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Outline 

Algorithmic supervision for CNN training 
 (local features based methods) 
 
• CNN fine-tuning for efficient image retrieval 

 
• Sketch based image retrieval with CNN descriptors 

 
Unsupervised metric learning from data manifolds 
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CNN fine-tuning for 
 image retrieval 

Filip Radenović Giorgos Tolias 

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning 
with Hard Examples, In ECCV 2016 



Image Retrieval Challenges 

Significant viewpoint and/or scale change Significant illumination change 

Severe occlusions Visually similar but different objects 

Old school: local features, photometric normalization, geometric constraints 
CNNs:  lots of training data, provides image embedding, nearest neighbor search  
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Large Internet  
photo collection 

… 

Convolutional Neural  
Network (CNN) 

Image annotations 

Training 

Lots of Training Examples 
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Large Internet  
photo collection 

… 

Convolutional Neural  
Network (CNN) 

Not accurate 
Not free $ 

Manual cleaning of 
the training data 

done by Researchers 

Very expensive $$$$ 

Automated extraction 
of training data 

Accurate 
Free $ 

Lots of Training Examples 
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CNN Image Retrieval 
• Image representation created from CNN activations of a 

network pre-trained for classification task 
  

[Gong et al. ECCV’14, Razavian et al. arXiv’14, Babenko et al. ICCV’15, 
Kalantidis et al. arXiv’15, Tolias et al. ICLR’16] 

 

 
 
 
 
+ Retrieval accuracy suggests generalization of CNNs 

- Trained for image classification, NOT retrieval task 

Images from ImageNet.org 
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+ Retrieval accuracy suggests generalization of CNNs 

- Trained for image classification, NOT retrieval task 

Same Class 
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CNN Image Retrieval 

 
• CNN network re-trained using a dataset that contains landmarks and 

buildings as object classes.  
  

[Babenko et al. ECCV’14] 
 

 
+ Training dataset closer to the target task 

- Final metric different to the one actually optimized 

- Constructing training datasets requires manual effort 
 

9 / 55 



CNN Image Retrieval 

 
• CNN network re-trained using a dataset that contains landmarks and 

buildings as object classes.  
  

[Babenko et al. ECCV’14] 
 

 
+ Training dataset closer to the target task 
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Same Class 

Image from [Babenko et al. ECCV’14] 
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CNN Image Retrieval 

 
• NetVLAD: end-to-end fine-tuning for image retrieval. Geo-tagged 

dataset for weakly supervised fine-tuning. 
  

[Arandjelovic et al. CVPR’16] 
 

 
+ Training dataset corresponds to the target task 
  

+ Final metric corresponds to the one actually optimized 

- Training dataset requires geo-tags  
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CNN Image Retrieval 

 
• NetVLAD: end-to-end fine-tuning for image retrieval. Geo-tagged 

dataset for weakly supervised fine-tuning. 
  

[Arandjelovic et al. CVPR’16] 
 

 
+ Training dataset corresponds to the target task 
  

+ Final metric corresponds to the one actually optimized 

- Training dataset requires geo-tags  

query 

Camera Orientation Unknown 

unknown 
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CNN learns from BoW – Training Data 

 
Input: Large unannotated dataset 

 
1. Initial clusters created by grouping of spatially related images 

[Chum & Matas PAMI’10] 

2. Clustered images used as queries for a retrieval-SfM pipeline 
[Schonberger et al. CVPR’15] 

 
Output: Non-overlapping 3D models 
 551 (134k) training / 162 (30k) validation 

Camera Orientation Known 
Number of Inliers Known 
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Hard Negative Examples 

anchor the most similar 
CNN descriptor 

naive hard negatives 
top k by CNN 

diverse hard negatives 
top k: one per 3D model 

Negative examples: images from different 3D models than the anchor 
Hard negatives: closest negative examples to the anchor 
Only hard negatives: as good as using all negatives, but faster 

increasing CNN descriptor distance to the anchor 

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016 
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anchor top 1 by CNN top 1 by BoW 
random from  
top k by BoW 

harder positives 

used in NetVLAD 

Positive examples: images that share 3D points with the anchor 
Hard positives: positive examples not close enough to the anchor 

Hard Positive Examples 

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016 
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Contrastive 
Loss 

CNN Siamese Learning 

… MAC &  
L2-norm 

D x 1 
CNN 
desc. 

Query Convolutional Layers Pooling Descriptor 

… MAC &  
L2-norm 

D x 1 
CNN 
desc. 

