# Randomized Primal-Dual Algorithms for Asynchronous Distributed Optimization

Lin Xiao Microsoft Research

Joint work with Adams Wei Yu (CMU), Qihang Lin (University of Iowa) Weizhu Chen (Microsoft)

Workshop on Large-Scale and Distributed Optimization

Lund Center for Control of Complex Engineering Systems June 14-16, 2017

# Motivation

#### big data optimization problems

- dataset cannot fit into memory or storage of single computer
- require distributed algorithms with inter-machine communication

#### origins

- machine learning, data mining, ...
- industry: search, online advertising, social media analysis, ...

#### goals

- asynchronous distributed algorithms deployable in the cloud
- nontrivial communication and/or computation complexity

# Outline

- distributed empirical risk minimization
- randomized primal-dual algorithms with parameter servers
- variance reduction techniques
- DSCOVR algorithms (Doubly Stochastic Coordinate Optimization with Variance Reduction)
- preliminary experiments

# Empirical risk minimization (ERM)

• popular formulation in supervised (linear) learning

$$\underset{w \in \mathbf{R}^d}{\text{minimize}} \quad \mathcal{P}(w) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{i=1}^N \phi(x_i^{\mathsf{T}} w, y_i) + \lambda g(w)$$

- i.i.d. samples:  $(x_1, y_1), \ldots (x_N, y_N)$  where  $x_i \in \mathbf{R}^d$ ,  $y_i \in \mathbf{R}$
- loss function:  $\phi(\cdot, y)$  convex for every y
- g(w) strongly convex, e.g.,  $g(w) = (\lambda/2) \|w\|_2^2$
- regularization parameter  $\lambda \sim 1/\sqrt{N}$  or smaller
- linear regression:  $\phi(x^T w, y) = (y w^T x)^2$
- binary classification:  $y \in \{\pm 1\}$ 
  - logistic regression:  $\phi(x^T w, y) = \log(1 + \exp(-y(w^T x)))$
  - hinge loss (SVM):  $\phi(x^T w, y) = \max \{0, 1 y(w^T x)\}$

## **Distributed ERM**

when dataset cannot fit into memory of single machine

data partitioned on *m* machines

$$X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_N^T \end{bmatrix} \in \mathbf{R}^{N \times d} \qquad \begin{array}{c} X_{1:} \\ X_{2:} \\ \vdots \\ \vdots \\ X_{i:} \\ \vdots \\ \vdots \end{array}$$

• rewrite objective function

$$\underset{w \in \mathbf{R}^{d}}{\text{minimize}} \quad \frac{1}{N} \sum_{i=1}^{m} \Phi_{i}(X_{i:}w) + g(w)$$

where  $\Phi_i(X_{i:w}) = \sum_{j \in \mathcal{I}_i} \phi_j(x_j^T w, y_j)$  and  $\sum_{i=1}^m |\mathcal{I}_i| = N$ 

# Distributed optimization

- distributed algorithms: alternate between
  - a local computation procedure at each machine
  - a communication round with simple map-reduce operations (*e.g.*, broadcasting a vector in  $\mathbf{R}^d$  to *m* machines, or computing sum or average of *m* vectors in  $\mathbf{R}^d$ )
- bottleneck: high cost of inter-machine communication
  - speed/delay, synchronization
  - energy consumption
- communication-efficiency
  - number of communication rounds to find  $P(\hat{w}) P(w^*) \leq \epsilon$
  - often can be measured by iteration complexity

### Iteration complexity

• assumption:  $f : \mathbf{R}^d - \mathbf{R}$  twice continuously differentiable,

$$\lambda I \leq f''(w) \leq LI, \qquad \forall w \in \mathbf{R}^d$$

in other words, f is  $\lambda$ -strongly convex and L-smooth

condition number

$$\kappa = \frac{L}{\lambda}$$

we focus on ill-conditioned problems:  $\kappa \gg 1$ 

- iteration complexities of first-order methods
  - gradient descent method:  $\mathcal{O}(\kappa \log(1/\epsilon))$
  - accelerated gradient method:  $\mathcal{O}(\sqrt{\kappa}\log(1/\epsilon))$
  - stochastic gradient method:  $\mathcal{O}(\kappa/\epsilon)$  (population loss)

# Distributed gradient methods

distributed implementation of gradient descent

- each iteration involves one round of communication
- number of communication rounds:  $\mathcal{O}(\kappa \log(1/\epsilon))$
- can use accelerated gradient method:  $\mathcal{O}(\sqrt{\kappa}\log(1/\epsilon))$

