
Some outstanding challenges in
reinforcement learning

Csaba Szepesvári

Contents
● What is RL? How does ML work?
● Does it work? What makes it work?
● How is it done?

○ ADP
○ What is known about ADP?
○ Challenge #1: Efficient planning

● On the exploration problem
○ Strategic planning, optimism
○ Challenge #2: Efficient exploration

● Conclusions

Reinforcement Learning (RL)

Goal: maximize
𝔼 ∑ 𝛾$𝑅$&'(

$)*
0 ≤ 𝛾 ≤ 1		fixed, known

𝜃 ∈ Θ:
unknown
“parameter”

𝑋$&' = 𝑓5 𝑋$, 𝐴$,𝑊$
𝑌$&' = 𝑔5 𝑋$, 𝐴$,𝑊$
𝑅$&' = 𝑟5(𝑋$, 𝐴$,𝑊$)

𝑌$&', 𝑅$&'

𝐴$

noisestate

observation reward

action

RL= problems, ≠ techniques!!
● Offline learning

○ Learn a good controller given some data collected from interacting
with the system – batch RL

● Online learning
○ Interact with the system with the goal of finding a good controller

with the least number of interactions – pure exploration
○ Interact with the system with the goal of collecting as much reward

as possible – the exploration problem
● Learn from a simulator

○ Find a good controller/action for the simulated system (or beyond)
with minimal computation – planning (with a simulator)

Series ISSN: 1939-4608

store.morganclaypool.com

Series Editors: Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech
 Thomas Dietterich, Oregon State University

Algorithms for Reinforcement Learning
Csaba Szepesvári, University of Alberta

Reinforcement learning is a learning paradigm concerned with learning to control a system so
as to maximize a numerical performance measure that expresses a long-term objective. What
distinguishes reinforcement learning from supervised learning is that only partial feedback is
given to the learner about the learner’s predictions. Further, the predictions may have long
term effects through influencing the future state of the controlled system. Thus, time plays a
special role. The goal in reinforcement learning is to develop efficient learning algorithms, as
well as to understand the algorithms’ merits and limitations. Reinforcement learning is of great
interest because of the large number of practical applications that it can be used to address,
ranging from problems in artificial intelligence to operations research or control engineering.
In this book, we focus on those algorithms of reinforcement learning that build on the powerful
theory of dynamic programming. We give a fairly comprehensive catalog of learning problems,
describing the core ideas and noting a large number of state-of-the-art algorithms, followed by
a discussion of their theoretical properties and limitations.

About SYNTHESIS

This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis
books provide concise, original presentations of important research and
development topics, published quickly, in digital and print formats.

SZEPESVÁRI

 ALGORITHM
S FOR REINFORCEM

ENT LEARNING

 M
O

R
G

A
N

 &
 C

LAY
PO

O
L

https://goo.gl/ftTfS4

The modus operandi in RL
(⊆ machine learning)

minimal modeling

maximum compute

Does it work? Why (now)?

Some landmark results
● DeepMind:

○ Atari
○ AlphaGo/Alpha Zero

● Others:
○ OpenAI Five: Dota-2 agents

■ Capture the flag (Deepmind)
○ Google Brain & X:

vision-based grasping

cosm of the larger robotic manipulation problem, providing a challenging and practically applicable
model problem for experimenting with generalization and diverse object interaction.

Much of the existing work on robotic grasping decomposes the task into a sensing, planning, and
acting stage: the robot first perceives the scene and identifies suitable grasp locations, then plans a
path to those locations [5, 6, 7, 8]. This stands in contrast to the kinds of grasping behaviors observed
in humans and animals, where the grasp is a dynamical process that tightly interleaves sensing and
control at every stage [9, 10]. This kind of dynamic closed-loop grasping is likely to be much more
robust to unpredictable object physics, limited sensory information (e.g., monocular camera inputs
instead of depth), and imprecise actuation. A closed-loop grasping system trained for long-horizon
success can also perform intelligent pre-grasping manipulations, such as pushing or repositioning
objects for an easier grasp. However, a major challenge with closed-loop grasp control is that the
sensorimotor loop must be closed on the visual modality, which is very difficult to utilize effectively
with standard optimal control methods in novel settings.

Figure 2: Close-up of a robot cell in our setup (left) and
about 1000 visually and physically diverse training ob-
jects (right). Each cell (left) consists of a KUKA LBR
IIWA arm with a two-finger gripper and an over-the-
shoulder RGB camera.

We study how off-policy deep reinforcement
learning can acquire closed-loop dynamic vi-
sual grasping strategies, using entirely self-
supervised data collection, so as to generalize
to previously unseen objects at test time. The
value of low-level end-effector movements is
predicted directly from raw camera observa-
tions, and the entire system is trained using
grasp attempts in the real world. While the prin-
ciples of deep reinforcement learning have been
known for decades [11, 12], operationalizing
them in a practical robotic learning algorithm
that can generalize to new objects requires a
stable and scalable algorithm and large datasets,
as well as careful system design.

The implementation in our experiments makes
very simple assumptions: observations come
from a monocular RGB camera located over
the shoulder (see Fig. 2), and actions consist
of end-effector Cartesian motion and gripper
opening and closing commands. The reinforce-
ment learning algorithm receives a binary re-

ward for lifting an object successfully, and no other reward shaping. This general set of assumptions
makes the method feasible to deploy at large scale, allowing us to collect 580k grasp attempts on 7
real robotic systems. Unlike most reinforcement learning tasks in the literature [13, 14], the primary
challenge in this task is not just to maximize reward, but to generalize effectively to previously un-
seen objects. This requires a very diverse set of objects during training. To make maximal use of
this diverse dataset, we propose an off-policy training method based on a continuous-action gener-
alization of Q-learning, which we call QT-Opt (Q-function Targets via Optimization). Unlike other
continuous action Q-learning methods [15, 16], which are often unstable due to actor-critic insta-
bility [17, 18], QT-Opt dispenses with the need to train an explicit actor, instead using stochastic
optimization over the critic to select actions and target values. We show that even fully off-policy
training can outperform strong baselines based on prior work, while a moderate amount of on-policy
finetuning can improve performance to a success rate of 96% on challenging, previously unseen ob-
jects.

Our experimental evaluation demonstrates the effectiveness of this approach both quantitatively and
qualitatively. We show that our method attains a high success rate across a range of objects not
seen during training, and our qualitative experiments show that this high success rate is due to the
system adopting a variety of strategies that would be infeasible without closed-loop vision-based
control: the learned policies exhibit corrective behaviors, regrasping, probing motions to ascertain
the best grasp, non-prehensile repositioning of objects, and other features that are feasible only when
grasping is formulated as a dynamic, closed-loop process.

