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Large scale learning systems handle massive amounts of data

Requires multiple machines to train the model
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Typical Machine Learning setting

Empirical risk minimization: logistic regression
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Large scale learning systems handle massive amounts of data
Requires multiple machines to train the model

Francis Bach 2/27 LCCC workshop



Optimization with a single machine

“Best” convergence rate for strongly-convex and smooth functions

Number of iterations to reach a precision € > 0 (Nesterov, 2004):

1
€
where £ is the condition number of the function to optimize.

Consequence of f(6;) — f(6*) < B(1 — 1/v/k)!||60 — 0*||?
...but each iteration requires m gradients to compute!
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Optimization with a single machine

“Best” convergence rate for strongly-convex and smooth functions

Number of iterations to reach a precision € > 0 (Nesterov, 2004):

1
g <\/E|n ())
€
where k is the condition number of the function to optimize.

Consequence of f(6;) — f(6*) < B(1 — 1/v/k)!||60 — 0*||?
...but each iteration requires m gradients to compute!

Upper and lower bounds of complexity

inf sup #iterations to reach ¢
algorithms  functions

Upper-bound: exhibit an algorithm (here Nesterov acceleration)
Lower-bound: exhibit a hard function where all algorithms fail
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Distributing information on a network

Centralized algorithms

“Master/slave”

Minimal number of communication steps = Diameter A

Decentralized algorithms

Gossip algorithms (Boyd et.al., 2006 ; Shah, 2009)

Mixing time of the Markov chain on the graph ~ inverse of the second
smallest eigenvalue « of the Laplacian
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Goals of this work

Beyond single machine optimization

Can we improve on © (my/kIn (%))7
Is the speed up linear?

How does a limited bandwidth affects optimization algorithms?
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Goals of this work

Beyond single machine optimization

Can we improve on © (m\/ﬁln (%))7
Is the speed up linear?

How does a limited bandwidth affects optimization algorithms?

Extending optimization theory to distributed architectures

Optimal convergence rates of first order distributed methods,

Optimal algorithms achieving this rate,

Beyond flat (totally connected) architectures (Arjevani and Shamir, 2015),
Explicit dependence on optimization parameters and graph parameters.

Francis Bach 5/27 LCCC workshop



Distributed optimization setting

Optimization problem

Let f; be a-strongly convex and S-smooth functions. We consider minimizing the
average of the local functions.

OERT

min () = %Z f(0)
i=1

Machine learning: distributed observations
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Distributed optimization setting

Optimization problem

Let f; be a-strongly convex and S-smooth functions. We consider minimizing the
average of the local functions.

OERT

_ 1 <&
in f(0) = - fi(0
min 70) = 2210
Machine learning: distributed observations
Optimization procedures

We consider distributed first-order optimization procedures: access to gradients
(or gradients of the Fenchel conjugates).
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Distributed optimization setting

Optimization problem

Let f; be a-strongly convex and S-smooth functions. We consider minimizing the
average of the local functions.

OERT

_ 1 <&
in f(0) =— fi(0
AR E)
Machine learning: distributed observations

Optimization procedures

We consider distributed first-order optimization procedures: access to gradients
(or gradients of the Fenchel conjugates).

Network communications
Let G = (V, &) be a connected simple graph of n computing units and
diameter A, each having access to a function f;(6) over § € R¢.
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Strong convexity and smoothness

Strong convexity
A function f is a-strongly convex iff. Vx,y € R,

F(y) 2 F(x) + VE(x) T (y = x) +ally — x|

Smoothness
A function f is 3-smooth convex iff. Vx,y € R,

fly) < f(x)+ VF(x)"(y —x) + Blly — x|

Notations

K] = g (local) condition number of each f;,

Pg

tg = —£ (global) condition number of f,
Qg
kg < ki, equal if all functions f; equal.

Francis Bach 7/27
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Communication network

Assumptions

Each local computation takes a
unit of time,

Each communication between
neighbors takes a time 7,

Actions may be performed in
parallel and asynchronously.

Francis Bach 8/27 LCCC workshop



Distributed optimization algorithms

Black-box procedures
We consider distributed algorithms verifying the following constraints:

Local memory: each node i can store past values in an internal memory
M; C RY at time t > 0.

