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Motivations

Typical Machine Learning setting

I Empirical risk minimization:

min
θ∈Rd

1

m

m∑
i=1

`(xi , yi ; θ) + c‖θ‖2
2

I Large scale learning systems handle massive amounts of data

I Requires multiple machines to train the model
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Motivations

Typical Machine Learning setting

I Empirical risk minimization: logistic regression

min
θ∈Rd

1

m

m∑
i=1

log(1 + exp(−yix>i θ)) + c‖θ‖2
2

I Large scale learning systems handle massive amounts of data
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Optimization with a single machine

“Best” convergence rate for strongly-convex and smooth functions

I Number of iterations to reach a precision ε > 0 (Nesterov, 2004):

Θ

(√
κ ln

(
1

ε

))
where κ is the condition number of the function to optimize.

I Consequence of f (θt)− f (θ∗) 6 β(1− 1/
√
κ)t‖θ0 − θ∗‖2

I ...but each iteration requires m gradients to compute!

Upper and lower bounds of complexity

inf
algorithms

sup
functions

#iterations to reach ε

I Upper-bound: exhibit an algorithm (here Nesterov acceleration)

I Lower-bound: exhibit a hard function where all algorithms fail
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Distributing information on a network

Centralized algorithms

I “Master/slave”

I Minimal number of communication steps = Diameter ∆

Decentralized algorithms

I Gossip algorithms (Boyd et.al., 2006 ; Shah, 2009)

I Mixing time of the Markov chain on the graph ≈ inverse of the second
smallest eigenvalue γ of the Laplacian
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Goals of this work

Beyond single machine optimization

I Can we improve on Θ
(
m
√
κ ln

(
1
ε

))
?

I Is the speed up linear?

I How does a limited bandwidth affects optimization algorithms?

Extending optimization theory to distributed architectures

I Optimal convergence rates of first order distributed methods,

I Optimal algorithms achieving this rate,

I Beyond flat (totally connected) architectures (Arjevani and Shamir, 2015),

I Explicit dependence on optimization parameters and graph parameters.
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Distributed optimization setting

Optimization problem
Let fi be α-strongly convex and β-smooth functions. We consider minimizing the
average of the local functions.

min
θ∈Rd

f̄ (θ) =
1

n

n∑
i=1

fi (θ)

I Machine learning: distributed observations

Optimization procedures
We consider distributed first-order optimization procedures: access to gradients
(or gradients of the Fenchel conjugates).

Network communications
Let G = (V, E) be a connected simple graph of n computing units and
diameter ∆, each having access to a function fi (θ) over θ ∈ Rd .
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Strong convexity and smoothness

Strong convexity
A function f is α-strongly convex iff. ∀x , y ∈ Rd ,

f (y) ≥ f (x) +∇f (x)>(y − x) + α‖y − x‖2.

Smoothness
A function f is β-smooth convex iff. ∀x , y ∈ Rd ,

f (y) ≤ f (x) +∇f (x)>(y − x) + β‖y − x‖2.

Notations

I κl =
β

α
(local) condition number of each fi ,

I κg =
βg
αg

(global) condition number of f̄ ,

I κg 6 κl , equal if all functions fi equal.
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Communication network

Assumptions

I Each local computation takes a
unit of time,

I Each communication between
neighbors takes a time τ ,

I Actions may be performed in
parallel and asynchronously.
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Distributed optimization algorithms

Black-box procedures
We consider distributed algorithms verifying the following constraints:

1. Local memory: each node i can store past values in an internal memory
Mi,t ⊂ Rd at time t ≥ 0.

Mi,t ⊂Mcomp
i,t ∪Mcomm

i,t , θi,t ∈Mi,t .

2. Local computation: each node i can, at time t, compute the gradient of its
local function ∇fi (θ) or its Fenchel conjugate ∇f ∗i (θ), where
f ∗(θ) = supx x

>θ − f (x).

Mcomp
i,t = Span ({θ,∇fi (θ),∇f ∗i (θ) : θ ∈Mi,t−1}) .

3. Local communication: each node i can, at time t, share a value to all or
part of its neighbors.

Mcomm
i,t = Span

( ⋃
(i,j)∈E

Mj,t−τ

)
.
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Centralized vs. decentralized architectures

Centralized communication

I One master machine is responsible for sending requests and synchronizing
computation,

I Slave machines perform computations upon request and send the result to
the master.