# ADMM

- reformulation: minimize  $\frac{1}{N} \sum_{i=1}^{m} f_i(u_i)$ subject to  $u_i = w$ , i = 1, ..., m
- augmented Lagrangian

$$L_{\rho}(u, v, w) = \sum_{i=1}^{m} \left(f_i(u_i) + \langle v_i, u_i - w \rangle + \frac{\rho}{2} \|u_i - w\|_2^2\right)$$



• no. of communication rounds:  $\mathcal{O}(\kappa \log(1/\epsilon))$  or  $\mathcal{O}(\sqrt{\kappa} \log(1/\epsilon))$ 

## The dual ERM problem

#### primal problem

$$\underset{w \in \mathbf{R}^{d}}{\text{minimize}} P(w) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{i=1}^{m} \Phi_{i}(X_{i:}w) + g(w)$$

dual problem

$$\underset{\alpha \in \mathbf{R}^{N}}{\operatorname{maximize}} \ D(\alpha) \stackrel{\text{def}}{=} -\frac{1}{N} \sum_{i=1}^{m} \Phi_{i}^{*}(\alpha_{i}) - g^{*} \left( -\frac{1}{N} \sum_{i=1}^{m} (X_{i:})^{T} \alpha_{i} \right)$$

where  $\mathbf{g}^{*}$  and  $\phi_{i}^{*}$  are convex conjugate functions

• 
$$g^*(v) = \sup_{u \in \mathbf{R}^d} \{ v^T u - g(u) \}$$
  
•  $\Phi_i^*(\alpha_i) = \sup_{z \in \mathbf{R}^{n_i}} \{ \alpha_i^T z - \Phi_i(z) \}$ , for  $i = 1, ..., m_i$ 

recover primal variable from dual:  $w = \nabla g^* \left( -\frac{1}{N} \sum_{i=1}^m (X_{i:})^T \alpha_i \right)$ 

# The CoCoA(+) algorithm

(Jaggi et al. 2014, Ma et al. 2015)

$$\underset{\alpha \in \mathbf{R}^{N}}{\text{maximize}} \ D(\alpha) \stackrel{\text{def}}{=} -\frac{1}{N} \sum_{i=1}^{m} \Phi_{i}^{*}(\alpha_{i}) - g^{*} \left( -\frac{1}{N} \sum_{i=1}^{m} (X_{i:})^{T} \alpha_{i} \right)$$



- each iteration involves one round of communication
- number of communication rounds:  $\mathcal{O}(\kappa \log(1/\epsilon))$
- can be accelerated by PPA (Catalyst, Lin et al.):  $\mathcal{O}(\sqrt{\kappa}\log(1/\epsilon))$

## Primal and dual variables



$$w = \nabla g^* \left( -\frac{1}{N} \sum_{i=1}^m (X_{i:})^T \alpha_i \right)$$

## Can we do better?

- asynchronous distributed algorithms?
- better communication complexity?
- better computation complexity?

# Outline

- distributed empirical risk minimization
- randomized primal-dual algorithms with parameter servers
- variance reduction techniques
- DSCOVR algorithms (Doubly Stochastic Coordinate Optimization with Variance Reduction)
- preliminary experiments

# Asynchronism: Hogwild! style

idea: exploit sparsity to avoid simultaneous updates (Niu et al. 2011) replacements



#### problems:

- too frequent communication (bottleneck for distributed system)
- slow convergence (sublinear rate using stochastic gradients)

# Tame the hog: forced separation



- partition w into K blocks  $w_1, \ldots, w_K$
- each machine updates a different block using relevant columns
- set K > m so that all machines can work all the time
- event-driven asynchronism:
  - whenever free, each machine request new block to update
  - update orders can be intentionally randomized

