Some outstanding challenges in reinforcement learning

Csaba Szepesvári

Contents

- What is RL? How does ML work?
- Does it work? What makes it work?
- How is it done?
 - ADP
 - What is known about ADP?
 - Challenge #1: Efficient planning
- On the exploration problem
 - Strategic planning, optimism
 - Challenge #2: Efficient exploration
- Conclusions

RL= problems, *≠* techniques!!

Offline learning

Algorithms for Reinforcement Learning Cuba Szepevy

https://goo.gl/ftTfS4

 Learn a good controller given some data collected from interacting with the system – batch RL

Online learning

- Interact with the system with the goal of finding a good controller with the least number of interactions – pure exploration
- Interact with the system with the goal of collecting as much reward as possible – the exploration problem

Learn from a simulator

 Find a good controller/action for the simulated system (or beyond) with minimal computation – planning (with a simulator)

The modus operandi in RL (⊆ machine learning)

minimal modeling

maximum compute

Does it work? Why (now)?

Some landmark results

• DeepMind:

- Atari
- AlphaGo/Alpha Zero

Single RL algorithm defeating worldchampion in Go & best chess program

Single RL algorithm learning to play 49 Atari games @ human level or beyond

• Others:

- OpenAl Five: Dota-2 agents
 Capture the flag (Deepmind)
- Google Brain & X: vision-based grasping

Autonomous learning of vision-based grasping

Defeating amateur human teams in Dota-2

Vision-based grasping

- Y_t : 472x472 RGB images, gripper state, height above ground, $Y_t \neq X_t$
- A_t: 3D gripper displacement, 2D rotation, gripper open/close, termination (7D)
- *R_t*: success or failure at the "end", fixed cost per time step

https://goo.gl/kTMcCb Kalashnikov et al. (arXiv, 2018)

• Episodes: 20 steps, learned stopping

Autonomous learning of visionbased grasping

- RL on a physical system
- High success rate (78%→ 96%)
- Intelligent, robust, closed-loop behavior

Why now?

- Reduce everything to (some form of) optimization: DP (=use value functions)
- Flexible models:
 - Deep neural networks, ReLu, LSTM, ConvNet, ..
- Large scale computation (GPU, TPU, Cloud, ..)
- Software frameworks, SGD!
- Rapidly growing, very active community
- Commercial interest, funding

When to use off-the-shelf ML/RL?

- Mathematical modeling is painful to impossible
 - E.g., complex observations (vision, text, ...)
- Task can be specified as an optimization/constraint satisfaction problem
- Access to lots of data
 - High-fidelity simulator can be built
 - High throughput experimentation
- Access to huge-scale compute
- A priori verifiability is not a major concern
 - Simulator can be trusted
 - Physical experiments/online learning are feasible and sufficient

The core ideas

How RL works (~1990s)

Incrementally produce policies¹ $\pi_1, \pi_2, ...$

How?

- 1. Value-based policy search a.k.a. approximate dynamic programming (ADP)
 - ⇐ all the methods in "success stories" are based on ADP!
- 2. Direct policy search: k^{th} -order optimization, $0 \le k \le 2$
 - FDSA, SPSA, Monte-Carlo (k = 0),
 - SGD=REINFORCE (k = 1), Adam, momentum, Batchnorm, ...
 - LBFGS, K-FAC, .. (*k* = 2)
 - Name of the game: Variance reduction

¹policy = feedback controller, static or dynamic

Models? Not really.. Could be.. Should be!

Dynamic programming (optimal control)

- Value functions: $Q^{\pi}(x, a) = \mathbb{E}_{\pi, A_0 = a, X_0 = x} [\sum_{t=0}^{\infty} \gamma^t R_t]$
- Bellman optimality equation: $\forall (x, a) \in \mathcal{X} \times \mathcal{A}$:

 $Q^*(x,a) = r(x,a) + \gamma \int P(dy|x,a) \max_{a'} Q^*(y,a')$

• $T: \mathbb{R}^{X \times A} \to \mathbb{R}^{X \times A}$

```
Q^* = TQ^*
```

 $(TQ^*)(x,a)$

- Optimal policy: $\pi^*(x) = \arg \max_a Q^*(x, a)$
- Classic DP: Compute *Q*^{*}, use greedy policy
- Methods: Value-iteration, policy iteration, linear programming

No state aliasing! $X_t = Y_t$, or some known function of it..

Function approximation

- Value iteration: $Q_{k+1} = TQ_k \rightarrow Q^*$
 - Converges geometrically
- TQ_k is intractable:
 - $(TQ)(x,a) = r(x,a) + \gamma \int P(dy|x,a) \max_{a'} Q(y,a')$
- Set up regression problem to "learn" TQ_k using eg neural net!
- Sample $(X_i, A_i) \sim \mu$, $Y_i = r_{\theta}(X_i, A_i, W_i) + \gamma \max_{a'} Q(f_{\theta}(X_i, A_i, W_i), a')$ i = 1, 2, ..., n

 TV_{k+2}

Variations

Alpha Zero!