Decentralized communication

I All machines perform local computations and share values with their
neighbors,

I Local averaging is performed through gossip (Boyd et.al., 2006).

I Node i receives
∑

j Wijxj = (Wx)i , where W verifies:

1. W is an n × n symmetric matrix,
2. W is defined on the edges of the network: Wij 6= 0 only if i = j or (i , j) ∈ E ,
3. W is positive semi-definite,
4. The kernel of W is the set of constant vectors: Ker(W ) = Span(1), where

1 = (1, ..., 1)>.

I Let γ(W ) = λn−1(W )/λ1(W ) be the (normalized) eigengap of W .

Francis Bach 10/27 LCCC workshop



Centralized vs. decentralized architectures

Centralized communication

I One master machine is responsible for sending requests and synchronizing
computation,

I Slave machines perform computations upon request and send the result to
the master.

Decentralized communication

I All machines perform local computations and share values with their
neighbors,

I Local averaging is performed through gossip (Boyd et.al., 2006).

I Node i receives
∑

j Wijxj = (Wx)i , where W verifies:

1. W is an n × n symmetric matrix,
2. W is defined on the edges of the network: Wij 6= 0 only if i = j or (i , j) ∈ E ,
3. W is positive semi-definite,
4. The kernel of W is the set of constant vectors: Ker(W ) = Span(1), where

1 = (1, ..., 1)>.

I Let γ(W ) = λn−1(W )/λ1(W ) be the (normalized) eigengap of W .
Francis Bach 10/27 LCCC workshop



Lower bound on convergence rate

Theorem 1 (SBBLM, 2017)
Let G be a graph of diameter ∆ > 0 and size n > 0, and βg ≥ αg > 0. There
exist n functions fi : `2 → R such that f̄ is αg -strongly-convex and βg -smooth,
and for any t ≥ 0 and any black-box procedure one has, for all i ∈ {1, ..., n},

f̄ (θi,t)− f̄ (θ∗) ≥ αg

2

(
1− 4
√
κg

)1+ t
1+∆τ

‖θi,0 − θ∗‖2.

Take-home message
For any graph of diameter ∆ and any black-box procedure, there exist functions fi
such that the time to reach a precision ε > 0 is lower bounded by

Ω

(
√
κg

(
1 + ∆τ

)
ln

(
1

ε

))

I Extends the totally connected result of Arjevani & Shamir (2015)
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Proof warm-up: single machine

I Simplification: `2 instead of Rd .

I Goal: design a worst-case convex function f .

I From Nesterov (2004), Bubeck (2015):

f (θ) =
α(κ− 1)

8

[
θ>Aθ − 2θ1

]
+
α

2
‖θ‖2

2

with A infinite tridiagonal matrix with 2 on the diagonal, and −1 on the
upper and lower diagonal.

I Facts 1: 0 4 A 4 4I , f is α-strongly convex and β-smooth

I Fact 2: starting from θ0 = 0, after t gradient steps, θt is supported on the
first t coordinates ⇒ ‖θt − θ∗‖2 >

∑
i>t ‖θ∗i ‖2

I Get lower bound f (θt)− f (θ∗) > α
2

(√κ−1√
κ+1

)2t‖θ0 − θ∗‖2 after some

computations
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Proof sketch (1)

I Simplification: `2 instead of Rd .

I Extremal nodes: i0 and i1 at distance ∆.

I Functions to optimize: Splitting the usual Nesterov function

fi (θ) =


α
2 ‖θ‖

2
2 + n β−α8 (θ>M1θ − θ1) if i = i0

α
2 ‖θ‖

2
2 + n β−α8 θ>M2θ if i = i1

α
2 ‖θ‖

2
2 otherwise

where M1 : `2 → `2 is the infinite block diagonal matrix with
( 1 −1
−1 1

)
on the diagonal, and M2 =

( 1 0
0 M1

)
.

I Optimal value: θ∗k =
(√

β−
√
α√

β+
√
α

)k
.
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Proof sketch (2)
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Proof sketch (3)

I If θi,0 = 0, each local computation can only increase the number of non
zero dimensions by one.

I ∇fi0 (θi0,t) increases odd dimensions, ∇fi1 (θi1,t) increases even dimensions.

I ∆ communication steps are required to communicate between i0 and i1.

I θi,t,k 6= 0 after at least k computation steps and k∆ communication steps.

