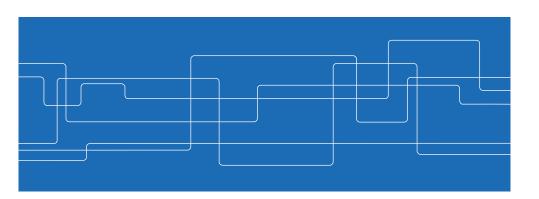


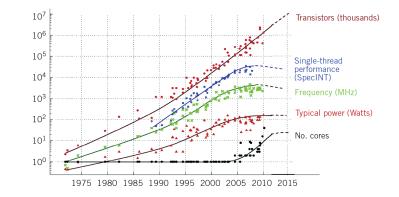
Sparsity and asynchrony in distributed optimization: models and convergence results

Arda Aytekin, Hamid Reza Feyzmahdavian, Sarit Khirirat and Mikael Johansson KTH - Royal Institute of Technology



Achiving scalability in a post-Moore era

Single-thread performance increases are long gone

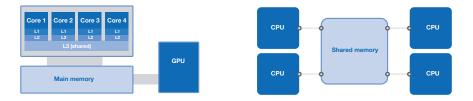


Key is now more processing elements (threads, cores, sockets, ...)

LCC Workshop, June 2017

Multi-core computing

Multiple computation units (cores) able to address the same memory space



Many uses in optimization

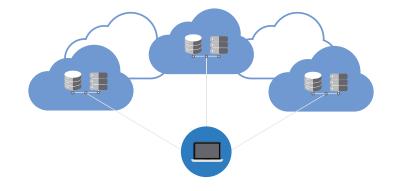
• parallelize linear algebra, evaluate gradients in parallel,

Critical to keep cores busy, respect memory hierarchies & bus limitations

Dealing with the data deluge

M. Johansson (KTH)

Increasingly often impossible/impractical to move data to central location

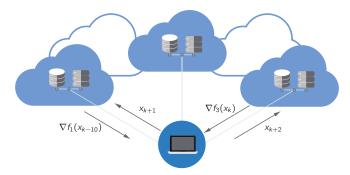


Geographically dispersed data, heterogenous compute resources

Dealing with the data deluge

Natural with master-worker solutions:

- master maintains decision vector, queries workers in parallel
- workers return delayed gradients of their data loss

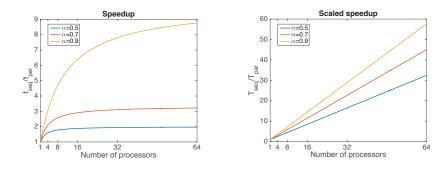


Q: What is the impact of time-varying delays on the algorithm convergence?

LCC Workshop, June 2017

M. Johansson (KTH)

Speed-ups limited by fraction of code α which is parallelizable.



Idealized behaviors, further impaired by

• synchronization and lock management, communication, load imbalance (challenges on multi-cores and clouds are surprisingly similar)

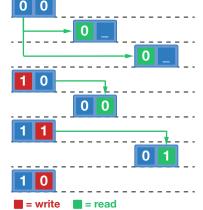
LCC Workshop, June 2017

Contents

M. Johansson (KTH)

- Motivation
- Theory for asynchronous and lock-free computations
- Exploiting sparsity to speed up convergence
- Conclusions

Lock-free implementations: consistent and inconsistent read



LCC Workshop, June 2017

Time-delay models of asynchronism

Consistent read of vector x into variable z at time t:

• z(t) has existed in shared memory at *some* time

$$z(t) = x(t - d(t))$$

homogeneous time delay for all components of z

Inconsistent read of x into z at time t:

• complete vector z(t) has never existed in memory, only its components

$$z_i(t) = x_i(t - d_i(t))$$

heterogeneous delays

M. Johansson (KTH)

We will assume that information delays are bounded, arbitrarily time-varying.

LCC Workshop, June 2017

Convergence rates often derived using standard results for sequences.

Example. Gradient method with strongly convex objective satisfies

 $V_{k+1} \le \rho V_k + r$

which allows to conclude that $V_k \leq \rho^k V_0 + e$ where $e = r/(1-\rho)$.