2

Single RL algorithm learning to
play 49 Atari games @ human level
or beyondSingle RL algorithm defeating world-

champion in Go & best chess program

Defeating amateur human teams in
Dota-2

Autonomous learning of
vision-based grasping

Vision-based grasping
● 𝑌$: 472x472 RGB images, gripper state, height above

ground, 𝑌$ ≠ 𝑋$
● 𝐴$: 3D gripper displacement,

2D rotation, gripper open/close,
termination (7D)

● 𝑅$: success or failure at the “end”,
fixed cost per time step

● Episodes: 20 steps, learned stopping

𝑋$&' = 𝑓5 𝑋$, 𝐴$,𝑊$
𝑌$&' = 𝑔5 𝑋$, 𝐴$,𝑊$
𝑅$&' = 𝑟5(𝑋$, 𝐴$,𝑊$)

𝑌$&', 𝑅$&'

𝐴$

QT-Opt: Scalable Deep Reinforcement Learning
for Vision-Based Robotic Manipulation

Dmitry Kalashnikov1, Alex Irpan1, Peter Pastor2, Julian Ibarz1,
Alexander Herzog2, Eric Jang1, Deirdre Quillen3, Ethan Holly1,
Mrinal Kalakrishnan2, Vincent Vanhoucke1, Sergey Levine1,3

{dkalashnikov, alexirpan, julianibarz, ejang, eholly, vanhoucke, slevine}@google.com,
{peterpastor, alexherzog, kalakris}@x.team, {deirdrequillen}@berkeley.edu

Abstract: In this paper, we study the problem of learning vision-based dynamic
manipulation skills using a scalable reinforcement learning approach. We study
this problem in the context of grasping, a longstanding challenge in robotic ma-
nipulation. In contrast to static learning behaviors that choose a grasp point and
then execute the desired grasp, our method enables closed-loop vision-based con-
trol, whereby the robot continuously updates its grasp strategy based on the most
recent observations to optimize long-horizon grasp success. To that end, we in-
troduce QT-Opt, a scalable self-supervised vision-based reinforcement learning
framework that can leverage over 580k real-world grasp attempts to train a deep
neural network Q-function with over 1.2M parameters to perform closed-loop,
real-world grasping that generalizes to 96% grasp success on unseen objects.
Aside from attaining a very high success rate, our method exhibits behaviors that
are quite distinct from more standard grasping systems: using only RGB vision-
based perception from an over-the-shoulder camera, our method automatically
learns regrasping strategies, probes objects to find the most effective grasps, learns
to reposition objects and perform other non-prehensile pre-grasp manipulations,
and responds dynamically to disturbances and perturbations.4

Keywords: grasping, reinforcement learning, deep learning

1 Introduction

Figure 1: Seven robots are set up to collect grasping
episodes with autonomous self-supervision.

Manipulation with object interaction represents
one of the largest open problems in robotics:
intelligently interacting with previously unseen
objects in open-world environments requires
generalizable perception, closed-loop vision-
based control, and dexterous manipulation. Re-
inforcement learning offers a promising avenue
for tackling this problem, but current work on
reinforcement learning tackles the problem of
mastering individual skills, such as hitting a
ball [1], opening a door [2, 3], or throwing [4].
To meet the generalization demands of real-
world manipulation, we focus specifically on
scalable learning with off-policy algorithms, and study this question in the context of the specific
problem of grasping. While grasping restricts the manipulation problem, it still retains many of
its largest challenges: a grasping system should be able to pick up previously unseen objects with
reliable and effective grasps, while using realistic sensing and actuation. It thus serves as a micro-

1Google Brain, United States
2X, Mountain View, California, United States
3University of California Berkeley, Berkeley, California, United States
4Supplementary experiment videos can be found at https://goo.gl/ykQn6g.

ar
X

iv
:1

80
6.

10
29

3v
1

 [c
s.L

G
]

27
 Ju

n
20

18

cosm of the larger robotic manipulation problem, providing a challenging and practically applicable
model problem for experimenting with generalization and diverse object interaction.

Much of the existing work on robotic grasping decomposes the task into a sensing, planning, and
acting stage: the robot first perceives the scene and identifies suitable grasp locations, then plans a
path to those locations [5, 6, 7, 8]. This stands in contrast to the kinds of grasping behaviors observed
in humans and animals, where the grasp is a dynamical process that tightly interleaves sensing and
control at every stage [9, 10]. This kind of dynamic closed-loop grasping is likely to be much more
robust to unpredictable object physics, limited sensory information (e.g., monocular camera inputs
instead of depth), and imprecise actuation. A closed-loop grasping system trained for long-horizon
success can also perform intelligent pre-grasping manipulations, such as pushing or repositioning
objects for an easier grasp. However, a major challenge with closed-loop grasp control is that the
sensorimotor loop must be closed on the visual modality, which is very difficult to utilize effectively
with standard optimal control methods in novel settings.

Figure 2: Close-up of a robot cell in our setup (left) and
about 1000 visually and physically diverse training ob-
jects (right). Each cell (left) consists of a KUKA LBR
IIWA arm with a two-finger gripper and an over-the-
shoulder RGB camera.

We study how off-policy deep reinforcement
learning can acquire closed-loop dynamic vi-
sual grasping strategies, using entirely self-
supervised data collection, so as to generalize
to previously unseen objects at test time. The
value of low-level end-effector movements is
predicted directly from raw camera observa-
tions, and the entire system is trained using
grasp attempts in the real world. While the prin-
ciples of deep reinforcement learning have been
known for decades [11, 12], operationalizing
them in a practical robotic learning algorithm
that can generalize to new objects requires a
stable and scalable algorithm and large datasets,
as well as careful system design.

The implementation in our experiments makes
very simple assumptions: observations come
from a monocular RGB camera located over
the shoulder (see Fig. 2), and actions consist
of end-effector Cartesian motion and gripper
opening and closing commands. The reinforce-
ment learning algorithm receives a binary re-

ward for lifting an object successfully, and no other reward shaping. This general set of assumptions
makes the method feasible to deploy at large scale, allowing us to collect 580k grasp attempts on 7
real robotic systems. Unlike most reinforcement learning tasks in the literature [13, 14], the primary
challenge in this task is not just to maximize reward, but to generalize effectively to previously un-
seen objects. This requires a very diverse set of objects during training. To make maximal use of
this diverse dataset, we propose an off-policy training method based on a continuous-action gener-
alization of Q-learning, which we call QT-Opt (Q-function Targets via Optimization). Unlike other
continuous action Q-learning methods [15, 16], which are often unstable due to actor-critic insta-
bility [17, 18], QT-Opt dispenses with the need to train an explicit actor, instead using stochastic
optimization over the critic to select actions and target values. We show that even fully off-policy
training can outperform strong baselines based on prior work, while a moderate amount of on-policy
finetuning can improve performance to a success rate of 96% on challenging, previously unseen ob-
jects.

Our experimental evaluation demonstrates the effectiveness of this approach both quantitatively and
qualitatively. We show that our method attains a high success rate across a range of objects not
seen during training, and our qualitative experiments show that this high success rate is due to the
system adopting a variety of strategies that would be infeasible without closed-loop vision-based
control: the learned policies exhibit corrective behaviors, regrasping, probing motions to ascertain
the best grasp, non-prehensile repositioning of objects, and other features that are feasible only when
grasping is formulated as a dynamic, closed-loop process.

2

Autonomous learning of vision-
based grasping
● RL on a physical system
● High success rate (78%→	96%)
● Intelligent, robust, closed-loop

behavior

https://goo.gl/kTMcCb
Kalashnikov et al. (arXiv, 2018)

Why now?
● Reduce everything to (some form of)

optimization: DP (=use value functions)

● Flexible models:
○ Deep neural networks, ReLu, LSTM, ConvNet, ..