#### Double separation via saddle-point formulation



# A randomized primal-dual algorithm

**Algorithm 1:** Doubly stochastic primal-dual coordinate update **input:** initial points  $w^{(0)}$  and  $\alpha^{(0)}$ for  $t = 0, 1, 2, \dots, T - 1$ 1. pick  $j \in \{1, \ldots, m\}$  and  $l \in \{1, \ldots, K\}$  with probabilities  $p_j$  and  $q_l$ 2. compute stochastic gradients  $u_{i}^{(t+1)} = \frac{1}{\alpha_{i}} X_{jl} w_{l}^{(t)}, \qquad v_{l}^{(t+1)} = \frac{1}{p_{i}} \frac{1}{N} (X_{jl})^{T} \alpha_{i}^{(t)}$ update primal and dual block coordinates:  $\alpha_i^{(t+1)} = \begin{cases} \operatorname{prox}_{\sigma_j \Psi_j^*} \left( \alpha_j^{(t)} + \sigma_j u_j^{(t+1)} \right) & \text{if } i = j, \\ \alpha_i^{(t)}, & \text{if } i \neq j, \end{cases}$  $w_k^{(t+1)} = \begin{cases} \operatorname{prox}_{\tau_I g_I} (w_I^{(t)} - \tau_I v_I^{(t+1)}) & \text{if } k = I, \\ w_k^{(t)}, & \text{if } k \neq I. \end{cases}$ end for

# How good is this algorithm?

- on the update order
  - sequence (i(t), k(t)) not really i.i.d.
  - in practice better than i.i.d.?



• bad news: sublinear convergence, with complexity  $O(1/\epsilon)$ 

# Outline

- distributed empirical risk minimization
- randomized primal-dual algorithms with parameter servers
- variance reduction techniques
- DSCOVR algorithms (Doubly Stochastic Coordinate Optimization with Variance Reduction)
- preliminary experiments

Minimizing finite average of convex functions

minimize 
$$F(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w) + g(w)$$

batch proximal gradient method

$$w^{(t+1)} = \operatorname{prox}_{\eta_t g} \left( w^{(t)} - \eta_t \nabla F(w^{(t)}) \right)$$

- each step very expensive, relatively fast convergence
- can use accelerated proximal gradient methods
- stochastic proximal gradient method

$$w^{(t+1)} = ext{prox}_{\eta_t g} \left( w^{(t)} - \eta_t 
abla f_{i_t}(w^{(t)}) 
ight) \qquad (i_t ext{ chosen randomly})$$

- each iteration very cheap, but very slow convergence

- accelerated stochastic algorithms do not really help
- recent advances in randomized algorithms: exploit finite average (sum) structure to get best of both worlds

Stochastic variance reduced gradient (SVRG)

• SVRG (Johnson & Zhang 2013)

- update form

 $w^{(t+1)} = w^{(t)} - \eta(\nabla f_{i_t}(w^{(t)}) - \nabla f_{i_t}(\tilde{w}) + \nabla F(\tilde{w}))$ 

- update  $\tilde{w}$  periodically (every few passes)
- still a stochastic gradient method

$$\mathbf{E}_{i_t}[\nabla f_{i_t}(w^{(t)}) - \nabla f_{i_t}(\tilde{w}) + \nabla F(\tilde{w})] = \nabla F(w^{(t)})$$

- expected update direction is the same as  $\mathbf{E}[\nabla f_{i_t}(w^{(t)})]$
- variance can be diminishing if  $\tilde{w}$  updated periodically
- complexity:  $O\left((n+\kappa)\log\frac{1}{\epsilon}\right)$ , cf. SGD  $O(\kappa/\epsilon)$
- Prox-SVRG (X. and Zhang 2014): same complexity

## Intuition of variance reduction

replacements



## SAGA (Defazio, Bach & Lacoste-Julien 2014)

the algorithm

$$w^{(t+1)} = w^{(t)} - \eta_t \left[ \nabla f_{i_t}(w^{(t)}) - \nabla f_{i_t}(z_{i_t}^{(t)}) + \frac{1}{n} \sum_{j=1}^n \nabla f_j(z_j^{(t)}) \right]$$

 $z_j^{(t)}$ : last point at which component gradient  $abla f_j$  was calculated

- naturally extends to proximal version
- complexity:  $O\left((n+\kappa)\log\frac{1}{\epsilon}\right)$ , cf. SGD  $O(\kappa/\epsilon)$

## Condition number and batch complexity

• condition number:  $\kappa = \frac{R^2}{\lambda \gamma}$  (considering  $\kappa \gg 1$ )