Mie © ME™ U ME™, 6, € M.

Local computation: each node i can, at time t, compute the gradient of its
local function V£;(6) or its Fenchel conjugate V£.*(6), where
£*(0) = sup, x' 0 — f(x).

MY = Span ({0, V;(0), V£ (0) : 0 € M 1}).

Local communication: each node / can, at time t, share a value to all or
part of its neighbors.

Mic;mm —Span( U Mj7t_ﬂr).

(ij)eE
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Centralized vs. decentralized architectures

Centralized communication
One master machine is responsible for sending requests and synchronizing
computation,
Slave machines perform computations upon request and send the result to
the master.
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Centralized vs. decentralized architectures

Centralized communication

One master machine is responsible for sending requests and synchronizing
computation,

Slave machines perform computations upon request and send the result to
the master.

Decentralized communication

All machines perform local computations and share values with their

neighbors,

Local averaging is performed through gossip (Boyd et.al., 2006).

Node i receives > . Wjx; = (Wx);, where W verifies:
W is an n X n symmetric matrix,
W is defined on the edges of the network: W # 0 only if i = j or (i,j) € &,
W is positive semi-definite,
The kernel of W is the set of constant vectors: Ker(W) = Span(1), where
1=(1,..,1)7.

Let v(W) = Xp—1(W) /A1 (W) be the (normalized) eigengap of W.
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Lower bound on convergence rate

Theorem 1 (SBBLM, 2017)

Let G be a graph of diameter A > 0 and size n > 0, and 3; > a; > 0. There
exist n functions f; : £ — R such that f is a,-strongly-convex and fg-smooth,
and for any t > 0 and any black-box procedure one has, for all j € {1, ..., n},

_ _ @ 4 \ltmar )
F(0ie) — F(O7) > £ (1 — \/'T> 16i.0 — 67|12
g
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Lower bound on convergence rate

Theorem 1 (SBBLM, 2017)

Let G be a graph of diameter A > 0 and size n > 0, and 3; > a; > 0. There
exist n functions f; : £ — R such that f is a,-strongly-convex and fg-smooth,
and for any t > 0 and any black-box procedure one has, for all j € {1, ..., n},

= = « 4 \tes
F(0::) — F(0%) > £ (1 = ) 16i.0 — 6%

Take-home message

For any graph of diameter A and any black-box procedure, there exist functions f;
such that the time to reach a precision € > 0 is lower bounded by

Q <\/@(1+AT) In (i))

Extends the totally connected result of Arjevani & Shamir (2015)
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Proof warm-up: single machine

Simplification: ¢, instead of RY.
Goal: design a worst-case convex function f.
From Nesterov (2004), Bubeck (2015):

alk —1)

f(6) = =

[07 A0 — 26:] + 2|13

with A infinite tridiagonal matrix with 2 on the diagonal, and —1 on the
upper and lower diagonal.
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Proof warm-up: single machine

Simplification: ¢, instead of RY.
Goal: design a worst-case convex function f.
From Nesterov (2004), Bubeck (2015):

alk —1)

f(6) = =

[07 A0 — 26:] + 2|13

with A infinite tridiagonal matrix with 2 on the diagonal, and —1 on the
upper and lower diagonal.

Facts 1: 0 < A< 4/, f is a-strongly convex and -smooth
Fact 2: starting from 6y = 0, after t gradient steps, 0, is supported on the
first t coordinates = ||, — 6*[> > Y., 1671

—1\2t
Get lower bound 7(6;) — f(6*) > %(ﬁﬂ) 60 — 0.||* after some
computations
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Proof warm-up: single machine

Simplification: ¢, instead of RY.
Goal: design a worst-case convex function f.
From Nesterov (2004), Bubeck (2015):

alk —1)

f(6) = =

[07 A0 — 26:] + 2|13

with A infinite tridiagonal matrix with 2 on the diagonal, and —1 on the
upper and lower diagonal. 67 A0 = 67 + 5", (0; — 0;11)?

Facts 1: 0 < A< 4/, f is a-strongly convex and -smooth
Fact 2: starting from 6y = 0, after t gradient steps, 0, is supported on the
first t coordinates = ||, — 6*[> > Y., 1671

—1\2t
Get lower bound 7(6;) — f(6*) > %(ﬁﬂ) 60 — 0.||* after some
computations
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Proof sketch (1)

Simplification: ¢, instead of RY.
Extremal nodes: iy and /; at distance A.