● Large scale computation (GPU, TPU, Cloud, ..)

● Software frameworks, SGD!

● Rapidly growing, very active community

● Commercial interest, funding

When to use off-the-shelf ML/RL?
● Mathematical modeling is painful to impossible

○ E.g., complex observations (vision, text, …)
● Task can be specified as an optimization/constraint

satisfaction problem
● Access to lots of data

○ High-fidelity simulator can be built
○ High throughput experimentation

● Access to huge-scale compute
● A priori verifiability is not a major concern

○ Simulator can be trusted
○ Physical experiments/online learning are feasible and sufficient

The core ideas

How RL works (~1990s)
Incrementally produce policies1 𝜋', 𝜋C, …
How?
1. Value-based policy search a.k.a. approximate dynamic

programming (ADP)
⇐ all the methods in “success stories” are based on ADP!

2. Direct policy search: 𝑘FG-order optimization, 0 ≤ 𝑘 ≤ 2
■ FDSA, SPSA, Monte-Carlo (𝑘 = 0),
■ SGD=REINFORCE (𝑘 = 1), Adam, momentum, Batchnorm, …
■ LBFGS, K-FAC, .. (𝑘 = 2)
■ Name of the game: Variance reduction

1policy = feedback controller, static or dynamic

Models?
Not really.. Could be.. Should be!

Dynamic programming
(optimal control)

● Value functions: 𝑄J 𝑥, 𝑎 = 𝔼J,MN)O,PN)Q ∑ 𝛾$	𝑅$(
$)*

● Bellman optimality equation: ∀ 𝑥, 𝑎 ∈ 𝒳×𝒜:
𝑄∗ 𝑥, 𝑎 = 𝑟 𝑥, 𝑎 + 𝛾∫ 𝑃 𝑑𝑦 𝑥, 𝑎 	max

O_
𝑄∗ 𝑦, 𝑎′

ab∗ Q,O

● 𝑇:ℝP×M → ℝP×M

𝑄∗ = 𝑇𝑄∗

● Optimal policy: 𝜋∗ 𝑥 = arg	max
O
	𝑄∗(𝑥, 𝑎)

● Classic DP: Compute 𝑄∗, use greedy policy
● Methods: Value-iteration, policy iteration, linear programming

∫ ℎ 𝑦 𝑃 𝑑𝑦 𝑥, 𝑎 =
					𝔼 ℎ(𝑓 𝑥, 𝑎,𝑊)

No	state	aliasing!
𝑋$ = 𝑌$,

or some known
function of it..

Richard E. Bellman
(1920-1984)

Function approximation
● Value	iteration:	𝑄t&' = 𝑇𝑄t → 𝑄∗

○ Converges	geometrically
● 𝑇𝑄t is	intractable:

○ 𝑇𝑄 𝑥, 𝑎 = 𝑟 𝑥, 𝑎 + 𝛾∫ 𝑃 𝑑𝑦 𝑥, 𝑎 	max
O_
	𝑄 𝑦, 𝑎z

● Set	up	regression	problem	to	“learn”		𝑇𝑄t using	eg neural	net!
● Sample	 𝑋�, 𝐴� ∼ 𝜇,	
𝑌� = 𝑟5 𝑋�, 𝐴�,𝑊� + 𝛾	max

O_
	𝑄(𝑓5 𝑋�, 𝐴�,𝑊� , 𝑎z)

𝑖 = 1,2, … , 𝑛

Variations
● Between value and policy iteration:

○ 𝜋t&' 𝑥 = argmaxO(𝑇�𝑄t) 𝑥, 𝑎 , 𝑝 ≥ 0 ⇒”classification”
○ 𝑄t&' = 𝑇J���

� 𝑄t , 𝑞 ∈ {1,2, … ,∞} ⇒”regression”

● Use incremental learning methods (“recursive updates”,
“stochastic approximation”, TD-learning, …)

● Modify the operators involved: 𝜆-update, entropy
regularization, approximate greedification, …

● Recycle data (“replay”); importance weighting
● Optimize data collection, parallelize computation

Alpha Zero!

..does this work?

Some landmark results
● DeepMind:

○ Atari
○ AlphaGo/Alpha Zero

● Others:
○ OpenAI Five: Dota-2 agents

■ Capture the flag (Deepmind)
○ Google Brain & X:

vision-based grasping

cosm of the larger robotic manipulation problem, providing a challenging and practically applicable
model problem for experimenting with generalization and diverse object interaction.

Much of the existing work on robotic grasping decomposes the task into a sensing, planning, and
acting stage: the robot first perceives the scene and identifies suitable grasp locations, then plans a
path to those locations [5, 6, 7, 8]. This stands in contrast to the kinds of grasping behaviors observed
in humans and animals, where the grasp is a dynamical process that tightly interleaves sensing and
control at every stage [9, 10]. This kind of dynamic closed-loop grasping is likely to be much more
robust to unpredictable object physics, limited sensory information (e.g., monocular camera inputs
instead of depth), and imprecise actuation. A closed-loop grasping system trained for long-horizon
success can also perform intelligent pre-grasping manipulations, such as pushing or repositioning
objects for an easier grasp. However, a major challenge with closed-loop grasp control is that the
sensorimotor loop must be closed on the visual modality, which is very difficult to utilize effectively
with standard optimal control methods in novel settings.

Figure 2: Close-up of a robot cell in our setup (left) and
about 1000 visually and physically diverse training ob-
jects (right). Each cell (left) consists of a KUKA LBR
IIWA arm with a two-finger gripper and an over-the-
shoulder RGB camera.

We study how off-policy deep reinforcement
learning can acquire closed-loop dynamic vi-
sual grasping strategies, using entirely self-
supervised data collection, so as to generalize
to previously unseen objects at test time. The
value of low-level end-effector movements is
predicted directly from raw camera observa-
tions, and the entire system is trained using
grasp attempts in the real world. While the prin-
ciples of deep reinforcement learning have been
known for decades [11, 12], operationalizing
them in a practical robotic learning algorithm
that can generalize to new objects requires a
stable and scalable algorithm and large datasets,
as well as careful system design.

The implementation in our experiments makes
very simple assumptions: observations come
from a monocular RGB camera located over
the shoulder (see Fig. 2), and actions consist
of end-effector Cartesian motion and gripper
opening and closing commands. The reinforce-
ment learning algorithm receives a binary re-

ward for lifting an object successfully, and no other reward shaping. This general set of assumptions
makes the method feasible to deploy at large scale, allowing us to collect 580k grasp attempts on 7
real robotic systems. Unlike most reinforcement learning tasks in the literature [13, 14], the primary
challenge in this task is not just to maximize reward, but to generalize effectively to previously un-
seen objects. This requires a very diverse set of objects during training. To make maximal use of
this diverse dataset, we propose an off-policy training method based on a continuous-action gener-
alization of Q-learning, which we call QT-Opt (Q-function Targets via Optimization). Unlike other
continuous action Q-learning methods [15, 16], which are often unstable due to actor-critic insta-
bility [17, 18], QT-Opt dispenses with the need to train an explicit actor, instead using stochastic
optimization over the critic to select actions and target values. We show that even fully off-policy
training can outperform strong baselines based on prior work, while a moderate amount of on-policy
finetuning can improve performance to a success rate of 96% on challenging, previously unseen ob-
jects.