Example. Gradient method for Lipschitz gradients analyzed by establishing

 $V_{k+1} \le V_k - \alpha V_k^2$

which implies that $V_k \leq V_0/(1 + \alpha k V_0)$.

KTH VETERIASAAN OCH KONST

Lyapunov analysis of asynchronous algorithms

Asynchronous algorithms result in sequences on the form

 $V_{k+1} \le f(V_k, V_{k-d_k}) + e_k$

Much harder to analyze, much less theoretical support.

Coming up: two sequence lemmas and an application

- allow for simple and uniform treatment of asynchronous algorithms
- balance simplicity, applicability and power; support analytical results

Lemma 1. Let $\{V_k\}$ be a sequence of real numbers satisfying

I CC Works

$$V_{k+1} \le pV_k + q \max_{k-d_k \le j \le k} V_j + r$$

for some non-negative numbers p, q and r. If p + q < 1 and

$$0 \le d_k \le d_{\max}$$

for all k, then

M. Johansson (KTH

$$V_k \le \rho^k V(0) + e$$

LCC Workshop, June 2017

where
$$\rho=(p+q)^{1/(1+d_{\max})}$$
 and $e=r/(1-p-q).$

[Feyzmahdavian, Aytekin and Johansson, 2014]

Convergence results for delayed sequences

Lemma 2. Assume that the non-negative sequences $\{V_k\}$ and $\{w_k\}$ satisfy

$$V_{k+1} \le \rho V_k - bw_k + a \sum_{j=k-d_{\max}}^k w_j, \qquad (1)$$

for some real numbers $\rho\in(0,1)$ and $a,b\geq 0,$ and some integer $d_{\max}\geq 0.$ Assume also that $w_k=0$ for k<0, and that

$$\frac{a}{1-\rho} \frac{1-\rho^{d_{\max}+1}}{\rho^{d_{\max}}} \leq b \,.$$

Then, $V_k \leq \rho^k V_0$ for all $k \geq 0$.

[Aytekin, Feyzmahdavian, Johansson, 2016]

The proximal incremental aggregate gradient algorithm

Idea:

M. Johansson (KTH)

• compute (incremental) gradient with respect to a subset of data

ICC Works

- maintain (aggregate of) most recent gradient for each data point
- update \boldsymbol{x} using prox-step w.r.t aggregate gradient and regularizer

$$\begin{split} g_k &= \sum_{i=1}^m \nabla f_i \left(x_{k-d_k^i} \right) \\ x_{k+1} &= \operatorname*{argmin}_x \bigg\{ \langle g_k, x - x_k \rangle + \frac{1}{2\alpha} \| x - x_k \|_2^2 + h(x) \bigg\} \end{split}$$

Motivation: fewer calculations per iteration, faster wall-clock convergence (cf. SAG (Le Roux et al. 2012), IAG (Gürbüzbalaban et al. 2015), ...)

$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad \sum_{i=1}^m f_i(x) + h(x)$

- m samples, decision vector $x \in \mathbb{R}^n$
- $f_i(x)$ loss of sample *i* for decision *x*; h(x) is regularizer

Assumptions:

- each f_i is convex, differentiable with Lipschitz continuous gradient
- $\sum_i f_i$ is strongly convex
- *h* is proper convex (but may be non-smooth, extended-real valued)

Examples: ℓ_1 -regularized least-squares, constrained logistic regression, ...

M. Johansson (H

Related work

Blatt et al. (2007):

- convex quadratic loss, no regularizer, synchronous
- rate of convergence, but no explicit step-size or convegence factors

Tsen and Yun (2014)

- convex loss with Lipschitz gradient, simple regularizer, asynchronous
- rate of convergence, but no explicit step-size or convegence factors

Gürbüzbalaban et al. (2015)

- strongly convex loss with Lipschitz gradient, no regularizer, asynch.
- explicit step-sizes and convergence factors

and more (e.g. stochastic average gradient, ...)

