One can build dual problems 

1)    
2 2 2 2

2 222

1 1
min

2 2 m

T

g g
y

x A y x y b b
L 

     


, 

2)  2 2

2 2
1

1 1
ln exp min

2 m

T
n

i

y
i

A y
y b b

L  


          
  
  




. 

 

2

max2 2

221, 1 1

1,..., 2

1)
1 1 1

max , max
2) maxp p

T

T

STM ky x x

k n

A A

L A y x Ax
A



    






   



,

1

2

21,..,2 2

2
1, 1 1

1,...,
1,...,

1) max
1 1 1

max , max
2) maxp p

k
k m

T

CSTM
y x x

ij
i m
j n

A

L A y x Ax
A  



  







   



. 
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We will use CSTM with 0   ( 1in  ), for the dual problems: 

1) 

2

21,..,

1

max k
k m

L A
T nm





 
 

  
 
 

 ,   2) 

2

,

2

max ij
i j

L A
T nm



 
 

  
 
 

 . 

Note that for the problem 1 we can also apply primal CSTM. Moreover, if 

 
1

m

k k
A


 have in average s  nonzero elements in whole n-vector then 

2

21,..,

1

max k
k mdual

L A
T sm





 
 

  
 
 

 ,   

2

1,..., 2

1

max
k

k nprimal
L A

T sm




 
 

  
 
 

 . 

If A is a bit-matrix, then: 1

dual Ls
T sm



 
  

 

 , 
 

1

primal
Ls m n

T sm


 
  

 
 

 . 
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In Data Science application very often it is necessary to solve (see Lecture 2)  

   
1

1
min

m
T

k k
x Q

k

f A x g x
m 



  , 

1) 

2 2

2 21,.., 1,..,

1

max max
min ,

k k
k m k m

L A L A
T n m m

 

 

   
   

       
   
   

  ,  

2) 

2 2

, ,

2

max max
min ,

ij ij
i j i j

L A L A
T n m m

 

   
   

      
    

   

  . □   
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The End? 

  
  