Our experimental evaluation demonstrates the effectiveness of this approach both quantitatively and
qualitatively. We show that our method attains a high success rate across a range of objects not
seen during training, and our qualitative experiments show that this high success rate is due to the
system adopting a variety of strategies that would be infeasible without closed-loop vision-based
control: the learned policies exhibit corrective behaviors, regrasping, probing motions to ascertain
the best grasp, non-prehensile repositioning of objects, and other features that are feasible only when
grasping is formulated as a dynamic, closed-loop process.

2

Single RL algorithm learning to
play 49 Atari games @ human level
or beyondSingle RL algorithm defeating world-

champion in Go & best chess program

Defeating amateur human teams in
Dota-2

Autonomous learning of
vision-based grasping

..and failures..

𝜇	is the uniform distribution, quadratic polynomials used for value-function approximation

Goal position

..add neural nets.. Optimal cost-to-go (-rewards)

..or trivial function approximation..

𝜇	is the uniform distribution

Poor outlook for ADP

But then why does it work for the “landmark results”?

Why does it work?
Theorem (Sz., Munos, 2005):

𝑉∗ − 𝑉J� �,� ≤
2𝛾

1 − 𝛾 C 𝐶 𝜌, 𝜇 '/�	𝜖' + 𝜖C

𝜖' = 𝑑 𝑇ℱ,ℱ + poly(��� �
�

, ��� � 𝒜
�

, log 𝐾 , dim ℱ)

𝜖C = const	×𝛾¡

Range of 𝑉∗ ∼ '
'¢£

. We need both 𝜖', 𝜖C ≪ 1 − 𝛾

Extensions (2005-2010): Single sample path, |𝒜| = ∞,
regularization, classification, …

R. Munos A.m. Farahmand B.A. Pires

We made it work!
(with A. Antos)

Approximation
error

Estimation
error

Covariate-shift
price

Iteration
cost

When

Lesson: How to make ADP work?
Need to control all terms!

● 𝐶(𝜌, 𝜇): Sampling distr. 𝜇 should dominate
𝜌∑ 𝛾$𝑃J�

$(
$)*

○ Change 𝜇 as you go, change policies slowly, …

● Make approximation error 𝑑(𝑇ℱ, ℱ) small:
○ Deep neural nets, LSTM, convnets, …

● Make sample size large to control estimation error
○ Large compute

Covariate shift, or
off-policy problem

..and in practice..
Work Covariate shift Approximation

error Estimation error Computation
platform

Atari2600 - DQN Replay buffer ConvNet, relatively
shallow

50M frames, 38
days GPUs

AlphaZero Small learning rate Deep convnet,
residual blocks

700,000x4096=28
B

5000 TPUv1, 64
TPUv2

OpenAI Five Penalize fast
changes (PPO)

Large network,
1024 LSTM units

N*180 years, N =
no. days

256 GPUs and
128,000 CPU

Vision-based
grasping (QT-Opt)

Soft improvement
in OPT, slowly
mixing in new data

Deep convnet, 1.2
M params

580K offline
grasps + 28K
online grasps

1000 machines,
14K cores, 10
GPUs

Open problem #1
● Goal: Find a good policy/controller
● Setting: Access to a (stochastic) simulator
● Assumption:

○ Given a function approximator (linear, or not) that can
represent/”learn” the optimal value function1 with small error

● (When) can we do this in polynomial time? How good a
policy can we find?

● Note: Assumption much weaker than used by above ADP
result!

1And/or optimal policy/stationary distribution of optimal policy/..

A partial result
1

A Linearly Relaxed Approximate Linear Program
for Markov Decision Processes

Chandrashekar Lakshminarayanan†, Shalabh Bhatnagar?, and Csaba Szepesvári†

Abstract—Approximate linear programming (ALP) and its

variants have been widely applied to Markov Decision Processes

(MDPs) with a large number of states. A serious limitation of

ALP is that it has an intractable number of constraints, as a

result of which constraint approximations are of interest. In this

paper, we define a linearly relaxed approximation linear program

(LRALP) that has a tractable number of constraints, obtained

as positive linear combinations of the original constraints of the

ALP. The main contribution is a novel performance bound for

LRALP.

Keywords: Markov Decision Processes (MDPs), Approx-
imate Linear Programming (ALP),

I. INTRODUCTION

Markov decision processes (MDPs) have proved to be an
indispensable model for sequential decision making under
uncertainty with applications in networking, traffic control,
robotics, operations research, business, finance, artificial in-
telligence, health-care and more (see, e.g., [1]–[10]). In this
paper we adopt the framework of discrete-time, discounted
MDPs when a controller steers the stochastically evolving
state of a system while receiving rewards that depend on the
states visited and actions chosen. The goal is to choose the
actions so as to maximize the return, defined as the total
discounted expected reward. A controller that uses past state
information is called a policy. An optimal policy is one that
maximizes the value no matter where the process is started
from [7]. In this paper we consider planning problems where
the goal is to calculate actions of policies that give rise to
high values and give new error bounds on the quality of
solutions obtained by solving linear programs of tractable
size. To explain the contributions in more detail, we start by
describing the computational challenges involved in planning.

The main objective of planning is to compute actions of an
optimal policy while interacting with an MDP model. In finite
state-action MDPs, assuming access to individual transition
probabilities and rewards along transitions, various algorithms
are available to perform this computation in time and space
that scales polynomially with the number of states and actions.
However, in most practical applications, the MDP is compactly
represented and if it is not infinite, the number of states scale
exponentially with the size of the representation of the MDP.
If planners are allowed to perform some fixed number of
calculations for each state encountered, it is possible to use
sampling to make the per-state calculation-cost independent of

†Department of Computing Science, University of Alberta, Edmonton,
Alberta, Canada T6G 2E8. E-mail: {cnarayan, csaba.szepesvari}@ualberta.ca

?Department of Computer Science and Automation and RBCCPS, Indian
Institute of Science, Bangalore 560012. E-mail: shalabh@iisc.ac.in

the size of the state space [11]–[13]. Nevertheless, the resulting
methods are still quite limited. In fact, various hardness results
show that computing actions of (near-) optimal policies is
intractable in various senses and in various compactly repre-
sented MDPs [14]. Given these negative results, it is customary
to adopt the modest goal of efficiently computing actions of a
policy that is nearly as good as a policy chosen by a suitable
(computationally unbounded, and well-informed) oracle from
a given restricted policy class. Here, within some restrictions
(see below), the policy class can be chosen by the user. The
more flexibility the user is given in this choice, the stronger a
planning method is.

A popular approach along these lines, which goes back to
Schweitzer and Seidmann [15], relies on considering linear
approximations to the optimal value function: The idea is that,
similarly to linear regression, a fixed sequence of basis func-
tions are combined linearly. The user’s task is to use a priori
knowledge of the MDP to choose the basis functions so that
a good approximation to the optimal value function will exist
in the linear space spanned by the basis functions. The idea
then is to design some algorithm to find the coefficients of the
basis functions that give a good approximation, while keeping
computation cost in check. Finding a good approximation is
sufficient, since at the expense of an extra O(1/"2) randomized
computation, a uniform O(")-approximation to the optimal
value function can be used to calculate an action of an O(")-
optimal policy at any given state (e.g., follow the ideas in
[12], [13]; see also Theorem 3.7 of Kallenberg [16]). Since the
number of coefficients can be much smaller than the number
of states, the algorithms that search for the coefficients have
the potential to run efficiently regardless of the number of
states.

