Learning How to Soar

Terrence Sejnowski

Salk Institute UCSD

Bird Migration

Migration Ecology of Birds, Ian Newton

Thermal Soaring

Rayleigh-Bénard Convection

cold

hot

Atmospheric Turbulence

Tracking a Falcon with GPS

15:00 15:30

16:00

16:30

14:00 14:30

Akos, Nagy, Vicsek, PNAS, 2008

1,500

1,000

500

11:00

12:00

11:30

12:30 13:00 13:30

Humans Soar Too

Glider Aerodynamics

Control over bank angle and angle of attack

Shephard & Lambertucci, 2013

How do Birds Find and Navigate Thermals?

- What quantities do birds sense?
- Vertical velocities, temperature, gradients, etc?
- How should the bird respond to these cues?

Experiments are hard to control and strategies are difficult to infer from limited data

Physics simulations are complex and there are many variables.

What should an optimal agent sense?

Time is Honey

Karl von Frisch

Temporal Difference Learning

Sutton and Barto, 1988

TD - error :

$$\delta_t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t)$$

Actions are determined by preferences :

$$\pi_t(s,a) = \Pr\{a_t = a | s_t = s\} = \frac{e^{p(s,a)}}{\sum_b e^{p(s,b)}},$$

Update the preferences : $p(s_t, a_t) \leftarrow p(s_t, a_t) + \beta \delta_t$

The value function update : $V(s_t) \leftarrow V(s_t) + \alpha \delta_t$

VUMmx1 - Octopamine

Hammer and Menzel, 1997

Temporal Difference Learning

Actor Critic Model Dopamine Neurons

Montague, Dayan and Sejnowski, 1996

Temporal Difference Learning

Go Defeat, 2017

DeepMind

What Do Thermals Look Like?

Rayleigh-Benard convection

$$egin{aligned} &rac{\partial oldsymbol{u}}{\partial t}+oldsymbol{u}\cdot
ablaoldsymbol{u}&=-
abla P+\left(rac{\mathrm{Pr}}{\mathrm{Ra}}
ight)^{1/2}
abla^2oldsymbol{u}+oldsymbol{ heta}\hat{oldsymbol{z}}\ &rac{\partial heta}{\partial t}+oldsymbol{u}\cdot
ablaoldsymbol{v}&=rac{1}{(\mathrm{Pr}\,\mathrm{Ra})^{1/2}}
abla^2 heta\,, \end{aligned}$$

Temperature field

Vertical velocity field

Reddy, Vergassola, Sejnowski, 2017

Learned Policy

 a_z Vertical acceleration

Conclusions

az and vz gradients across wings are useful

control over angle of attack is not useful

Field Experiments

GoPro Glider

Field Experiments

Gautam Reddy

Training a Glider in the Field

Reddy, Vergassola, Sejnowski, 2018

Training a Glider in the Field

Field Experiments

Data SIO, NOAA, U.S. Navy, NGA, GF&CO

814 ft

л.

2003

2°56'32.69" N 117°01'12.67" W elev 878 ft eye alt 3947 ft

Google Fart

TERRENCE J. SEJNOWSKI

Thank You

Peter Dayan Read Montague

Gautam Reddy Massimo Vergassola

John Doyle

SIMONS FOUNDATION