Functions to optimize: Splitting the usual Nesterov function

219)3 + 52 (0T M6 — 61) if i = iy
fi(8) = S 21013 + nZ5%07 Moo ifi=i
%HGH% otherwise

where M; - £, — 0, is the infinite block diagonal matrix with ( 1 )

on the diagonal, and M, = ( (1) /\3 )
1

«B—«a)k_
VB+Va

Optimal value: 6; = (
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Proof sketch (2)

non zero dimensions
54 47 S cee V) A
4+ — /\/\)
31+ Q{'\ N
2+ e /N/‘\>
T |‘ o0 - 00 ?
0 1
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Proof sketch (3)

If 6; 0 = 0, each local computation can only increase the number of non
zero dimensions by one.

V£, (0,.¢) increases odd dimensions, V£ (6}, ;) increases even dimensions.
A communication steps are required to communicate between iy and /.
i+ k # 0 after at least kK computation steps and kA communication steps.

f is a-strongly convex and S-smooth, and

+oo
_ - o i a .
f(0ic) — £(07) > §||9i,t —0*)3 > > E 0;°,
k=ki ++1

where ki = max{k € N : 30 € M, s.t. 6 #0} < Uiﬁ”
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Simple is good...!

Input: number of iterations T > 0,

1

Master/slave algorithm 7 ¢
communication network G, n = &+

Simple master/slave distribution of B’
0 . SRl
Nesterov's accelerated gradient descent. W= e
Output: 01
: Compute a spanning tree 7 on G
g 00 = 0, Yo = 0

:fort=0to T —1do
Send 0, to all nodes through T

i

Cz & v?(91‘) =
| o C AGGREGATEGRADIENTS(0;)
CJ o= 6:  Yir1 =0 —nVF(0:)
= 7 Orp1 = (14 p)yey1 — pye
8: end for
9: return 01
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Simple is good...!

Input: number of iterations T > 0,

1

Master /slave algorithm A
communication network G, n = o
g

Simple master/slave distribution of

. . SRl
Nesterov's accelerated gradient descent. W= e
Output: 01
1: Compute a spanning tree 7 on G
2: 090 =0, Yo = 0
3: fort=0to T —1do
o) 4. Send 0; to all nodes through T
&= (e - 5. VF(0,) =
V o @ AGGREGATEGRADIENTS(0;)
L:v = 6:  Yer1 =0 —nVF(6:)
= 70 Our = (L+ p)Yer1 — pye
8: end for
9: return 01

Francis Bach 16/27 LCCC workshop



Simple is good...!

Input: number of iterations T > 0,
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Simple master/slave distribution of B’
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Output: 01
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Simple is good...!

Master/slave algorithm

Simple master/slave distribution of
Nesterov's accelerated gradient descent. Convergence rate

Each iteration requires a time
1+ 2AT,

@3 C: Reaches a precision € > 0 in time
fe (e o) (\/@(1 + AT) In G)) :

Francis Bach 16/27 LCCC workshop



Drawbacks

Drawbacks of this approach

Not robust to changes in the connectivity of the network,

Requires waiting for all machines to compute their local gradients.
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Drawbacks

Drawbacks of this approach

Not robust to changes in the connectivity of the network,

Requires waiting for all machines to compute their local gradients.

A natural solution: decentralized algorithms

Asynchronous computations,
Machines do not wait for one another,
Communication is not interrupted by a change in the network.
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Related works

Large literature for decentralized optimization

Distributed SGD (Nedic & Ozdaglar, 2009) O("afsz)
Decentralized dual averaging (Duchi et al., 2012) O(A(R;VL;Z)
D-ADMM (Boyd et al., 2011; O(——2L_in (1))

1+4/;%1(W)71
Wei & Ozdaglar, 2012; Shi et al., 2014 ; Lutzeler et al., 2016)
EXTRA algorithm (Shi et al., 2015; 36> 0st 0@ (L))
Mokhtari & Ribeiro, 2016)
. 1y 2,‘.'%
Augmented Lagrangians (Jakoveti¢ et al., 2015) O(W In (1))
DIGing (Nedich et al., 2016) O(n**k}®1n (1))

o =
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Decentralized algorithms

Optimal convergence rate?