Following Schweitzer and Seidmann [15], most of the liter-
ature considers algorithms that are obtained from restricting
exact planning methods to search in the span of the fixed
basis functions when performing computations. In this paper
we consider the so-called approximate linear programming
(ALP) approach, which was heavily studied during the last
two decades, e.g., [17]–[27]. The basic idea here is to combine
a linear program whose solution is the optimal value function
(and thus the number of optimization variables in it scales with
the number of states) with a linear constraint that restricts
the optimization variables to lie in the subspace spanned
by the basis functions. As already noted by Schweitzer and
Seidmann [15], the new LP can still be kept feasible by just
adding one special basis function, while by substituting the
“value function candidates” with their linear expansions, the
number of optimization variables becomes the number of basis

3

is optimal (e.g., Corollary 3.3 of [16]). A policy u is said to
be greedy with respect to (w.r.t.) J if TuJ = TJ . Thus, any
policy that is greedy w.r.t. J⇤ is optimal.

III. THE LINEARLY RELAXED ALP

In this section we introduce the computational model used
and the “Linearly Relaxed Approximate Linear Program” a
relaxation of the ALP.

As discussed in the introduction, we are interested in
methods that compute a good approximation to the optimal
value function. As noted earlier, at the expense of a modest
additional cost, knowing an O(") approximation to J⇤ at a
few states suffices to compute actions of an O(")-optimal
policy. We will take a more general view, and we will consider
calculating good approximations to J⇤ with respect to a
weighted 1-norm, where the weights c form a probability
distribution over S . Recall that the weighted 1-norm kJk1,c
of a vector J 2 RS is defined as kJk1,c =

P
s c(s)|J(s)|.

Note that here and in what follows we identify elements of
RS (functions, mapping S = {1, . . . , S} to the reals) with
elements of RS in the obvious way. This allows us to write
e.g. c>J , which denotes

P
s c(s)J(s).

To introduce the optimization problem we study, first recall
that the optimal value function J⇤ is the solution of the fixed
point equation TJ⇤

= J⇤. It follows from the definition of
T that J⇤

= maxu TuJ⇤ � TuJ⇤ for any u, where � is the
componentwise partial ordering of vectors (is the reverse
relation). With some abuse of notation, we also introduce Ta

to denote Tu where u(s) = a for any s 2 S . It follows that
J⇤ � TaJ⇤ for any a 2 A and also that T = maxa Ta,
where again the maximization is componentwise. We call a
vector J that satisfies J � TaJ for any a 2 A superharmonic.
Note that this is a set of linear inequalities. By our note on T
and (Ta)a, these inequalities can also be written compactly as
J � TJ . It is not hard to show then that J⇤ is the smallest
superharmonic function (i.e., for any J superharmonic, J �
J⇤). It also follows that for any c 2 RS

++
.
= (0,1)

S , the
unique solution to the linear program min{c>J : J � TJ} =

min{c>J : J � TaJ, a 2 A} is J⇤.
Now, let �1, . . . ,�k : S ! R be k basis functions.
The Approximate Linear Program (ALP) of Schweitzer and

Seidmann [15] is obtained by adding the linear constraints J =Pk
i=1 ri�i to the above linear program. Eliminating J then

gives min{
P

i ric
>�i :

P
i ri�i � ga + ↵

P
i riPa�i, a 2

A, r = (ri) 2 Rk}. As noted by Schweitzer and Seidmann
[15], the linear program is feasible as long as 1, defined as the
vector with all components being identically equal to one, is
in the span of {�1, . . . ,�k}. For the purpose of computations,
it is assumed that the values c>�i, i = 1, . . . , k and the values
(Pa�i)(s) and ga(s) can be accessed in constant time. This
assumption can be relaxed to assuming that one can access
ga(s) and �i(s) for any (s, a) in constant time, as well as
to that one can efficiently sample from c, from Pa(s, ·) for
any (s, a) pair, but the details of this are beyond the scope
of the present work. As shown by de Farias and Van Roy
[19], if rALP denotes the solution to the above ALP then for
JALP

.
=

P
i rALP(i)�i

.
= �rALP it holds that kJALP�J⇤k1,c

2"
1�↵ provided c>1 = 1 and where " = infr kJ⇤ � �rk1 is
the error of approximating the optimal value with the span of
the basis functions �1, . . . ,�k and kJk1 = maxs |J(s)| is
the maximum norm and � 2 RS⇥k is the matrix formed by
(�1, . . . ,�k). That the error of approximating J⇤ with JALP
is O(") is significant: The user can focus on finding a good
basis, leaving the search for the “right” coefficients to a linear
program solver.

While solving the ALP can be significantly cheaper than
solving the LP underlying the MDP and thus it can be advan-
tageous for moderate-scale MDPs, the number of constraints
in the ALP is SA, hence the ALP is still intractable for huge-
scale MDPs. To reduce the number of constraints, we consider
a relaxation of ALP where the constraints are replaced with
positive linear combinations of them. Recalling that the con-
straints took the form J � ga+↵PaJ (with J = �r), choosing
m to be target number of constraints, for 1 i m, the ith
new constraint is given by

P
a w

>
i,aJ �

P
a w

>
i,a(ga+↵PaJ),

where the choice of m and that of the vectors wi,a 2 RS
+ is

left to the user. Note that this results in a linear program with
k variables and m constraints, which can be written as

min

r2Rk
c>�r

s.t.
X

a

W>
a �r �

X

a

W>
a (ga + ↵Pa�r) ,

(1)

where Wa = (w1,a, . . . , wm,a) 2 RS⇥m
+ . Note that the (i, j)th

entry of the m ⇥ k constraint matrix of the resulting LP isP
a w

>
i,a�j �↵

P
a w

>
i,aPa�j and assuming that (wi,a)a has p

nonzero elements, this can be calculated in O(p) time, making
the total cost of obtaining the constraint matrix to be O(mkp)
regardless of the values of S and A.

We will call the LP in (1) the linearly relaxed approxi-
mate linear program (LRALP). Any LP obtained using any
constraint selection/generation process can be represented
by choosing an appropriate binary-valued matrix W>

=

(W>
1 , . . . ,W>

A) 2 Rm⇥SA
+ . In particular, when the constraints

are selected in a random process as suggested by de Farias and
Van Roy [20], the matrix W would be a random, binary-valued
matrix.

Note that the LRALP may be unbounded. Unboundedness
could be avoided by adding an extra constraint of the form
r 2 N to the LRALP, for a properly chosen polyhedron N ⇢
Rk.2 However, it seems to us that it is downright misleading
to think that guaranteeing a bounded solution will also lead to
reasonable solutions. Thus we will stick to the above simple
form, forcing a discussion of how W should be chosen to get
meaningful results.3

2 In particular, to obtain their theoretical result, de Farias and Van Roy [20]
need the assumption that the set N is bounded and that it contains rALP. In
fact, the error bound derived by de Farias and Van Roy depends on the worst
error of approximating J

⇤ with �r when r ranges over N . Hence, if N is
unbounded, their bound is vacuous. In the context of a particular application,
de Farias and Van Roy [20] demonstrate that N can be chosen properly to
control this term. However, no general construction is presented to choose N .