Positive Convolutional Layers Pooling Descriptor 

1 – positive 
0 – negative 

Pair Label 

MATCHING PAIR 

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016 
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CNN Siamese Learning 

… MAC &  
L2-norm 

D x 1 
CNN 
desc. 

Query Convolutional Layers Pooling Descriptor 

… MAC &  
L2-norm 

D x 1 
CNN 
desc. 

Convolutional Layers Pooling Descriptor 

Contrastiv
e 

Loss 

1 – positive 
0 – negative 

Pair Label 

NON-MATCHING PAIR 

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016 
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Component Contributions (AlexNet) 

Oxford 5k Paris 6k 

MAC: off-the-shelf 

MAC: top 1 CNN + top k CNN 

MAC: top 1 CNN + top 1 / model CNN 

MAC: top 1 BoW + top 1 / model CNN 

MAC: random(top k BoW) + top 1 / model CNN 

44.2 

51.6 

56.2 

63.1 

56.7 

63.9 

59.7 

67.1 

62.2 

68.9 

60.2 

67.5 

MAC: learned whitening 

Careful choice of positive and negative 
training images makes a difference 

… global max 
pooling & 
L2-norm 

Dx1  
CNN 
desc. 

whitening 

end-to-end learning post-processing 

optional 
dim 

reduction 
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Global Pooling 

global 
pooling & 
L2-norm 

… Dx1  
CNN 
desc. 

whitening 

end-to-end learning post-processing 

optional 
dim 

reduction 

MAC max pooling Maximum Activations of Convolutions [Tolias et al. ICLR’16] 

SPoC sum pooling  Sum-Pooled Convolutional  [Babenko et al. ICCV’15] 

GeM generalized mean pooling  Generalized Mean 

p = 1 
average pooling 

p = inf 
max pooling 

[Radenovic, Tolias, Chum: TPAMI 2018] 19 / 55 



Component Contributions (AlexNet) 
Careful choice of positive and negative 
training images makes a difference 

Oxford 5k Paris 6k 

MAC: off-the-shelf 

MAC: top 1 CNN + top k CNN 

MAC: top 1 CNN + top 1 / model CNN 

MAC: top 1 BoW + top 1 / model CNN 

MAC: random(top k BoW) + top 1 / model CNN 

44.2 

51.6 

56.2 

63.1 

56.7 

63.9 

59.7 

67.1 

62.2 

68.9 

60.2 

67.5 

MAC: learned whitening 

GeM: random(top k BoW) + top 1 / model CNN 

GeM: learned whitening 

60.1 

68.6 67.7 

75.5 
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Teacher vs. Student (VGG) 

Method Oxf5k Oxf105k Par6k Par106k 

BoW(16M)+R+QE 84.9 79.5 82.4 77.3 
CNN-MAC(512D) 79.7 73.9 82.4 74.6 
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Method Oxf5k Oxf105k Par6k Par106k 

BoW(16M)+R+QE 84.9 79.5 82.4 77.3 
CNN-MAC(512D) 79.7 73.9 82.4 74.6 
CNN-GeM(512D) 86.4 81.3 88.1 81.7 
CNN-GeM(512D)+QE 90.7 88.6 92.2 88.0 

Teacher vs. Student (VGG) 

Our CNN with GeM layer surpasses  
its teacher on all datasets!!! BUT… 
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Teacher vs. Student for small objects 

query 
region 

query 
region 

CNN 

BoW+geometry 
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CNN fine-tuning for 
 sketch-based image retrieval 

Filip Radenović Giorgos Tolias 



Sketch-based Image Retrieval 
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Sketch-based Image Retrieval 
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Training Data 
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Matching Sketches to Images 

Classical Approach 
shape matching 

Modern Approach 
end-to-end deep learning 

image 

edge map sketch 

alignment 

training data 
(very expensive) 

Ours 
deep shape matching 

no training 

image 

edge map sketch 

…
 

tra
in

in
g 

da
ta

 

tra
in

in
g 

da
ta

 

+  category + similarity 
-   man-years of annotation 
-   very difficult to train 

shape information only 
simple cost & training 
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Category Retrieval 

Query Result 

pig 

Shape based retrieval cannot do that  
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Category Retrieval 

Result 

Standard image search can do that for years already 
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Edge-maps vs Sketches 
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Training without a Single Sketch 
CNN Siamese learning 

contrastive loss 
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EdgeMAC Architecture 

… global max 
pooling & 
L2-norm 

Dx1  
CNN 
desc. 