batch complexity: number of equivalent passes over dataset

complexities to reach  $\mathbf{E}[P(w^{(t)}) - P^{\star}] \leq \epsilon$ 

| algorithm                 | iteration complexity                  | batch complexity                      |  |  |  |
|---------------------------|---------------------------------------|---------------------------------------|--|--|--|
| stochastic gradient       | $(1+\kappa)/\epsilon$                 | $(1+\kappa)/(n\epsilon)$              |  |  |  |
| full gradient (FG)        | $(1+\kappa')\log(1/\epsilon)$         | $(1+\kappa')\log(1/\epsilon)$         |  |  |  |
| accelerated FG (Nesterov) | $(1+\sqrt{\kappa'})\log(1/\epsilon)$  | $(1+\sqrt{\kappa'})\log(1/\epsilon)$  |  |  |  |
| SDCA, SAG(A), SVRG,       | $(n+\kappa)\log(1/\epsilon)$          | $(1+\kappa/n)\log(1/\epsilon)$        |  |  |  |
| A-SDCA, APCG, SPDC,       | $(n+\sqrt{\kappa n})\log(1/\epsilon)$ | $(1+\sqrt{\kappa/n})\log(1/\epsilon)$ |  |  |  |

- SDCA:
   Shalev-Shwartz & Zhang (2013)

   SAG:
   Schmidt, Le Roux, & Bach (2012, 2013)

   Finito:
   Defazio, Caetano & Domke (2014)

   SVRG:
   Johnson & Zhang (2013), X. & Zhang (2014)

   Quartz:
   Qu, Richtárik, & Zhang (2015)

   Catalyst:
   Lin, Mairal, & Harchaoui (2015)

   RPDG:
   Lan (2015)
- SAGA:
   Defazio, Bach & Lacoste-Julien (2014)

   A-SDCA:
   Shalev-Shwartz & Zhang (2014)

   MISO:
   Mairal (2015)

   APCG:
   Lin, Lu & X. (2014)

   SPDC:
   Zhang & X. (2015)

   A-APPA
   Frostig, Ge, Kakade, &Sidford (2015)

   and others ...
   And thers ...

lower bound: Agarwal & Bottou (2015), Lan (2015), Woodworth & Srebro (2016)

# Outline

- distributed empirical risk minimization
- randomized primal-dual algorithms with parameter servers
- variance reduction techniques
- DSCOVR algorithms

(Doubly Stochastic Coordinate Optimization with Variance Reduction)

• preliminary experiments

#### Double separation via saddle-point formulation



#### Algorithm 2: DSCOVR-SVRG

for 
$$s = 0, 1, 2, ..., S - 1$$
  
•  $\bar{u}^{(s)} = X \bar{w}^{(s)}$  and  $\bar{v}^{(s)} = \frac{1}{N} X^T \bar{\alpha}^{(s)}$   
•  $w^{(0)} = \bar{w}^{(s)}$  and  $\alpha^{(0)} = \bar{\alpha}^{(s)}$   
• for  $t = 0, 1, 2, ..., T - 1$   
1. pick  $j \in \{1, ..., m\}$  and  $l \in \{1, ..., K\}$  with probabilities  $p_j$  and  $q_l$   
2. compute variance-reduced stochastic gradients:  
 $u_j^{(t+1)} = \bar{u}_j^{(s)} + \frac{1}{q_l} X_{jl} (w_l^{(t)} - \bar{w}_l^{(s)}), \quad v_l^{(t+1)} = \bar{v}_l^{(s)} + \frac{1}{p_j} \frac{1}{N} (X_{jl})^T (\alpha_j^{(t)} - \bar{\alpha}_j^{(s)})$   
3. update primal and dual block coordinates:  
 $\alpha_i^{(t+1)} = \begin{cases} \operatorname{prox}_{\sigma_j \Psi_j^*} (\alpha_j^{(t)} + \sigma_j u_j^{(t+1)}) & \text{if } i = j, \\ \alpha_i^{(t)}, & \text{if } i \neq j, \end{cases}$   
 $w_k^{(t+1)} = \begin{cases} \operatorname{prox}_{\tau_l g_l} (w_l^{(t)} - \tau_l v_l^{(t+1)}) & \text{if } k = l, \\ w_k^{(t)}, & \text{if } k \neq l. \end{cases}$   
end for  
•  $\bar{w}_k^{(s+1)} - w_l^{(T)}$  and  $\bar{\alpha}_l^{(s+1)} - \alpha_l^{(T)}$ 

end for

# Convergence analysis of DSCOVR-SVRG

#### • assumptions:

- each  $\phi_i$  is  $1/\gamma$ -smooth  $\Longrightarrow \phi_i^*$  is  $\gamma$ -strongly convex

$$|\phi_i'(lpha) - \phi_i'(eta)| \le (1/\gamma)|lpha - eta|, \quad orall \, lpha, eta \in \mathbf{R}$$