Decentralized convergence rates usually depend on the (normalized)
eigengap (W),
For simple graphs (linear graphs, regular graphs), A ~ m where W is

the Laplacian matrix,

Com e e & (\/@ <1 4 W) n (;))?
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Decentralized algorithms

Optimal convergence rate?

Decentralized convergence rates usually depend on the (normalized)
eigengap (W),
For simple graphs (linear graphs, regular graphs), A ~ m where W is

the Laplacian matrix,

Com e e & (\/@ <1 4 W) n (;))?

1
(W)

No! Sometimes

= ﬁ (Ramanujan graphs and Erdés-Rényi random

networks)...
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Decentralized algorithms

Optimal convergence rate?

Decentralized convergence rates usually depend on the (normalized)
eigengap (W),
For simple graphs (linear graphs, regular graphs), A ~ m where W is

the Laplacian matrix,

Com e e & (@ <1 4 W) n (;))?

1
(W)

No! Sometimes

~ = (Ramanujan graphs and Erdés-Rényi random

networks)...

Optimal algorithm?

We can achieve this rate if we replace kg by ) > kg,

Based on a double acceleration: accelerated gradient descent and
accelerated gossip!
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Lower bound on convergence rate

Theorem 2 (SBBLM, 2017)

Let @, 8 > 0 and v € (0,1]. There exists a gossip matrix W of eigengap
~v(W) = v, and a-strongly convex and S-smooth functions f; : £, — R such that,
for any t > 0 and any black-box procedure using W one has, for all i € {1, ..., n},

_ —— 3a 16 1+”stfﬁ (|2
0 - F0) 2 3 (1-32) 7 - e
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Lower bound on convergence rate

Theorem 2 (SBBLM, 2017)

Let @, 8 > 0 and v € (0,1]. There exists a gossip matrix W of eigengap
~v(W) = v, and a-strongly convex and S-smooth functions f; : £, — R such that,
for any t > 0 and any black-box procedure using W one has, for all i € {1, ..., n},

_ —— 3a 16 1+H5t:ﬁ (|2
0 - F0) 2 3 (1-32) 7 - e

Take-home message

For any v > 0, there exists a gossip matrix W of eigengap ~ there exist functions
fi such that the time to reach a precision € > 0 is lower bounded by

2(w (1 F)n )
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Lower bound on convergence rate

Theorem 2 (SBBLM, 2017)

Let @, 8 > 0 and v € (0,1]. There exists a gossip matrix W of eigengap
~v(W) = v, and a-strongly convex and S-smooth functions f; : £, — R such that,
for any t > 0 and any black-box procedure using W one has, for all i € {1, ..., n},

_ —— 3a 16 1+H5t:ﬁ (|2
0 - F0) 2 3 (1-32) 7 - e

Take-home message

For any v > 0, there exists a gossip matrix W of eigengap = there exist functions
fi such that the time to reach a precision € > 0 is lower bounded by

2(w (1 F)n )

Naive algorithm does not work!
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Reformulation of the optimization problem

Using the gossip matrix to ensure equality of all §; (Jakoveti¢ et al., 2015),

min £(0) = min F(©),
geRd OeRIXn : OVW=0

where F(©) = Y7, £(6;), with © = (61,...,6,) € R¥*"
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Reformulation of the optimization problem

Using the gossip matrix to ensure equality of all §; (Jakoveti¢ et al., 2015),

min £(0) = min F(©),
O€R? O€cRIxn : ©V/W=0

where F(©) = Y7, £(6;), with © = (61,...,6,) € R¥*"

Dual version:

max —F*(A\WW)

)\GRan

Gradient descent in the dual:
)\t+l = )\t — nvF*()\t\/ W) V W,
and the change of variable y; = A;v/ W leads to

Y41 = Y — UVF*()’t) w.
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A double acceleration: (1) accelerated gradient descent

The dual problem
max —F*(AV W)

)\E]Rdxn

is an unconstrained strongly convex and smooth problem with condition
number —fib<.
y(W)
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A double acceleration: (1) accelerated gradient descent

The dual problem
max —F*(AV W)

)\E]Rdxn

is an unconstrained strongly convex and smooth problem with condition

Ky
number .
umber )

Nesterov's accelerated gradient descent reaches a precision € > 0 in

o (5o a+m(2)):

Optimal w.r.t. the communication time... but not in the number of gradient
steps.
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A double acceleration: (2) accelerated gossip
Only one gossip step per local computation: suboptimal when 7 < 1!