- Between value and policy iteration:
 - $\pi_{k+1}(x) = \operatorname{argmax}_{a}(T^{p}Q_{k})(x,a), p \ge 0$
 - $Q_{k+1} = T_{\pi_{k+1}}^q Q_k, q \in \{1, 2, ..., \infty\}$

⇒"classification"⇒"regression"

- Use incremental learning methods ("recursive updates", "stochastic approximation", TD-learning, ...)
- Modify the operators involved: λ -update, entropy regularization, approximate greedification, ...
- Recycle data ("replay"); importance weighting
- Optimize data collection, parallelize computation

...does this work?

Some landmark results

• DeepMind:

- Atari
- AlphaGo/Alpha Zero

Single RL algorithm defeating worldchampion in Go & best chess program

Single RL algorithm learning to play 49 Atari games @ human level or beyond

• Others:

- OpenAl Five: Dota-2 agents
 Capture the flag (Deepmind)
- Google Brain & X: vision-based grasping

Autonomous learning of vision-based grasping

Defeating amateur human teams in Dota-2

...and failures...

From: Boyan & Moore: "Generalization in Reinforcement Learning: Safely Approximating the Value Function", *NIPS-7*, 1995.

 μ is the uniform distribution, **quadratic polynomials** used for value-function approximation

...add neural nets..

Optimal cost-to-go (-rewards)

...or trivial function approximation..

- Tsitsiklis & Van Roy (1996)
- State space: $\mathcal{X} = \{x_1, x_2\}$
- Dynamics:

Bellman operator:

$$(TV)(x_1) = 0 + \gamma V(x_2)$$

 $(TV)(x_2) = 0 + \gamma V(x_2).$

• Function-space: $\mathcal{F} = \{\theta \phi \mid \theta \in \mathbb{R} \},\$

$$\phi(x_1) = 1, \ \phi(x_2) = 2.$$

Iteration:

$$\begin{array}{lll} \theta_{t+1} &=& \operatorname*{argmin}_{\theta} \|\theta\phi - T(\theta_t\phi)\|_2 \\ &=& \operatorname*{argmin}_{\theta} (\theta - \gamma 2\theta_t)^2 + (2\theta - \gamma 2\theta_t)^2 = (6/5\gamma)\theta_t \to +\infty \end{array}$$

 $\boldsymbol{\mu}$ is the uniform distribution

Poor outlook for ADP

- "In light of these experiments, we conclude that the straightforward combination of DP and function approximation is not robust." (Boyan & Moore, NIPS-7, 1995)
- Unfortunately, many popular functions approximators, such as neural nets and linear regression, do not fall in this² class (and in fact can diverge). (G. Gordon, ICML, 1995).

But then why does it work for the "landmark results"?

regularization, classification, ...

Lesson: How to make ADP work?

Need to control all terms!

Covariate shift, or off-policy problem

- $C(\rho,\mu)$: Sampling distr. μ should dominate $\rho \sum_{t=0}^{\infty} \gamma^{t} P_{\pi_{K}}^{t}$
 - $_{\circ}~$ Change μ as you go, change policies slowly, ...
- Make approximation error $d(T\mathcal{F}, \mathcal{F})$ small:
 - Deep neural nets, LSTM, convnets, ...
- Make sample size large to control estimation error
 Large compute

...and in practice..

Work	Covariate shift	Approximation error	Estimation error	Computation platform
Atari2600 - DQN	Replay buffer	ConvNet, relatively shallow	50M frames, 38 days	GPUs
AlphaZero	Small learning rate	Deep convnet, residual blocks	700,000x4096=28 B	5000 TPUv1, 64 TPUv2
OpenAl Five	Penalize fast changes (PPO)	Large network, 1024 LSTM units	N*180 years, N = no. days	256 GPUs and 128,000 CPU
Vision-based grasping (QT-Opt)	Soft improvement in OPT, slowly mixing in new data	Deep convnet, 1.2 M params	580K offline grasps + 28K online grasps	1000 machines, 14K cores, 10 GPUs

Open problem #1

- Goal: Find a good policy/controller
- Setting: Access to a (stochastic) simulator
- Assumption:
 - Given a function approximator (linear, or not) that can represent/"learn" the optimal value function¹ with small error
- (When) can we do this in polynomial time? How good a policy can we find?
- Note: Assumption much weaker than used by above ADP result!

¹And/or optimal policy/stationary distribution of optimal policy/...