whitening 

end-to-end learning post-processing 

optional 
dim 

reduction 

edge 
filtering 

edge detector 

edge filtering layer edges filtered 

VGG 1st layer RGB averaged to intensity 
[Dollár & Zitnick ICCV’13] 
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Results on Flickr 15k 

Radenovic, Tolias, Chum: Generic Sketch-Based Retrieval Learned without Drawing a Single Sketch, arXiv 
2017 

[21] Hu & Collomosse: A performance evaluation of gradient 
field hog descriptor for sketch based image retrieval. CVIU’13 
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Results on Shoes, Chairs and Handbags 

Image from https://www.eecs.qmul.ac.uk/~qian/Project_cvpr16.html 

Fine-grained recognition of shoes / chairs 
 
[53] Q. Yu et al.: Sketch me that shoe. CVPR’16. 
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Results on Shoes, Chairs and Handbags 
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Beyond sketches 

Image-based Edge-based 
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Shape matching for domain 
generalization  



Domain generalization 
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Domain generalization via shape matching 

… global max 
pooling & 
L2-norm 

Dx1  
CNN 
desc. 

edge 
filtering 

Linear classifier on edgeMAC descriptors 
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Results on domain generalization 

A: Artwork    C: Cartoon    P: Photo  S: Sketch 
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Metric Learning Without Labels 
Ahmet Iscen Yannis Avrithis Giorgos Tolias Teddy Furon 



Iscen, Tolias, Avrithis, Furon, Chum, Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations, CVPR’17 

Euclidean & manifold distance 

Mapping: Images to Rn descriptors 
 
The Euclidean distance is locally a good similarity 
measure 
 
Related images  lie on non-linear manifolds 
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Diffusion 

Vector of similarities to the query 

Normalized (sparse) affinity matrix 

Query indicator vector 

k-Nearest Neighbour graph 

0 
0 
⁞ 
1 
⁞ 
0 
0 

Random walk 
implicitly considers all paths 

(visual proof) 
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Large, non-sparse Large, sparse 

Diffusion 

k-Nearest Neighbour graph 

Closed form: 

Iterative: 

where 
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Contributions on Diffusion for Retrieval 

≈ 

System of linear equations, Conjugate Gradients 

Generalization to novel queries (not part of the dataset) 

Diffusion can be efficiently applied to image parts 

• 

• 

• 

• Low-rank approximation Small, non-sparse 

- Significant impact on CNN-based retrieval of small object 

- Two orders of magnitude faster online diffusion 

Iterative: Jacobi solver 

Intractable Closed form: 

[CVPR 2017] 

[CVPR 2018] 
[ACCV 2018] 
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Euclidean vs Manifold Distance 

Diffusion-guided to sample hard negatives and positives 
• Avoid computationally expensive SfM models 

 

  
A. Iscen, G. Tolias , Y. Avrithis, O. Chum, Mining on Manifolds: Metric Learning without Labels, In CVPR 2018 48 / 55 



Mining of training samples 

Anchors Mined positives Euclidean kNN Mined negatives Euclidean non-kNN 
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Experiments on instance search 
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Experiments on instance search 

vs 
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Mining of training samples 

Anchors Mined positives Euclidean kNN Mined negatives Euclidean non-kNN 
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Experiments on fine-grained recognition 
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Online code and data 

Siamese training code and training data 
http://cmp.felk.cvut.cz/cnnimageretrieval/ 

• Image retrieval (ECCV 2016) 
• Matlab package using MatConvNet 
• Python package using PyTorch 
• Sketch based image retrieval (ECCV 2018) 
• Matlab package using MatConvNet 

 
Region manifold search (CVPR 2017) 
https://github.com/ahmetius/diffusion-retrieval 

• Matlab package 
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http://cmp.felk.cvut.cz/cnnimageretrieval/
https://github.com/ahmetius/diffusion-retrieval
https://github.com/ahmetius/diffusion-retrieval
https://github.com/ahmetius/diffusion-retrieval


Conclusions 

• no human annotation needed for CNN image retrieval 
• CNN outperforms its teacher on standard benchmarks 
• BOW still better for certain tasks 

 
• no human annotation needed for CNN sketch based retrieval 
• generic CNN shape retrieval performs well 

• standard and fine-grained sketch based retrieval 
• significant appearance changes, domain generalization 

BOW combined SfM is a good teacher 

Mining on Manifolds 
 

• fine tuning CNNs without supervision 
• using diffusion to compute manifold distance 
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Thank you. 
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