Accelerated gossip: replacing W by a polynomial Px(W).
Cao et al. (2006), Kokiopoulou and Frossard (2009), Cavalcante et al. (2011)
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A double acceleration: (2) accelerated gossip

Only one gossip step per local computation: suboptimal when 7 < 1!
Accelerated gossip: replacing W by a polynomial Px(W).
Cao et al. (2006), Kokiopoulou and Frossard (2009), Cavalcante et al. (2011)

Chebyshev polynomials lead to the best convergence rates:

TK(C2(1 e X))

PK(X) =1- TK(C2)

where ¢, = ifv and Tk are the Chebyshev polynomials defined as

To(x) =1, Ti(x) = x, and, for all k > 1,

Tk+1(X) = 2XTk(X) — kal(X).
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A double acceleration: (2) accelerated gossip

Only one gossip step per local computation: suboptimal when 7 < 1!

Accelerated gossip: replacing W by a polynomial Px(W).

Cao et al. (2006), Kokiopoulou and Frossard (2009), Cavalcante et al. (2011)

Chebyshev polynomials lead to the best convergence rates:

_ 1 Tk(e( =x))
(R o

where ¢, = iﬂy

To(x) =1, Ti(x) = x, and, for all k > 1,

Tk+1(X) = 2XTk(X) — kal(X).

With K = {1J reaches a precision € > 0 in time

V(W)

Francis Bach 23/27

and Tk are the Chebyshev polynomials defined as

7))

o (\f3mauy @+m (3)) =0 (Vi (1+ 75
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Optimal decentralized algorithm

Multi-step Dual Accelerated
(MSDA)

i i 1. procedure AccGossIP(x, W ,K)
Input: gossip matrix W € R™", T >0 =1 a =
Output: 6, 7, fori=1,....n 3 x0 = x, x1 = cox(l — W)
1 x=0 y=0 4: for k=1to K—1do
2: for t:Oto*T—l do . B kel = 2028k — Ak_1
30 0=V (xyz) foralli=1,...,n Xes1 = 2cox (] — sW) — xe_1
4 Yepl =Xe — 1) 7: end for
ACCGOsSIP(O, W, K) 8: return xp — X
5 Xep1 = (L4 p)yees — pye 9: end procedlere
6: end for
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Experiments: logistic regression

Optimization problem

1 & Ly XTo
mln—E In(1+4 e V"%
9cRI M < i

=

+cll6]3

Communication network

> Left: Erdos-Rényi random
graph of 100 nodes and
average degree 0,

» Right: Square grid of
10 x 10 nodes.

Francis Bach

max. approximation error (e)

max. approximation error (6)

0 2000 4000 6000 8000
time (1)

(a) high communication time: 7 = 10

0 200 400 600 800
time (1)

(b) low communication time: 7 = 0.1
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max. approximation error (e)

max. approximation error (e)

3

o

0

(a) high communication time: 7 = 10

2000 4000 6000 8000

0

200 400 600 800
time (1)

(b) low communication time: 7 = 0.1
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Conclusion

Conclusion
First optimal convergence rates for distrbuted optimization in networks,

Optimal centralized convergence rate: © < [Fg (1 4L AT) In (%))

Optimal decentralized convergence rate: © <\//?/ (1 + \%) In (%))
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Conclusion

Conclusion

First optimal convergence rates for distrbuted optimization in networks,

Optimal centralized convergence rate: © < [Fg <1 4L AT) In (%))

2 8 5 T 1
Optimal decentralized convergence rate: © <\//?/ (1 + ﬁ) In (g))

Extensions
Beyond strong-convexity, stochastic problems
Asynchronous algorithms
Decentralized rate in xg?
Primal-only optimal decentralized algorithm,

Composite functions f;(0) = gi(Bi0) + c||0]?
Approximation of the proximal point algorithm

Time varying networks, delays, failures, etc.

Francis Bach 26/27
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Thank you!
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