– g is  $\lambda\text{-strongly convex} \Longrightarrow g^*$  is  $1/\lambda\text{-smooth}$ 

$$g(w) \geq g(u) + g'(u)^T(w-u) + \frac{\lambda}{2} \|w-u\|_2^2, \quad \forall w, u \in \mathbf{R}^d$$

#### strong duality

- there exist unique  $(w^{\star}, \alpha^{\star})$  satisfying  $P(w^{\star}) = D(\alpha^{\star})$ 

$$- w^{\star} = \nabla g^{\star} \left( -\frac{1}{N} \sum_{i=1}^{m} (X_{i:})^{T} \alpha_{i}^{\star} \right)$$

**Theorem:** Let  $\Lambda$  and  $\Gamma$  be two constants that satisfy

$$\Lambda \geq \|X_{ik}\|^2, \quad \text{for all} \quad i = 1, \dots, m, \text{ and } j = 1, \dots, K,$$
  
$$\Gamma \geq \max_{i,k} \left\{ \frac{1}{p_i} \left( 1 + \frac{9m\Lambda}{2q_k N\lambda\gamma} \right), \ \frac{1}{q_k} \left( 1 + \frac{9K\Lambda}{2p_i N\lambda\gamma} \right) \right\}.$$

If we choose the step sizes as

$$\sigma_i = \frac{1}{2\gamma(p_i\Gamma - 1)}, \qquad i = 1, \dots, m,$$
  
$$\tau_k = \frac{1}{2\lambda(q_k\Gamma - 1)}, \qquad k = 1, \dots, K,$$

and the number of iterations during each stage  $T \ge \log(3)\Gamma$ , then

$$\mathbf{E}\left[\left\|\begin{array}{c} \bar{w}^{(s)} - w^{\star} \\ \bar{\alpha}^{(s)} - \alpha^{\star} \end{array}\right\|_{\lambda,\frac{\gamma}{N}}^{2}\right] \leq \left(\frac{2}{3}\right)^{s} \left\|\begin{array}{c} \bar{w}^{(0)} - w^{\star} \\ \bar{\alpha}^{(0)} - \alpha^{\star} \end{array}\right\|_{\lambda,\frac{\gamma}{N}}^{2}$$

# Complexity analysis (assuming K > m)

• if 
$$p_i=rac{1}{m}$$
 and  $q_k=rac{1}{K}$ , then can take  $\Gamma=K\left(1+rac{9mK\Lambda}{2N\lambda\gamma}
ight)$ 

• if 
$$p_i = \frac{\|X_{i:}\|_F^2}{\|X\|_F^2}$$
 and  $q_k = \frac{\|X_{ik}\|_F^2}{\|X\|_F^2}$ , then  $\Gamma = K\left(1 + \frac{9\|X\|_F^2}{2N\lambda\gamma}\right)$ 

• if  $\max_i ||x_i|| \le R$ , then can use  $\Gamma = K\left(1 + \frac{9R^2}{2\lambda\gamma}\right) = K\left(1 + \frac{9}{2}\kappa\right)$ 

#### complexities

• iteration complexity (number of X<sub>ik</sub> blocks processed):

$$O\left(\mathsf{K}(1+m+\kappa)\lograc{1}{\epsilon}
ight)$$

• communication complexity (number of *d*-vectors transmitted):

$$O\left((1+m+\kappa)\lograc{1}{\epsilon}
ight)$$

• computation complexity (number of passes over whole dataset):  $O\left(\left(1 + \frac{\kappa}{m}\right)\log\frac{1}{\epsilon}\right)$ 

#### Convergence of duality gap

**Theorem:** Let  $\Lambda$  and  $\Gamma$  be two constants that satisfy

$$\begin{split} \Lambda &\geq \|X_{ik}\|^2, \quad \text{for all} \quad i=1,\ldots,m, \text{ and } j=1,\ldots,K, \\ \Gamma &\geq \max_{i,k} \left\{ \frac{1}{p_i} \left( 1 + \frac{18m\Lambda}{q_k N \lambda \gamma} \right), \ \frac{1}{q_k} \left( 1 + \frac{18K\Lambda}{p_i N \lambda \gamma} \right) \right\}. \end{split}$$

