We Don't Need No Annotation (Efficient Training for Image Retrieval)

Ondra Chum

Visual Recognition Group Department of Cybernetics, Faculty of Electrical Engineering CTU in Prague

Outline

Algorithmic supervision for CNN training (local features based methods)

- CNN fine-tuning for efficient image retrieval
- Sketch based image retrieval with CNN descriptors

Unsupervised metric learning from data manifolds

CNN fine-tuning for image retrieval

Filip Radenović

Giorgos Tolias

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016

Image Retrieval Challenges

Significant viewpoint and/or scale change

Significant illumination change

Severe occlusions

Visually similar but different objects

Old school:local features, photometric normalization, geometric constraintsCNNs:lots of training data, provides image embedding, nearest neighbor search

Lots of Training Examples

Large Internet photo collection

Convolutional Neural Network (CNN)

Lots of Training Examples

Very expensive \$\$\$\$

Large Internet photo collection

Not accurate Not free \$

Convolutional Neural Network (CNN)

Automated extraction of training data

Accurate Free \$

 Image representation created from CNN activations of a network pre-trained for classification task

[Gong et al. ECCV'14, Razavian et al. arXiv'14, Babenko et al. ICCV'15, Kalantidis et al. arXiv'15, Tolias et al. ICLR'16]

Images from ImageNet.org

- + Retrieval accuracy suggests generalization of CNNs
- Trained for image classification, NOT retrieval task

 CNN network re-trained using a dataset that contains landmarks and buildings as object classes.

[Babenko et al. ECCV'14]

- + Training dataset closer to the target task
- Final metric different to the one actually optimized
- Constructing training datasets requires manual effort

 NetVLAD: end-to-end fine-tuning for image retrieval. Geo-tagged dataset for weakly supervised fine-tuning.
[Arandjelovic et al. CVPR'16]

- + Training dataset corresponds to the target task
- + Final metric corresponds to the one actually optimized
- Training dataset requires geo-tags

CNN learns from BoW – Training Data

e

Hard Negative Examples

Negative examples: images from different 3D models than the anchor **Hard negatives:** closest negative examples to the anchor **Only hard negatives:** as good as using all negatives, but faster

increasing CNN descriptor distance to the anchor

anchor

the most similar CNN descriptor

naive hard negatives top k by CNN

diverse hard negatives top k: one per 3D model

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016 14/55

Hard Positive Examples

Positive examples: images that share 3D points with the anchor **Hard positives:** positive examples not close enough to the anchor

used in NetVLAD

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016 15/55

CNN Siamese Learning

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016 16/55

CNN Siamese Learning

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016 17/55

Component Contributions (AlexNet)

Careful choice of **positive** and **negative** training images makes a difference

MAC: learned whitening

MAC: random(top k BoW) + top 1 / model CNN

MAC: top 1 BoW + top 1 / model CNN

MAC: top 1 CNN + top 1 / model CNN

MAC: top 1 CNN + top k CNN

MAC: off-the-shelf

56.2

44.2

Global Pooling

MAC max pooling Maximum Activations of Convolutions [Tolias et al. ICLR'16]

SPoC sum pooling Sum-Pooled Convolutional [Babenko et al. ICCV'15]

GeM generalized mean pooling Generalized Mean

. . . 1

[Radenovic, Tolias, Chum: TPAMI 2018]

Component Contributions (AlexNet)

Careful choice of **positive** and **negative** training images makes a difference

Oxford 5k

62.2

60.2

Paris 6k

Teacher vs. Student (VGG)

Method	Oxf5k	Oxf105k	Par6k	Par106k
BoW(16M)+R+QE	84.9	79.5	82.4	77.3
CNN-MAC(512D)	79.7	73.9	82.4	74.6

Teacher vs. Student (VGG)

Method	Oxf5k	Oxf105k	Par6k	Par106k	
BoW(16M)+R+QE	84.9	79.5	82.4	77.3	
CNN-MAC(512D)	79.7	73.9	82.4	74.6	
CNN-GeM(512D)	86.4	81.3	88.1	81.7	
CNN-GeM(512D)+QE	90.7	88.6	92.2	0.88	

Our CNN with GeM layer surpasses its teacher on all datasets!!! **BUT...**

Teacher vs. Student for small objects

BoW+geometry

CNN fine-tuning for sketch-based image retrieval

Filip Radenović

Giordos Tolias

Sketch-based Image Retrieval

Sketch-based Image Retrieval

Training Data

Categories

ITT

勺

The

rabbit

Matching Sketches to Images

Modern Approach end-to-end deep learning training data (very expensive)

- + category + similarity
- man-years of annotation
- very difficult to train

simple cost & training

Category Retrieval

Shape based retrieval cannot do that 😕

Category Retrieval

Standard image search can do that for years already

Edge-maps vs Sketches

Training without a Single Sketch

CNN Siamese learning contrastive loss

Negative (similar edge maps of different landmarks)

EdgeMAC Architecture

Results on Flickr 15k

[21] Hu & Collomosse: A performance evaluation of gradient field hog descriptor for sketch based image retrieval. CVIU'13