I f̄ is α-strongly convex and β-smooth, and

f̄ (θi,t)− f̄ (θ∗) ≥ α

2
‖θi,t − θ∗‖2

2 ≥
α

2

+∞∑
k=ki,t+1

θ∗k
2,

where ki,t = max{k ∈ N : ∃θ ∈Mi,t s.t. θk 6= 0} ≤
⌊
t+∆τ
1+∆τ

⌋
.
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Simple is good...!

Master/slave algorithm
Simple master/slave distribution of
Nesterov’s accelerated gradient descent.

Input: number of iterations T > 0,
communication network G, η = 1

βg
,

µ =
√
κg−1
√
κg+1

Output: θT
1: Compute a spanning tree T on G
2: θ0 = 0, y0 = 0
3: for t = 0 to T − 1 do
4: Send θt to all nodes through T
5: ∇f̄ (θt) =

aggregateGradients(θt)
6: yt+1 = θt − η∇f̄ (θt)
7: θt+1 = (1 + µ)yt+1 − µyt
8: end for
9: return θT
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Simple is good...!

Master/slave algorithm
Simple master/slave distribution of
Nesterov’s accelerated gradient descent. Convergence rate

I Each iteration requires a time
1 + 2∆τ ,

I Reaches a precision ε > 0 in time

O

(
√
κg

(
1 + ∆τ

)
ln

(
1

ε

))
.
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Drawbacks

Drawbacks of this approach

I Not robust to changes in the connectivity of the network,

I Requires waiting for all machines to compute their local gradients.

A natural solution: decentralized algorithms

I Asynchronous computations,

I Machines do not wait for one another,

I Communication is not interrupted by a change in the network.
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Related works

Large literature for decentralized optimization

I Distributed SGD (Nedic & Ozdaglar, 2009) O( n3R2L2

ε2 )

I Decentralized dual averaging (Duchi et al., 2012) O( R2L2

γ(W )ε2 )

I D-ADMM (Boyd et al., 2011; O(
2κ2

l√
1+4κ2

l γ(W )−1
ln
(

1
ε

)
)

Wei & Ozdaglar, 2012; Shi et al., 2014 ; Lutzeler et al., 2016)

I EXTRA algorithm (Shi et al., 2015; ∃δ > 0 s.t. O(δ ln
(

1
ε

)
)

Mokhtari & Ribeiro, 2016)

I Augmented Lagrangians (Jakovetić et al., 2015) O(
2κ2

l√
1+4κ2

l γ(W )−1
ln
(

1
ε

)
)

I DIGing (Nedich et al., 2016) O(n4.5κ1.5
l ln

(
1
ε

)
)

I ...
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Decentralized algorithms

Optimal convergence rate?

I Decentralized convergence rates usually depend on the (normalized)
eigengap γ(W ),

I For simple graphs (linear graphs, regular graphs), ∆ ≈ 1√
γ(W )

, where W is

the Laplacian matrix,

I Can we have Θ

(
√
κg

(
1 + τ√

γ(W )

)
ln
(

1
ε

))
?

I No! Sometimes 1√
γ(W )

≈ ∆
ln n (Ramanujan graphs and Erdös-Rényi random

networks)...

Optimal algorithm?

I We can achieve this rate if we replace κg by κl ≥ κg ,

I Based on a double acceleration: accelerated gradient descent and
accelerated gossip!
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Lower bound on convergence rate

Theorem 2 (SBBLM, 2017)
Let α, β > 0 and γ ∈ (0, 1]. There exists a gossip matrix W of eigengap
γ(W ) = γ, and α-strongly convex and β-smooth functions fi : `2 → R such that,
for any t ≥ 0 and any black-box procedure using W one has, for all i ∈ {1, ..., n},

f̄ (θi,t)− f̄ (θ∗) ≥ 3α

2

(
1− 16
√
κl

)1+ t
1+ τ

5
√
γ ‖θi,0 − θ∗‖2.