$$g_k = \sum_{i=1}^m \nabla f_i \left(x_{k-d_k^i} \right) \tag{2}$$

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \bigg\{ \langle g_k, x - x_k \rangle + \frac{1}{2\alpha} \| x - x_k \|_2^2 + h(x) \bigg\}.$$
(3)

Natural parameter-server implementation:

- Data distributed over multiple workers $(\{1,\ldots,m\}=\mathcal{I}_1\cup\mathcal{I}_2,\ldots)$
- Master node maintains iterate x, queries nodes for gradients

Time-varying, heterogeneous delays d^i_k between master and worker $i. \label{eq:constraint}$

Proximal incremental aggregate gradient on parameter server

Each worker w:

• receives new iterate from master, computes gradients of local data loss,

 $\sum_{i\in\mathcal{I}_w}\nabla f_i(x_k)$

• pushes this quantity to master (arrives with total delay d_k^n)

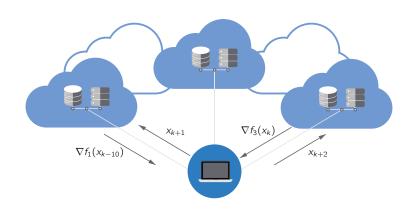
Master:

• maintains aggregate gradient

$$g_k = \sum_{i=1}^m \nabla f_i(x_{k-d_k^i})$$

• updates iterate via prox-step, pushes x_{k+1} to workers

PIAG on the parameter server



Main result

M. Johansson (KTH)

Theorem. Assume that each ∇f_i is L_i -Lipschitz continuous, $\sum_i f_i$ is μ -strongly convex, and $d_k^i \leq d_{\max}$ for all i. If the step-size α satisfies:

LCC Worksh

$$\alpha \le \frac{\sqrt[d_{\max}+1]{1+\frac{\mu}{L}\frac{1}{d_{\max}+1}}-1}{\mu}$$

where $L = \sum_{n=1}^{N} L_n$, then the iterates generated by (2), (3) satisfy:

$$||x_k - x^*||_2^2 \le \left(\frac{1}{\mu\alpha + 1}\right)^k ||x_0 - x^*||_2^2$$

M. Johansson (KTH)

18 / 3

Discussion

Linear convergence, even in presence of proximal term.

In absence of asynchronism, can pick $\alpha = 1/L$ to guarantee

$$||x_k - x^{\star}||_2^2 \le \left(\frac{L}{L+\mu}\right)^k ||x_0 - x^{\star}||_2^2$$

Graceful slowdown guaranteed, as d_{\max} increases

$$\rho\approx 1-\frac{c}{(1+d_{\max})^2}$$

LCC Workshop June 2017

(similar to best known estimates for h = 0)

Sharper bounds, shorter and simpler proof than related work.

Proof sketch

M Johansson (KTH

Lemma 2. Assume that the non-negative sequences $\{V_k\}$ and $\{w_k\}$ satisfy

$$V_{k+1} \le aV_k - bw_k + c\sum_{j=k-d_{\max}}^k w_j ,$$

for some real numbers $a \in (0, 1)$ and $b, c \ge 0$, and some integer $d_{\max} \ge 0$. Assume also that $w_k = 0$ for k < 0, and that the following holds:

$$\frac{c}{1-a}\frac{1-a^{d_{\max}+1}}{a^{d_{\max}}} \le b.$$

LCC Workshop June 2017

Then,
$$V_k \leq a^k V_0$$
 for all $k \geq 0$.

22 / 3

Proof sketch

M. Johansson (KTH)

Convexity and Lipschitz continuity of gradients imply

$$\sum_{i=1}^{m} f_i(x_{k+1}) \le \sum_{i=1}^{m} f_i(x) + \langle g_k, x_{k+1} - x \rangle + \sum_{i=1}^{m} \frac{L_i}{2} \|x_{k+1} - x_{k-d_k^i}\|_2^2 \quad \forall x$$

By strong convexity of $\sum_i f_i + h_i$, optimality conditions, and Jensen's ineq

$$\|x_{k+1} - x^{\star}\|_{2}^{2} \leq \frac{1}{\mu\alpha + 1} \|x_{k} - x^{\star}\|_{2}^{2} - \frac{1}{\mu\alpha + 1} \|x_{k+1} - x_{k}\|_{2}^{2} + \frac{\alpha(d_{\max} + 1)L}{\mu\alpha + 1} \sum_{j=k-d_{\max}}^{k} \|x_{j+1} - x_{j}\|_{2}^{2}.$$

Now our Lemma applies and allows to conclude linear rate of convergence.