3 The only question is whether there is some value in adding constraints
beyond choosing W properly. Our position is that the set N would most likely
be chosen based on very little and general information; the useful knowledge is
in choosing W , not in choosing some general set N . Since randomization does
not guarantee bounded solutions, de Farias and Van Roy [19] must use N :
In their case, N incorporates all the knowledge that makes the LP bounded.

𝑐 ≥ 0, 1§𝑐 = 1
𝑊O ∈ 0,∞ ¨×©, 𝜓 ∈ 0,∞ ¨

𝐽 (,¬ = max

𝐽 𝑠
𝜓 𝑠

𝛽¬ ≔ 𝛼	max
O
	 𝑃O𝜓 (,¬ < 1

𝜓 ∈ span(Φ)

Theorem: Let 𝜖 = inf
µ∈ℝ�

𝐽∗ − Φ𝑟 (,¬, 𝐽¶·¸ = Φ𝑟¶·¸ , where 𝑟¶·¸ is the
solution to the above LP. Then, under the said assumptions,

𝐽∗ − 𝐽¶·¸ ',¹ ≤
2𝑐§𝜓
1 − 𝛽¬

	(3𝜖 + 𝐽 ¶»
∗ − 𝐽¶·¸∗

(,¬)

8

0 200 400 600 800

�800

�600

�400

�200

0

J⇤

JCS

JCS�ideal

JLRA

0 200 400 600 800 1,000

1

2

3

4

u⇤

uCS
uCS�ideal
uLRA

Fig. 1. Results for a single-queue with polynomial features. On both figures
the x axis represents the state space: the length of the queue. For more details,
see the text.

[23]), exploring the idea of approximating dual variables and
designing algorithms that use the newly derived results to
actively compute what constraints to select.

REFERENCES

[1] D. J. White, “A survey of applications of Markov
decision processes,” The Journal of the Operational
Research Society, vol. 44, no. 11, pp. 1073–1096, 1993.

[2] J. Rust, “Numerical dynamic programming in eco-
nomics,” in Handbook of Computational Economics,
vol. 1, Elsevier, North Holland, 1996, pp. 619–729.

[3] E. A. Feinberg and A. Shwartz, Handbook of Markov
decision processes: methods and applications. Kluwer
Academic Publishers, 2002.

[4] Q. Hu and W. Yue, Markov Decision Processes with
Their Applications. Springer, 2007.

[5] O. Sigaud and O. Buffet, Eds., Markov Decision Pro-
cesses in Artificial Intelligence. Wiley-ISTE, 2010.

[6] N. Bäuerle and U. Rieder, Markov Decision Processes
with Applications to Finance. Springer, 2011.

[7] M. L. Puterman, Markov Decision Processes: Discrete
Stochastic Programming. New York: John Wiley, 1994.

[8] F. L. Lewis and D. Liu, Eds., Reinforcement Learning
and Approximate Dynamic Programming for Feedback
Control. Wiley-IEEE Press, 2012.

[9] M. Abu Alsheikh, D. T. Hoang, D. Niyato, H.-P. Tan,
and S. Lin, “Markov decision processes with appli-
cations in wireless sensor networks: A survey,” IEEE
Comm. Surveys & Tutorials, vol. 17, pp. 1239–1267,
2015.

[10] R. J. Boucherie and N. M. van Dijk, Eds., Markov De-
cision Processes in Practice. Springer, 2017, vol. 248.

[11] J. Rust, “Using randomization to break the curse of
dimensionality,” Econometrica, vol. 65, pp. 487–516,
1996.

[12] Cs. Szepesvári, “Efficient approximate planning in con-
tinuous space Markovian decision problems,” AI Com-
munications, vol. 13, no. 3, pp. 163–176, 2001.

[13] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse
sampling algorithm for near-optimal planning in large
Markov decision processes,” Machine learning, vol. 49,
pp. 193–208, 2002.

[14] V. D. Blondel and J. N. Tsitsiklis, “A survey of com-
putational complexity results in systems and control,”
Automatica, vol. 36, pp. 1249–1274, 2000.

[15] P. J. Schweitzer and A. Seidmann, “Generalized polyno-
mial approximations in Markovian decision processes,”
Journal of Mathematical Analysis and Applications,
vol. 110, pp. 568–582, 1985.

[16] L. Kallenberg. (2017). Markov decision processes: Lec-
ture notes, [Online]. Available: https://goo.gl/yhvrph.

[17] D. Schuurmans and R. Patrascu, “Direct value-
approximation for factored MDPs,” in NIPS, 2001,
pp. 1579–1586.

[18] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman,
“Efficient solution algorithms for factored MDPs,” Jour-
nal of Artificial Intelligence Research, vol. 19, pp. 399–
468, 2003.

[19] D. P. de Farias and B. Van Roy, “The linear program-
ming approach to approximate dynamic programming,”
Operations Research, vol. 51, pp. 850–865, 2003.

[20] ——, “On constraint sampling in the linear program-
ming approach to approximate dynamic programming,”
Mathematics of Operations Research, vol. 29, pp. 462–
478, 2004.

[21] B. Kveton and M. Hauskrecht, “Heuristic refine-
ments of approximate linear programming for factored
continuous-state Markov decision processes,” in ICAPS,
2004, pp. 306–314.

[22] M. Petrik and S. Zilberstein, “Constraint relaxation in
approximate linear programs,” in ICML, 2009, pp. 809–
816.

[23] V. V. Desai, V. F. Farias, and C. C. Moallemi, “A
smoothed approximate linear program,” in NIPS, 2009,
pp. 459–467.

[24] G. Taylor, M. Petrik, R. Parr, and S. Zilberstein, “Fea-
ture selection using regularization in approximate linear
programs for Markov decision processes,” in ICML,
2010, pp. 871–878.

[25] J. Pazis and R. Parr, “Non-parametric approximate
linear programming for MDPs,” in AAAI, 2011.

[26] N. Bhat, V. Farias, and C. C. Moallemi, “Non-
parametric approximate dynamic programming via the
kernel method,” in NIPS, 2012, pp. 386–394.

[27] Y. Abbasi-Yadkori, P. Bartlett, and A. Malek, “Linear
programming for large-scale Markov decision prob-
lems,” in ICML, 2014, pp. 496–504.

[28] C. Lakshminarayanan and S. Bhatnagar, “A gener-
alized reduced linear program for Markov Decision
Processes,” in AAAI, 2015, pp. 2722–2728.

[29] R.-R. Chen and S. P. Meyn, “Value iteration and op-
timization of multiclass queueing networks,” Queueing
Systems, vol. 32, no. 1-3, pp. 65–97, 1999.

8

0 200 400 600 800

�800

�600

�400

�200

0

J⇤

JCS

JCS�ideal

JLRA

0 200 400 600 800 1,000

1

2

3

4

u⇤

uCS
uCS�ideal
uLRA

Fig. 1. Results for a single-queue with polynomial features. On both figures
the x axis represents the state space: the length of the queue. For more details,
see the text.