Take-home message
For any γ > 0, there exists a gossip matrix W of eigengap γ there exist functions
fi such that the time to reach a precision ε > 0 is lower bounded by

Ω

(
√
κl

(
1 +

τ
√
γ

)
ln

(
1

ε

))

Naive algorithm does not work!
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Reformulation of the optimization problem

I Using the gossip matrix to ensure equality of all θi (Jakovetić et al., 2015),

min
θ∈Rd

f̄ (θ) = min
Θ∈Rd×n : Θ

√
W=0

F (Θ),

where F (Θ) =
∑n

i=1 fi (θi ), with Θ = (θ1, . . . , θn) ∈ Rd×n

I Dual version:

max
λ∈Rd×n

−F ∗(λ
√
W )

I Gradient descent in the dual:

λt+1 = λt − η∇F ∗(λt
√
W )
√
W ,

and the change of variable yt = λt
√
W leads to

yt+1 = yt − η∇F ∗(yt)W .
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f̄ (θ) = min
Θ∈Rd×n : Θ

√
W=0

F (Θ),

where F (Θ) =
∑n

i=1 fi (θi ), with Θ = (θ1, . . . , θn) ∈ Rd×n

I Dual version:

max
λ∈Rd×n

−F ∗(λ
√
W )

I Gradient descent in the dual:

λt+1 = λt − η∇F ∗(λt
√
W )
√
W ,

and the change of variable yt = λt
√
W leads to

yt+1 = yt − η∇F ∗(yt)W .
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A double acceleration: (1) accelerated gradient descent

I The dual problem
max
λ∈Rd×n

−F ∗(λ
√
W )

is an unconstrained strongly convex and smooth problem with condition
number κl

γ(W ) .

I Nesterov’s accelerated gradient descent reaches a precision ε > 0 in

O

(√
κl

γ(W )
(1 + τ) ln

(
1

ε

))
.

I Optimal w.r.t. the communication time... but not in the number of gradient
steps.
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A double acceleration: (2) accelerated gossip

I Only one gossip step per local computation: suboptimal when τ � 1!

I Accelerated gossip: replacing W by a polynomial PK (W ).
I Cao et al. (2006), Kokiopoulou and Frossard (2009), Cavalcante et al. (2011)

I Chebyshev polynomials lead to the best convergence rates:

PK (x) = 1− TK (c2(1− x))

TK (c2)
,

where c2 = 1+γ
1−γ and TK are the Chebyshev polynomials defined as

T0(x) = 1, T1(x) = x , and, for all k ≥ 1,

Tk+1(x) = 2xTk(x)− Tk−1(x).

I With K =

⌊
1√
γ(W )

⌋
, reaches a precision ε > 0 in time

O

(√
κl

γ(PK (W ))
(1 + Kτ) ln

(
1

ε

))
= O

(
√
κl

(
1 +

τ
√
γ

)
ln

(
1

ε

))
.
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Optimal decentralized algorithm

Multi-step Dual Accelerated
(MSDA)

Input: gossip matrix W ∈ Rn×n, T > 0
Output: θi,T , for i = 1, ..., n

1: x0 = 0, y0 = 0
2: for t = 0 to T − 1 do
3: θi,t = ∇f ∗i (xi,t), for all i = 1, ..., n
4: yt+1 = xt − η

accGossip(Θt ,W ,K )
5: xt+1 = (1 + µ)yt+1 − µyt
6: end for

1: procedure accGossip(x ,W ,K )
2: a0 = 1, a1 = c2

3: x0 = x , x1 = c2x(I − c3W )
4: for k = 1 to K − 1 do
5: ak+1 = 2c2ak − ak−1

6: xk+1 = 2c2xk(I − c3W )− xk−1

7: end for
8: return x0 − xK

aK
9: end procedure
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Experiments: logistic regression

Optimization problem

min
θ∈Rd

1

m

m∑
i=1

ln
(

1 + e−yi ·X
>
i θ
)

+c‖θ‖2
2

Communication network

I Left: Erdös-Rényi random
graph of 100 nodes and
average degree 6,

I Right: Square grid of
10× 10 nodes.
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Conclusion

Conclusion

I First optimal convergence rates for distrbuted optimization in networks,

I Optimal centralized convergence rate: Θ
(√

κg

(
1 + ∆τ

)
ln
(

1
ε

))
,

I Optimal decentralized convergence rate: Θ
(√

κl

(
1 + τ√

γ

)
ln
(

1
ε

))
.

Extensions

I Beyond strong-convexity, stochastic problems

I Asynchronous algorithms

I Decentralized rate in κg?

I Primal-only optimal decentralized algorithm,

I Composite functions fi (θ) = gi (Biθ) + c‖θ‖2

I Approximation of the proximal point algorithm

I Time varying networks, delays, failures, etc.
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Thank you!
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