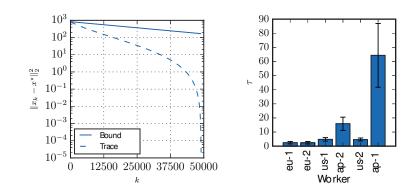
Binary classification via ℓ_1 -regularized logistic regression on rcv1-v2

$$\underset{x}{\text{minimize}} \quad \frac{1}{m} \sum_{i=1}^{m} \left(\log \left(1 + \exp \left(-b_i \langle a_i, x \rangle \right) \right) + \frac{\lambda_2}{2} \|x\|_2^2 \right) + \lambda_1 \|x\|_1,$$

Parameter-server implementation of (2), (3) on Amazon EC2:

- 3 compute nodes (c4.2xlarge: 8 CPUs, 15 GB RAM, each),
 - one in Ireland (EU),
 - one in North Virginia (US),
 - one in Tokyo (AP),
- 2 workers in each node (a total of 6 workers)
- Master node on computer at KTH in Stockholm, Sweden.

Parameter-server implementation on EC2



Amazon sent us the bill for the figure...

Computing: \$80 Communication: \$20

Computing far from free, communication surprisingly expensive.

Communication also impairs performance - important to reduce!

M. Johansson (KTH)

LCC Workshop, June 2017

Contents

- Theory for asynchronous and lock-free computations
- Exploiting sparsity to speed up convergence
- Conclusions

Data sparsity implies dimensionality reduction

Standard definition: many elements are zero (more than 66%)

• common feature of many large-scale data sets (e.g. in svmlib)

LCC Worksho

on June 2017

Standard implication: dimensionality reduction

- can store data more efficiently (row, col, val)
- approximate low-rank matrix representations

We will exploit another implication of sparsity...

M. Johansson (KTH

Data sparsity implies decoupling

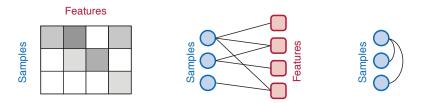
Example. Draw rows from matrix $A \in \mathbb{R}^{m \times n}$ with probability 1/m.

$$\mathbb{E}\langle a_i, a_j \rangle \le \mathbb{E} \|a_i\|_2^2$$

Inner product much smaller when A is sparse (can even be zero)!

How can we quantify and exploit this property?

Graphical representations of sparsity



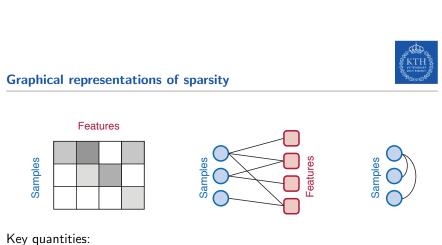
Several graphical representations of sparsity

- bipartite sample-feature graph (edges if sample contains feature)
- sample conflict graph (edges if samples overlap in some feature) (cf. Mania et al., arXiv:1507.06970)

Aim: use graphs to compute measure σ such that

 $\mathbf{E}\langle a_i, a_i \rangle < \sigma \mathbf{E} \|a_i\|_2^2$

LCC Workshop, June 2017



LCC Worksh

M. Johansson (KTH

- maximum feature degree $\Delta_r = \max_j |\{i : j \in \mathsf{supp}(a_i)\}|$
- maximum or average conflict degree $\Delta_c^i = \sum_j \mathbf{1}\{\operatorname{supp}(a_i) \cap \operatorname{supp}(a_j) \neq 0$