If we choose the step sizes as

$$\sigma_i = \frac{1}{\gamma(p_i \Gamma - 1)}, \qquad i = 1, \dots, m,$$
  
$$\tau_k = \frac{1}{\lambda(q_k \Gamma - 1)}, \qquad k = 1, \dots, K,$$

and the number of iterations during each stage  $T \ge \log(3)\Gamma$ , then

$$\mathsf{E}\left[P(\bar{w}^{(s)}) - D(\bar{\alpha}^{(s)})\right] \leq \left(\frac{2}{3}\right)^s \mathsf{3} \mathsf{\Gamma}\left(P(\bar{w}^{(0)}) - D(\bar{\alpha}^{(0)})\right).$$

#### Algorithm 3: DSCOVR-SAGA

• 
$$\bar{u}^{(0)} = X w^{(0)}$$
 and  $\bar{v}^{(0)} = \frac{1}{N} X^T \alpha^{(0)}$ 

- for  $t = 0, 1, 2, \dots, T 1$ 
  - 1. pick  $i \in \{1, \ldots, m\}$  and  $k \in \{1, \ldots, K\}$  with probabilities  $p_i$  and  $q_k$
  - 2. compute variance-reduced stochastic gradients:

$$\begin{aligned} u_i^{(t+1)} &= \bar{u}_i^{(t)} - \frac{1}{q_k} U_{ik}^{(t)} + \frac{1}{q_k} X_{ik} w_k^{(t)} \\ v_k^{(t+1)} &= \bar{v}_k^{(t)} - \frac{1}{\rho_i} (V_{ik}^{(t)})^T + \frac{1}{\rho_i} \frac{1}{N} (X_{ik})^T \alpha_i^{(t)} \end{aligned}$$

3. update primal and dual block coordinates:

$$\begin{aligned} \alpha_i^{(t+1)} &= \operatorname{prox}_{\sigma_i \Psi_i^*} \left( \alpha_i^{(t)} + \sigma_j u_i^{(t+1)} \right) \\ w_k^{(t+1)} &= \operatorname{prox}_{\tau_k g_k} \left( w_k^{(t)} - \tau_k v_k^{(t+1)} \right) \end{aligned}$$

4. update averaged historical stochastic gradients:

$$\bar{u}_{i}^{(t+1)} = \bar{u}_{i}^{(t)} - U_{ik}^{(t)} + X_{ik} w_{k}^{(t)}, \quad \bar{v}_{k}^{(t+1)} = \bar{v}_{k}^{(t)} - (V_{ik}^{(t)})^{T} + \frac{1}{N} (X_{ik})^{T} \alpha_{i}^{(t)}$$

5. update the table of historical stochastic gradients:

$$U_{ik}^{(t+1)} = X_{ik} w_k^{(t)}, \qquad V_{ik}^{(t+1)} = \frac{1}{N} ((X_{ik})^T \alpha_i^{(t)})^T$$

end for

### Convergence of DSCOVR-SAGA

**Theorem:** Let  $\Lambda$  and  $\Gamma$  be two constants that satisfy

$$\Lambda \geq \|X_{ik}\|^2, \quad i = 1, \dots, m, \quad j = 1, \dots, K,$$
  
$$\Gamma \geq \max_{i,k} \left\{ \frac{1}{p_i} \left( 1 + \frac{9m\Lambda}{2q_k N\lambda\gamma} \right), \frac{1}{q_k} \left( 1 + \frac{9K\Lambda}{2p_i N\lambda\gamma} \right), \frac{1}{p_i q_k} \right\}.$$

If we choose the step sizes as

$$\sigma_i = \frac{1}{2\gamma(p_i\Gamma - 1)}, \qquad i = 1, \dots, m,$$
  
$$\tau_k = \frac{1}{2\lambda(q_k\Gamma - 1)}, \qquad k = 1, \dots, K,$$

then for t = 1, 2, ...,

$$\mathbf{E}\left[\left\|\begin{array}{c} w^{(t)} - w^{\star} \\ \alpha^{(t)} - \alpha^{\star} \end{array}\right\|_{\lambda,\frac{\gamma}{N}}^{2}\right] \leq \left(1 - \frac{1}{3\Gamma}\right)^{t} \frac{4}{3} \left\|\begin{array}{c} w^{(0)} - w^{\star} \\ \alpha^{(0)} - \alpha^{\star} \end{array}\right\|_{\lambda,\frac{\gamma}{N}}^{2}$$

#### Algorithm 4: Accelerated DSCOVR

input: initial points  $\widetilde{w}^{(0)}, \widetilde{\alpha}^{(0)}$ , and parameter  $\delta > 0$  for r = 0, 1, 2, ...,