[23]), exploring the idea of approximating dual variables and
designing algorithms that use the newly derived results to
actively compute what constraints to select.

REFERENCES

[1] D. J. White, “A survey of applications of Markov
decision processes,” The Journal of the Operational
Research Society, vol. 44, no. 11, pp. 1073–1096, 1993.

[2] J. Rust, “Numerical dynamic programming in eco-
nomics,” in Handbook of Computational Economics,
vol. 1, Elsevier, North Holland, 1996, pp. 619–729.

[3] E. A. Feinberg and A. Shwartz, Handbook of Markov
decision processes: methods and applications. Kluwer
Academic Publishers, 2002.

[4] Q. Hu and W. Yue, Markov Decision Processes with
Their Applications. Springer, 2007.

[5] O. Sigaud and O. Buffet, Eds., Markov Decision Pro-
cesses in Artificial Intelligence. Wiley-ISTE, 2010.

[6] N. Bäuerle and U. Rieder, Markov Decision Processes
with Applications to Finance. Springer, 2011.

[7] M. L. Puterman, Markov Decision Processes: Discrete
Stochastic Programming. New York: John Wiley, 1994.

[8] F. L. Lewis and D. Liu, Eds., Reinforcement Learning
and Approximate Dynamic Programming for Feedback
Control. Wiley-IEEE Press, 2012.

[9] M. Abu Alsheikh, D. T. Hoang, D. Niyato, H.-P. Tan,
and S. Lin, “Markov decision processes with appli-
cations in wireless sensor networks: A survey,” IEEE
Comm. Surveys & Tutorials, vol. 17, pp. 1239–1267,
2015.

[10] R. J. Boucherie and N. M. van Dijk, Eds., Markov De-
cision Processes in Practice. Springer, 2017, vol. 248.

[11] J. Rust, “Using randomization to break the curse of
dimensionality,” Econometrica, vol. 65, pp. 487–516,
1996.

[12] Cs. Szepesvári, “Efficient approximate planning in con-
tinuous space Markovian decision problems,” AI Com-
munications, vol. 13, no. 3, pp. 163–176, 2001.

[13] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse
sampling algorithm for near-optimal planning in large
Markov decision processes,” Machine learning, vol. 49,
pp. 193–208, 2002.

[14] V. D. Blondel and J. N. Tsitsiklis, “A survey of com-
putational complexity results in systems and control,”
Automatica, vol. 36, pp. 1249–1274, 2000.

[15] P. J. Schweitzer and A. Seidmann, “Generalized polyno-
mial approximations in Markovian decision processes,”
Journal of Mathematical Analysis and Applications,
vol. 110, pp. 568–582, 1985.

[16] L. Kallenberg. (2017). Markov decision processes: Lec-
ture notes, [Online]. Available: https://goo.gl/yhvrph.

[17] D. Schuurmans and R. Patrascu, “Direct value-
approximation for factored MDPs,” in NIPS, 2001,
pp. 1579–1586.

[18] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman,
“Efficient solution algorithms for factored MDPs,” Jour-
nal of Artificial Intelligence Research, vol. 19, pp. 399–
468, 2003.

[19] D. P. de Farias and B. Van Roy, “The linear program-
ming approach to approximate dynamic programming,”
Operations Research, vol. 51, pp. 850–865, 2003.

[20] ——, “On constraint sampling in the linear program-
ming approach to approximate dynamic programming,”
Mathematics of Operations Research, vol. 29, pp. 462–
478, 2004.

[21] B. Kveton and M. Hauskrecht, “Heuristic refine-
ments of approximate linear programming for factored
continuous-state Markov decision processes,” in ICAPS,
2004, pp. 306–314.

[22] M. Petrik and S. Zilberstein, “Constraint relaxation in
approximate linear programs,” in ICML, 2009, pp. 809–
816.

[23] V. V. Desai, V. F. Farias, and C. C. Moallemi, “A
smoothed approximate linear program,” in NIPS, 2009,
pp. 459–467.

[24] G. Taylor, M. Petrik, R. Parr, and S. Zilberstein, “Fea-
ture selection using regularization in approximate linear
programs for Markov decision processes,” in ICML,
2010, pp. 871–878.

[25] J. Pazis and R. Parr, “Non-parametric approximate
linear programming for MDPs,” in AAAI, 2011.

[26] N. Bhat, V. Farias, and C. C. Moallemi, “Non-
parametric approximate dynamic programming via the
kernel method,” in NIPS, 2012, pp. 386–394.

[27] Y. Abbasi-Yadkori, P. Bartlett, and A. Malek, “Linear
programming for large-scale Markov decision prob-
lems,” in ICML, 2014, pp. 496–504.

[28] C. Lakshminarayanan and S. Bhatnagar, “A gener-
alized reduced linear program for Markov Decision
Processes,” in AAAI, 2015, pp. 2722–2728.

[29] R.-R. Chen and S. P. Meyn, “Value iteration and op-
timization of multiclass queueing networks,” Queueing
Systems, vol. 32, no. 1-3, pp. 65–97, 1999.

8

0 200 400 600 800

�800

�600

�400

�200

0

J⇤

JCS

JCS�ideal

JLRA

0 200 400 600 800 1,000

1

2

3

4

u⇤

uCS
uCS�ideal
uLRA

Fig. 1. Results for a single-queue with polynomial features. On both figures
the x axis represents the state space: the length of the queue. For more details,
see the text.

[23]), exploring the idea of approximating dual variables and
designing algorithms that use the newly derived results to
actively compute what constraints to select.

REFERENCES

[1] D. J. White, “A survey of applications of Markov
decision processes,” The Journal of the Operational
Research Society, vol. 44, no. 11, pp. 1073–1096, 1993.

[2] J. Rust, “Numerical dynamic programming in eco-
nomics,” in Handbook of Computational Economics,
vol. 1, Elsevier, North Holland, 1996, pp. 619–729.

[3] E. A. Feinberg and A. Shwartz, Handbook of Markov
decision processes: methods and applications. Kluwer
Academic Publishers, 2002.

[4] Q. Hu and W. Yue, Markov Decision Processes with
Their Applications. Springer, 2007.

[5] O. Sigaud and O. Buffet, Eds., Markov Decision Pro-
cesses in Artificial Intelligence. Wiley-ISTE, 2010.

[6] N. Bäuerle and U. Rieder, Markov Decision Processes
with Applications to Finance. Springer, 2011.

[7] M. L. Puterman, Markov Decision Processes: Discrete
Stochastic Programming. New York: John Wiley, 1994.

[8] F. L. Lewis and D. Liu, Eds., Reinforcement Learning
and Approximate Dynamic Programming for Feedback
Control. Wiley-IEEE Press, 2012.

[9] M. Abu Alsheikh, D. T. Hoang, D. Niyato, H.-P. Tan,
and S. Lin, “Markov decision processes with appli-
cations in wireless sensor networks: A survey,” IEEE
Comm. Surveys & Tutorials, vol. 17, pp. 1239–1267,
2015.