With $\Delta_{\max} = \max_i \Delta_c^i$, and $\overline{\Delta}_c = \sum_i \Delta_c^i/m$, it holds that

$$\mathbf{E}\langle a_i, a_j \rangle \leq \min\left\{\sqrt{\frac{1+\overline{\Delta}_c}{m}}, \frac{1+\Delta_{\max}}{m}, \sqrt{\frac{\Delta_r}{m}}\right\} \mathbf{E} \|a_i\|_2^2 := \sigma \mathbf{E} \|a_i\|_2^2$$

on (KTH

Sparsity measure σ on data from libsvm (recall: $\mathbf{E}\langle a_i, a_j \rangle \leq \sigma \mathbf{E} ||a_i||_2^2$)

Data set name	σ
kddb.t	0.255
w4a	0.61
rcv1	0.627
protein.t	0.669
news20	0.727

How can we use this sparsity in first-order methods?

Many machine-learning problem are on the form

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \sum_{i=1}^m f_i(x) = \varphi(a_i^T x - b_i)$$

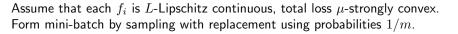
with $f_i(x) = \varphi(a_i^T x - b_i)$. Gradients have same sparsity pattern as data.

We will focus on mini-batch gradient descent:

$$x(t+1) = x(t) - \Gamma \sum_{i \in \mathcal{S}(t)} \gamma_i \nabla f_i(x)$$

where S(t) is a mini-batch of size M, drawn from $\{1, \ldots, m\}$.

Mini-batch optimization under data sparsity



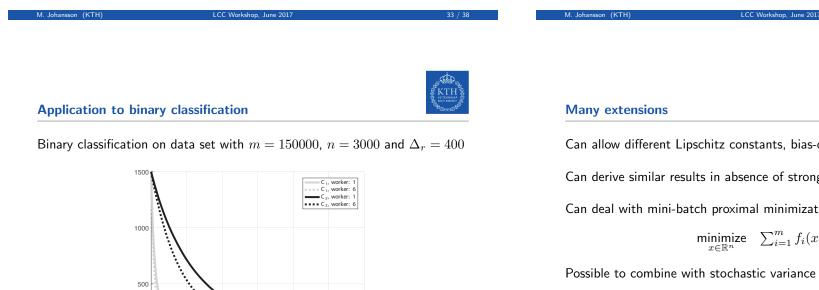
Mini-batch gradient descent generate iterates $\{x(t)\}$ which satisfy

$$\|x(t) - x^{\star}\|_2^2 \le \rho^t \|x(0) - x^{\star}\|_2^2 + e$$

with

$$\rho = 1 - \frac{M}{1 + (M-1)\sigma} \frac{\mu}{2mL}$$
$$e = \frac{1}{\mu L} \sum_{i} \|\nabla f_i(x^\star)\|_2^2$$

Recovers classical results in absence of sparsity, improvements when σ small.



0

Significant speed-ups by exploiting sparsity!

1000

2000

3000

computation time [sec]

4000

5000

6000

Can allow different Lipschitz constants, bias-convergence trade-off params.

Can derive similar results in absence of strong convexity.

Can deal with mini-batch proximal minimization for problems on the form

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \sum_{i=1}^m f_i(x) + g(x)$$

Possible to combine with stochastic variance reduction (SVRG, etc.)

Pre-processing effort

Feature-degree practically for free.

Conflict graph very large, costly to form and manipulate

 $\bullet\,$ some data set in libsvm takes about a day to analyze on standard PC

LCC Workshop, June 2017

 \bullet tailored GPU code runs in more than 10x faster

Still, in practice, seems reasonable to focus on feature degree.

Conclusions

Scalability in a big-data, post-Moore world:

- parallel and distributed optimization
- exploiting structure, dealing with asynchronism, respecting architectures

Theory from lock-free and asynchronous computation

- two simple, yet powerful, sequence lemmas
- PIAG: convergence guarantees + cloud implementation

Exploiting data sparsity

- Graphical measures of data sparsity, evaluation on svmlib data
- Significant convergence guarantee improvements for mini-batch GD

37 / 38

M. Johansson (KTH

LCC Workshop, June 2017