 $1. \ \mbox{find}$  an approximate saddle point of

$$\mathcal{L}_{\delta}^{(r)}(w, a) = \mathcal{L}(w, \alpha) + \frac{\delta \lambda}{2} \|w - \widetilde{w}^{(r)}\|^2 - \frac{\delta \gamma}{2N} \|\alpha - \widetilde{\alpha}^{(r)}\|^2$$

using one of the following two options:

- option 1: let 
$$S = \frac{2 \log(2(1+\delta))}{\log(3/2)}$$
 and  $T = \log(3)\Gamma_{\delta}$ , and  
 $(\widetilde{w}^{(r+1)}, \widetilde{\alpha}^{(r+1)}) = \text{DSCOVR-SVRG}(\widetilde{w}^{(r)}, \widetilde{\alpha}^{(r)}, S, T)$   
- option 2: let  $T = 6 \log\left(\frac{8(1+\delta)}{3}\right)\Gamma_{\delta}$  and  
 $(\widetilde{w}^{(r+1)}, \widetilde{\alpha}^{(r+1)}) = \text{DSCOVR-SAGA}(\widetilde{w}^{(r)}, \widetilde{\alpha}^{(r)}, T)$ 

end for

(following techniques in Balamurugan and Bach 2016)

#### Convergence of accelerated DSCOVR

**Theorem:** Let  $\Lambda$  and  $\Gamma_{\delta}$  be two constants that satisfy

$$\Lambda \geq ||X_{ik}||^2$$
, for all  $i = 1, \dots, m$ , and  $j = 1, \dots, K$ ,

$$\Gamma_{\delta} \geq \max_{i,k} \left\{ \frac{1}{p_i} \left( 1 + \frac{9m\Lambda}{2q_k N\lambda\gamma(1+\delta)^2} \right), \frac{1}{q_k} \left( 1 + \frac{9K\Lambda}{2p_i N\lambda\gamma(1+\delta)^2} \right) \right\}.$$
  
If we choose the step sizes as

$$\sigma_i = \frac{1}{2\gamma(p_i\Gamma_{\delta}-1)}, \qquad i = 1, \dots, m,$$
  
$$\tau_k = \frac{1}{2\lambda(q_k\Gamma_{\delta}-1)}, \qquad k = 1, \dots, K,$$

then

$$\mathbf{E}\left[\left\|\begin{array}{c}\widetilde{w}^{(r)}-w^{\star}\\\widetilde{\alpha}^{(r)}-\alpha^{\star}\end{array}\right\|_{\lambda,\frac{\gamma}{N}}^{2}\right] \leq \left(1-\frac{1}{2(1+\delta)}\right)^{2r}\left\|\begin{array}{c}\widetilde{w}^{(0)}-w^{\star}\\\widetilde{\alpha}^{(0)}-\alpha^{\star}\end{array}\right\|_{\lambda,\frac{\gamma}{N}}^{2}$$

## Complexity of accelerated DSCOVR

• simplified expression for the constant  $\Gamma_{\delta} = K \left( 1 + rac{9_{\kappa}}{2(1+\delta)^2} 
ight)$ 

total number of block updates

$$O\left( K\left( m(1+\delta) + rac{9_{\kappa}}{2(1+\delta)} 
ight) \log(1+\delta) \log\left(rac{1}{\epsilon}
ight) 
ight).$$

if we choose  $\delta = \sqrt{9\kappa/(2m)} - 1$  (assuming  $\kappa > m$ ), then $O\left(K\sqrt{m\kappa}\log(1+\delta)\log\left(\frac{1}{\epsilon}\right)\right).$ 

- communication complexity (number of *d*-vectors transmitted):  $O\left(\sqrt{m\kappa}\log\frac{1}{\epsilon}\right)$
- computation complexity (number of passes over whole dataset):  $O\left(\left(1+\sqrt{\frac{\kappa}{m}}\right)\log\frac{1}{\epsilon}\right)$

# Implementation of DSCOVR



- C++, efficient sparse matrix operations using OpenMP
- asynchronous implementatino: MPI nonblocking Send/IRecv
- also implemented Parallel GD, ADMM, CoCoA(+)
- more to come . . .