[10] R. J. Boucherie and N. M. van Dijk, Eds., Markov De-
cision Processes in Practice. Springer, 2017, vol. 248.

[11] J. Rust, “Using randomization to break the curse of
dimensionality,” Econometrica, vol. 65, pp. 487–516,
1996.

[12] Cs. Szepesvári, “Efficient approximate planning in con-
tinuous space Markovian decision problems,” AI Com-
munications, vol. 13, no. 3, pp. 163–176, 2001.

[13] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse
sampling algorithm for near-optimal planning in large
Markov decision processes,” Machine learning, vol. 49,
pp. 193–208, 2002.

[14] V. D. Blondel and J. N. Tsitsiklis, “A survey of com-
putational complexity results in systems and control,”
Automatica, vol. 36, pp. 1249–1274, 2000.

[15] P. J. Schweitzer and A. Seidmann, “Generalized polyno-
mial approximations in Markovian decision processes,”
Journal of Mathematical Analysis and Applications,
vol. 110, pp. 568–582, 1985.

[16] L. Kallenberg. (2017). Markov decision processes: Lec-
ture notes, [Online]. Available: https://goo.gl/yhvrph.

[17] D. Schuurmans and R. Patrascu, “Direct value-
approximation for factored MDPs,” in NIPS, 2001,
pp. 1579–1586.

[18] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman,
“Efficient solution algorithms for factored MDPs,” Jour-
nal of Artificial Intelligence Research, vol. 19, pp. 399–
468, 2003.

[19] D. P. de Farias and B. Van Roy, “The linear program-
ming approach to approximate dynamic programming,”
Operations Research, vol. 51, pp. 850–865, 2003.

[20] ——, “On constraint sampling in the linear program-
ming approach to approximate dynamic programming,”
Mathematics of Operations Research, vol. 29, pp. 462–
478, 2004.

[21] B. Kveton and M. Hauskrecht, “Heuristic refine-
ments of approximate linear programming for factored
continuous-state Markov decision processes,” in ICAPS,
2004, pp. 306–314.

[22] M. Petrik and S. Zilberstein, “Constraint relaxation in
approximate linear programs,” in ICML, 2009, pp. 809–
816.

[23] V. V. Desai, V. F. Farias, and C. C. Moallemi, “A
smoothed approximate linear program,” in NIPS, 2009,
pp. 459–467.

[24] G. Taylor, M. Petrik, R. Parr, and S. Zilberstein, “Fea-
ture selection using regularization in approximate linear
programs for Markov decision processes,” in ICML,
2010, pp. 871–878.

[25] J. Pazis and R. Parr, “Non-parametric approximate
linear programming for MDPs,” in AAAI, 2011.

[26] N. Bhat, V. Farias, and C. C. Moallemi, “Non-
parametric approximate dynamic programming via the
kernel method,” in NIPS, 2012, pp. 386–394.

[27] Y. Abbasi-Yadkori, P. Bartlett, and A. Malek, “Linear
programming for large-scale Markov decision prob-
lems,” in ICML, 2014, pp. 496–504.

[28] C. Lakshminarayanan and S. Bhatnagar, “A gener-
alized reduced linear program for Markov Decision
Processes,” in AAAI, 2015, pp. 2722–2728.

[29] R.-R. Chen and S. P. Meyn, “Value iteration and op-
timization of multiclass queueing networks,” Queueing
Systems, vol. 32, no. 1-3, pp. 65–97, 1999.

IEEE TAC 63(4), 1185-1191, 2018

On the exploration problem

Learning cheaply, online
● Goal: Interact with a “real” system

and collect as much reward as possible!

● Performance metric:
○ Total reward collected, or..
○ Regret: Measure of learning speed

”Difference to a baseline"
■ Regret is invariant to shifting the rewards
■ Scale fixed: Algorithms can be compared across different

environments

Bandit problems

ℙ(payoff=1)=0.1 ℙ(payoff=1)=0.5 ℙ(payoff=1)=0.2

𝑋$&' = 𝑋$, 𝑌$&' = 𝑅$&', 𝑅$&' = 𝑟 𝐴$,𝑊$

Regret = 𝑛	max
O
	𝔼 𝑟 𝑎,𝑊 − ∑ 𝑅$½¢'

$)*

𝑋$&' = 𝑓5 𝑋$, 𝐴$,𝑊$
𝑌$&' = 𝑔5 𝑋$, 𝐴$,𝑊$
𝑅$&' = 𝑟5(𝑋$, 𝐴$,𝑊$)

𝑌$&', 𝑅$&'

𝐴$

Bandits vs. (episodic) MDPs

Action Environment Reward

Policy Episodic
Environment

Trajectory
and rewards

Bandits on one slide
● Ad-hoc exploration: Good on

some instances, bad on others
○ Explore-then-commit (ETC)
○ 𝜖-greedy, Boltzmann/Gibbs

● Planned exploration reaches
optimal regret for all instances
○ UCB, posterior sampling a.k.a.

Thompson sampling, … 2 arms, unit variance Gaussian rewards
with means 0 and –Δ, horizon 1000

New book!
http://banditalgs.com

Open problem #2
● Goal: Collect as much reward as possible

● Setting: Interacting with an unknown environment

● Assumption:
○ Given a function approximator (linear, or not) that can

represent/”learn” the optimal value function1 with small error

● How big will be the regret? Can this be done with
polynomial time computation? When?

● Note: Much harder than problem #1
1And/or optimal policy/stationary distribution of optimal policy/..

Video: courtesy of Ian Osband

An illustration of the differences

Partial results
● Linear Quadratic Regulation

● Optimism gives 𝑂À 𝑇� regret
(Abbasi-Yadkori, Sz., COLT’11)

● Current work/open
○ Computational efficiency
○ Regret efficiency
○ Non-asymptotic
○ Dependence on instance
○ Model-free, 𝑂(𝑇Â/Ã) regret

(Lazic, Abbasi-Yadkori, Sz., 2018)

Y. Abbasi-Yadkori N. Lazic

𝑋$&' = 𝐴𝑋$ + 𝐵𝑈$ +𝑊$&'
𝑌$ = 𝑋$
𝑐$ = 	𝑋$§𝑄𝑋$ + 𝑈$§𝑅𝑈$

Goal: minimize
lim
a→(

'
a
𝔼 ∑ 𝑐$a¢'

$)* ,
𝐴, 𝐵 are unknown, 𝑊$ ∼ 𝑁(0, 𝐼)

Conclusions

Current approach in ML/RL

minimal modeling

maximum computation

Did it work?
● Yes, a few times..

● Requirements:
○ Task can be specified as an optimization/constraint

satisfaction problem
○ Access to loads of data
○ Access to huge-scale compute

Can we overdo learning?
● Meta-learning, evolution, learning to plan, learning symbol

manipulation, …
● Why?

○ Because it worked
○ Seamless integration with the rest of the architecture

● Why not?
○ Combinatorial explosion
○ Slow
○ Lack of understanding, transparency, verifiability, ..

What else is missing?
● Learning and using models in an effective

manner
○ Learn “planner-friendly” models
○ Models that work despite complex sensory inputs
○ Multiscale problems (fine-coarse-huge)

● Learning from sparse/no-reward reward
○ Same problem as learning good models?

Questions?

