LCCC is a positive environment

Consensus theory and Hilbert metric
R. Sepulchre
University of Liege, Belgium

(i.e. the metric
of positive systems)

Positive feedback regulation Pifierential positivty

LCCC workshop
January 2010

Rodolphe Sepulchre -- University of Cambridge, UK

Lund, LCCC workshop, October 2014

Rodolphe Sepulchre -- University of Cambridge Positive feedback regulation

LCCC workshop on Learning and Adaptation for Sensorimotor Control -
Lund - October 2018 Rodolphe Sepulchre -- University of Cambridge

LCCC workshop on Learning and Adaptation for Sensorimotor Control -
Lund - October 2018

Regulation across scales
Take-home message
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A Simple Neuron Servo

Stephen P. DeWeerth, Student Member, IEEE, Lars Nielsen, Carver A. Mead, and Karl J. Astrom, Fellow, IEEE
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. . . L Fig. 5. Experiment with the neuron servo at a velocity 0.1 rad/s, for the
Fig. 4. Step response using neuron servo. The desired velocity is changed de servo. (The conventional servo does not move in the corresponding sit-
from a medium high speed, 20 rad /s, t0 0.1 rad /5. The control is obtained uation.) Each pulse moves the servo a bit to create a time-averaged velocity
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Control across scales by positive and negative feedback, opead, T 1he s frediency, and the morion conducs sl 1 the fov ofthe desired value
R.S., Alessio Franci, Guillaume Drion.

Annual Reviews of Control, Robotics, and Autonomous Systems. In press.

3 At low speed, the regulation is across scales.
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A key concept
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Excitability as mixed feedback amplification
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‘First’ positive feedback : ultra-sensitivity, threshold, fast switch.

‘Then’ negative feedback : infra-sensitivity, refractoriness, slow repolarization.

‘ )

=’ spike : discrete event triggered by continuous input

Excitability as mixed feedback amplification
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Fig. 1. Electrical circuit representing membrane. Ry,=1/gus; Rx=1iggs Ry=1/fi- Ry, and
x vary with time and membrane potentials; the other components are constant.




Positive feedback = negative conductance

I=g()(V - E)

ga(t,V) .
local gain :

0 = g(-)oV +6g9(-)(V — E)

E,
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the (variational) conductance can be transiently negative if

activation (§g(-) > 0) ofaninward current (V<E)

orinactivation  (dg(-) < 0) ofanoutward current (V' > FE)
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A simplified model of excitability

(Nagumo circuit) (Relay-feedback system)
1962 Nagumo, et al.: Transmissi
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Fig. 2—An electronic simulator of the BVP model.
VS
Ts+1
™ = —n+ bV

The capacitor is neglected and the fast positive feedback is approximated as instantaneous

Excitability as mixed feedback amplification
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‘First’ positive ‘then’ negative feedback ‘ =

No ultra-sensitivity without positive feedback

Does this scale up ?

An electrical model across scales

micro-scale macro-scale
Current types Nodal Network
Passive g (Vi — E) g(Vi—Vp)
Active 9V, V) Ve — ED| 9V, V) (Vi — B)
Active nodal currents provide positive or negative feedback. 12

Active network currents are excitatory or inhibitory.
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Bursting as two mode excitability

TR N

Two independent positive feedback loops mean two
independent thresholds : high/fast and low/slow

A burst is a spike of spikes. Two independent negative
feedback loops mean independent regulation of intra-burst
refractoriness and inter-burst refractoriness.

Input-output behavior is spike excitable or burst excitable
depending on the neuron polarization.

A (widely accepted) textbook model of bursting
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(Izhikevich, 2008, p.330)

Izhikevich, Chapter 9
Terman and Ermentrout, Chapter 5
Keener and Sneyd, Chapter 9

Bursting = negative feedback adaptation of spiking.

A burster is fragile without slow positive feedback
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Variability in mean spike height Variability in burst period Variability in spikes per burst
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Five published models of bursting.
The red ones lack slow positive feedback.
The model CA1+ is the model CA1 with slower calcium activation.

(Franci, Drion, RS, 2018)




A burster is rigid without slow positive feedback
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tunable rigid

(Franci, Drion, RS, 2018)

The slow positive feedback is the key regulator of
transitions between “on” and “off” modes

A Oscillatory mode Tonic (single spike) mode Oscillatory mode

)\
depdh,
current
injection

B (McCormick & Bal, 1997)

A cellular regulation fundamental to brain ‘states’ (arousal, attention, ...)
A key target for neuromodulation.

Positive feedback regulation of bursting

No distinction between high/fast and low/slow threshold without
two independent positive feedback loops

high  low
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The low/slow positive feedback is essential to make bursting

robust (with respect to parameter uncertainty)

tunable (many types of bursters)

* neuromodulable (transitions between spiking and bursting)
* tractable (three time-scale analysis)

(c) cortical mmns:cally bursting neuron (d) thalamic reticular neuron
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The half-center oscillator: a fundamental motif of clock control
(Brown, 1911 1)

OFF ON OFF
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cellular behavior network behavior

The on-off control is through the maximal conductance of the slow positive
feedback current only. No change in (synaptic) coupling parameters.

A long debated question

Which currents contribute to the post-inhibitory rebound ?
In particular, Ij, versus Icar ?

A Single cell properties spike  PIR prke PLR
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(Dethier, Drion, Franci, RS, 2015)

The feedback properties of the two currents differ strikingly

Only the slow activation of Ica, 7 contributes to
the low/slow positive feedback regulation of the behavior

HCN channels T-type calcium channels
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(Dethier, Drion, Franci, RS, 2015)

The PIR is fragile without positive feedback

A Single cell properties spike PR spike PR
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A hidden example of positive feedback regulation|

(Dethier, Drion, Franci, RS, 2015)




Cellular positive feedback is essential to network behavior
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 robust to noise, parameter uncertainty, and network heterogeneity
* tunable by synaptic coupling (e.g. network frequency)

25
(Dethier, Drion, Franci, RS, 2015)

Positive feedback regulation of the half-center oscillator

OFF ON OFF

T

A cellular mechanism for network control.

Fundamental to tunability, robustness, and control of the network behavior.

An example of regulation across scales.
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Central pattern generators as interconnected half-center oscillators

Circuit configuration Circuit rhythms Functional connectivity
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Cellular control of functional connectivity. No synaptic tuning involved.
(Drion, Franci, RS, 2018)
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Regulation across scales is lost without the cellular positive feedback

A Isolated HCO’s Circuit rhythms in Circuit rhythms in
the original STG model the restorative variant
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Positive feedback regulation of central pattern generators

One step closer to a tractable model of one of the most extensively studied central pattern
generators : co-regulation of pyloric and gastric rhythms in the STG.
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(Drion, Franci, RS, 2019) (Marder and Bucher, 2007) (Christie et al., 2004)
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Fig. 5. Experiment with the neuron servo at a velocity 0.1 rad /s, for the
de servo. (The conventional servo does not move in the corresponding sit-
uation.) Each pulse moves the servo a bit to create a time-averaged velocity
of the desired value.

* Positive feedback is essential to regulation across scales.
* Why? because it regulates ultra-sensitivity and thresholds.

* The role of positive feedback regulation is poorly understood
and often neglected both in control and in neurophysiology.

* No learning across scales without positive feedback ?