Method	Dim	mAP			
Hand-crafted methods					
GF-HOG [21]	n/a	12.2			
S-HELO [37]	1296	12.4			
HLR+S+C+R [51]	n/a	17.1			
GF-HOG extended [6]	n/a	18.2			
PerceptualEdge [32]	3780	18.4			
LKS [38]	1350	24.5			
AFM [47]	243	30.4			
CNN-based methods					
Sketch-a-Net+EdgeBox [5]	5120	27.0			
Siamese network [33]	64	19.5			
Shoes network [53] [†]	256	29.9			
Chairs network [53] [†]	256	29.8			
Sketchy network [39] [†]	1024	34.0			
Quadruplet network [41]	1024	32.2			
Triplet no-share network [7]	128	36.2			
★ EdgeMAC	512	46.3			
Re-ranking methods					
AFM+QE [47]	755	57.9			
Sketch-a-Net+EdgeBox+GraphQE [5]	n/a	32.3			
★ EdgeMAC+Diffusion	n/a	68.9			

Radenovic, Tolias, Chum: Generic Sketch-Based Retrieval Learned without Drawing a Single Sketch, arXiv4 / 55

Results on Shoes, Chairs and Handbags

Fine-grained recognition of shoes / chairs

[53] Q. Yu et al.: Sketch me that shoe. CVPR'16.

Results on Shoes, Chairs and Handbags

Method	Dim	Shoes		Chairs		Handbags	
method	Dim	acc.@1	acc.@10	acc.@1	acc.@10	acc.@1	acc.@10
BoW-HOG + rankSVM [22]	500	17.4	67.8	28.9	67.0	2.4	10.7
Dense-HOG $+ \operatorname{rankSVM} [22]$	200K	24.4	65.2	52.6	93.8	15.5	40.5
Sketch-a-Net $+ \operatorname{rankSVM}[22]$	512	20.0	62.6	47.4	82.5	9.5	44.1
CCA-3V-HOG + PCA [18]	n/a	15.8	63.2	53.2	90.3	_	_
Shoes net $[22]^{\dagger}$	256	52.2	92.2	65.0	92.8	23.2	59.5
Chairs net $[22]^{\dagger}$	256	30.4	75.7	72.2	99.0	26.2	58.3
Handbags net 32	256	_	_	_		39.9	82.1
Shoes $net + CFF + HOLEF$ [32]	512	61.7	94.8	—	—	—	—
Chairs $net + CFF + HOLEF$ [32]	512	_	_	81.4	95.9	_	_
Handbags net $+ CFF + HOLEF$ [32]	512	_	—	_	_	49.4	82.7
\star EdgeMAC	512	40.0	76.5	85.6	95.9	35.1	70.8
\star EdgeMAC + whitening	512	54.8	92.2	85.6	97.9	51.2	85.7

Beyond sketches

Image-based

Edge-based

Shape matching for domain generalization

Domain generalization

Domain generalization via shape matching

Linear classifier on edgeMAC descriptors

Results on domain generalization

A: Artwork C: Cartoon P: Photo S: Sketch

Metric Learning Without Labels

Ahmet Iscen

Giorgos Tolias

Yannis Avrithis

Teddy Furon

Euclidean & manifold distance

The Euclidean distance is **locally** a good similarity measure

Related images lie on non-linear manifolds

Iscen, Tolias, Avrithis, Furon, Chum, Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations, CVPR'17

Euclidean & manifold distance

The Euclidean distance is **locally** a good similarity measure

Related images lie on non-linear manifolds

Iscen, Tolias, Avrithis, Furon, Chum, Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations, CVPR'17

Diffusion

Contributions on Diffusion for Retrieval

Iterative:

Closed form:

 $\mathbf{f}^{\star} = \mathcal{L}_{lpha}^{-1} \mathbf{y}$

 $\mathbf{f}^t = \alpha S \mathbf{f}^{t-1} + (1-\alpha) \mathbf{y}$

Jacobi solver

Intractable

- $\mathcal{L}_{lpha}\mathbf{f}^{\star}=\mathbf{y}$
- System of linear equations, Conjugate Gradients

[CVPR 2017]

Small, non-sparse

[CVPR 2018]

[ACCV 2018]

- Generalization to novel queries (not part of the dataset)
- Diffusion can be efficiently applied to image parts
 - Significant impact on CNN-based retrieval of small object
- $\mathbf{f}^{\star} = \mathcal{L}_{\alpha}^{-1} \mathbf{y} \approx U \Lambda' U^{\top} \mathbf{y}$ Low-rank approximation
 - Two orders of magnitude faster online diffusion

Euclidean vs Manifold Distance

Diffusion-guided to sample hard negatives and positives

• Avoid computationally expensive SfM models

Mining of training samples

Experiments on instance search

Experiments on instance search

Mining of training samples

Experiments on fine-grained recognition

Online code and data

Siamese training code and training data

http://cmp.felk.cvut.cz/cnnimageretrieval/

- Image retrieval (ECCV 2016)
- Matlab package using MatConvNet
- Python package using PyTorch
- Sketch based image retrieval (ECCV 2018)
- Matlab package using MatConvNet

Region manifold search (CVPR 2017)

https://github.com/ahmetius/diffusion-retrieval

Matlab package

Conclusions

BOW combined SfM is a good teacher

- no human annotation needed for CNN image retrieval
- CNN outperforms its teacher on standard benchmarks
- BOW still better for certain tasks
- no human annotation needed for CNN sketch based retrieval
- generic CNN shape retrieval performs well
 - standard and fine-grained sketch based retrieval
 - significant appearance changes, domain generalization

Mining on Manifolds

- fine tuning CNNs without supervision
- using diffusion to compute manifold distance

Thank you.