## Experiments with RCV1.binary dataset



- N = 677,399, d = 47236, row normalized with R = 1
- run on cluster of 20 machines, 5 parameter servers, 1 master
- randomly shuffled sample and features
- smoothed hinge loss with  $\ell_2$  regularization,  $\lambda=10^{-4}$

#### Experiments with webspam dataset



- N = 350,000, d = 16,609,143, row normalized with R = 1
- run on cluster of 20 workers, 10 parameter servers, 1 master
- randomly shuffled sample and features
- logistic regression with  $\ell_2$  regularization,  $\lambda = 10^{-4}$

## DSCOVR-SAGA on webspam dataset

| nSync | nEpoch | primal_obj     | dual_obj       | gap       | t_sync | t_comp | t_comm | t_loop | t_elpsd |
|-------|--------|----------------|----------------|-----------|--------|--------|--------|--------|---------|
| 0     | 0      | 0.430232537706 | 0.225168873757 | 2.051e-01 | 2.025  | 0.487  | 1.453  | 2.025  | 2.025   |
| 1     | 10     | 0.361465626442 | 0.262779737691 | 9.869e-02 | 2.127  | 6.435  | 7.831  | 14.266 | 16.291  |
| 2     | 20     | 0.311349950700 | 0.278401966087 | 3.295e-02 | 2.050  | 5.685  | 8.062  | 13.747 | 30.037  |
| 3     | 30     | 0.294032397911 | 0.284556248547 | 9.476e-03 | 2.096  | 6.058  | 8.788  | 14.845 | 44.882  |
| 4     | 40     | 0.289940053505 | 0.286701605120 | 3.238e-03 | 2.024  | 5.422  | 8.101  | 13.524 | 58.406  |
| 5     | 50     | 0.288706980240 | 0.287536154538 | 1.171e-03 | 2.044  | 5.367  | 8.095  | 13.470 | 71.877  |
| 6     | 60     | 0.288254740784 | 0.287864269333 | 3.905e-04 | 2.035  | 6.212  | 8.790  | 14.993 | 86.870  |
| 7     | 70     | 0.288128681323 | 0.287978130088 | 1.506e-04 | 2.004  | 5.569  | 8.110  | 13.680 | 100.550 |
| 8     | 80     | 0.288088497819 | 0.288025094667 | 6.340e-05 | 2.031  | 5.436  | 8.097  | 13.532 | 114.081 |
| 9     | 90     | 0.288073396692 | 0.288046902858 | 2.649e-05 | 2.024  | 5.364  | 8.049  | 13.422 | 127.503 |
| 10    | 100    | 0.288068226887 | 0.288056477572 | 1.175e-05 | 2.030  | 5.364  | 8.068  | 13.421 | 140.925 |
| 11    | 110    | 0.288066217652 | 0.288060941805 | 5.276e-06 | 2.030  | 5.336  | 8.037  | 13.378 | 154.303 |
| 12    | 120    | 0.288065430239 | 0.288062901758 | 2.528e-06 | 2.030  | 5.334  | 8.108  | 13.437 | 167.740 |
| 13    | 130    | 0.288065194360 | 0.288063899046 | 1.295e-06 | 2.024  | 5.337  | 8.028  | 13.364 | 181.104 |
| 14    | 140    | 0.288065015129 | 0.288064394949 | 6.202e-07 | 2.029  | 5.318  | 8.064  | 13.403 | 194.507 |
| 15    | 150    | 0.288064917447 | 0.288064625062 | 2.924e-07 | 2.026  | 5.353  | 8.003  | 13.357 | 207.864 |
| 16    | 160    | 0.288064885386 | 0.288064735092 | 1.503e-07 | 2.030  | 5.387  | 8.073  | 13.439 | 221.302 |
| 17    | 170    | 0.288064867950 | 0.288064791393 | 7.656e-08 | 2.039  | 5.625  | 8.078  | 13.704 | 235.006 |
| 18    | 180    | 0.288064852335 | 0.288064821789 | 3.055e-08 | 2.023  | 6.698  | 9.328  | 16.023 | 251.029 |
| 19    | 190    | 0.288064850799 | 0.288064834053 | 1.675e-08 | 2.031  | 5.736  | 8.052  | 13.790 | 264.820 |
| 20    | 200    | 0.288064848282 | 0.288064840064 | 8.218e-09 | 2.003  | 6.378  | 8.633  | 15.025 | 279.845 |

#### The cost of synchronization



# Summary

DSCOVR

- saddle-point formulation allows simultaneous partition of both data and model to gain parallelism
- used stochastic variance reduction to achieve fast convergence
- asynchronous, event-driven implementation
- no simulataneous updates, no stale states of delays to worry
- improved computation complexity for distributed ERM

additional features

- DSCOVR-SVRG only need to communicate sparse vectors
- also developed dual-free version of primal-dual algorithms (using technique from Lan 2015)