A partial result

A Linearly Relaxed Approximate Linear Program for Markov Decision Processes

Chandrashekar Lakshminarayanan[†], Shalabh Bhatnagar^{*}, and Csaba Szepesvári[†]

IEEE TAC 63(4), 1185-1191, 2018

$$\min_{r \in \mathbb{R}^{k}} c^{\top} \Phi r$$

$$s.t. \sum_{a} W_{a}^{\top} \Phi r \geq \sum_{a} W_{a}^{\top} (g_{a} + \alpha P_{a} \Phi r)$$

$$\|f\|_{\infty,\psi} = \beta_{\psi} = \alpha \max_{a} \beta_{\psi} = \alpha \max_{a}$$

$$c \ge 0, 1 c = 1$$
$$W_a \in [0, \infty)^{S \times m}, \psi \in [0, \infty)^S$$
$$\|J\|_{\infty, \psi} = \max_s \frac{|J(s)|}{\psi(s)}$$
$$\beta_{\psi} \coloneqq \alpha \max_a \|P_a \psi\|_{\infty, \psi} < 1$$
$$\psi \in \operatorname{span}(\Phi)$$

<u>**Theorem</u>**: Let $\epsilon = \inf_{r \in \mathbb{R}^k} ||J^* - \Phi r||_{\infty,\psi}$, $J_{\text{LRA}} = \Phi r_{\text{LRA}}$, where r_{LRA} is the</u> solution to the above LP. Then, under the said assumptions, $\|J^* - J_{\text{LRA}}\|_{1,c} \le \frac{2c^{\top}\psi}{1 - \beta_{1/2}} (3\epsilon + \|J_{\text{ALP}}^* - J_{\text{LRA}}^*\|_{\infty,\psi})$

P. J. Schweitzer and A. Seidmann, "Generalized polynomial approximations in Markovian decision processes," Journal of Mathematical Analysis and Applications, vol. 110, pp. 568-582, 1985.

min $c^{\top} \Phi r$

 $r \in \mathbb{R}^{\overline{k}}$

D. P. de Farias and B. Van Roy, "The linear programming approach to approximate dynamic programming," Operations Research, vol. 51, pp. 850-865, 2003.

----, "On constraint sampling in the linear programming approach to approximate dynamic programming," Mathematics of Operations Research, vol. 29, pp. 462-478, 2004.

On the exploration problem

Learning cheaply, online

- Goal: Interact with a "real" system and collect as much reward as possible!
- Performance metric:
 - Total reward collected, or..
 - Regret: Measure of learning speed
 "Difference to a baseline"
 - Regret is invariant to shifting the rewards
 - Scale fixed: Algorithms can be compared across different environments

Regret =
$$n \max_{a} \mathbb{E}[r(a, W)] - \sum_{t=0}^{n-1} R_t$$

Bandits vs. (episodic) MDPs

Bandits on one slide

New book! http://banditalgs.com

- Ad-hoc exploration: Good on some instances, bad on others
 - Explore-then-commit (ETC)
 - $\circ \epsilon$ -greedy, Boltzmann/Gibbs
- Planned exploration reaches optimal regret for all instances
 - UCB, posterior sampling a.k.a. Thompson sampling, ...

Open problem #2

- Goal: Collect as much reward as possible
- Setting: Interacting with an unknown environment

Assumption:

- Given a function approximator (linear, or not) that can represent/"learn" the optimal value function¹ with small error
- How big will be the regret? Can this be done with polynomial time computation? When?
- Note: Much harder than problem #1

¹And/or optimal policy/stationary distribution of optimal policy/...

An illustration of the differences

Video: courtesy of Ian Osband

Partial results

- Linear Quadratic Regulation
- Optimism gives $\tilde{O}(\sqrt{T})$ regret (Abbasi-Yadkori, Sz., COLT'11)
- Current work/open
 - Computational efficiency
 - Regret efficiency
 - Non-asymptotic
 - Dependence on instance
 - **Model-free**, $O(T^{3/4})$ regret (Lazic, Abbasi-Yadkori, Sz., 2018)

Y. Abbasi-Yadkori

 $\overline{X_{t+1}} = A\overline{X_t} + B\overline{U_t} + W_{t+1}$ $Y_t = X_t$ $c_t = X_t^{\mathsf{T}} Q X_t + U_t^{\mathsf{T}} R U_t$

Goal: minimize $\lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} c_t \right],$ *A,B* are unknown, $W_t \sim N(0, I)$

Conclusions

Current approach in ML/RL

minimal modeling

maximum computation

Did it work?

- Yes, a few times..
- Requirements:
 - Task can be specified as an optimization/constraint satisfaction problem
 - Access to loads of data
 - Access to huge-scale compute

Can we overdo learning?

- Meta-learning, evolution, learning to plan, learning symbol manipulation, ...
- Why?
 - Because it worked
 - Seamless integration with the rest of the architecture
- Why not?
 - Combinatorial explosion
 - \circ Slow
 - Lack of understanding, transparency, verifiability, ..

What else is missing?

- Learning and using models in an effective manner
 - Learn "planner-friendly" models
 - Models that work despite complex sensory inputs
 - Multiscale problems (fine-coarse-huge)
- Learning from sparse/no-reward reward
 - Same problem as learning good models?

Questions?

