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Need change in power system operation

Increasing amount of renewable DG units
⇒ highly affects in-feed structure of existing power systems

Most renewable DG units interfaced to network via AC inverters
Physical characteristics of inverters largely differ from
characteristics of SGs

⇒ Different control and operation strategies are needed

Source: siemens.com
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The microgrid concept
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Modeling of microgrids

Main network components
DG units interfaced to network via inverters or SGs
Loads
Power lines and transformers

Standard modeling assumptions
Loads can be modeled by impedances
Line dynamics can be neglected
Lossless admittances

⇒ Work with Kron-reduced network
⇒ DG unit connected at each node in reduced network

Main focus: inverter-based microgrids
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Main operation modes of inverters in microgrids

1 Grid-feeding mode

2 Grid-forming mode

Grid-forming units are essential components in power systems
Tasks

To provide a synchronous frequency
To provide a certain voltage level at all buses in the network

⇔ To provide a stable operating point

⇒ Focus on inverters in grid-forming mode
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Basic functionality of DC-AC voltage inverters
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Inverter operated in grid-forming mode

vDC
2

vDC
2

vDC

Rf1 Lf

Cf

Rf2

vIa
Rg Lg vGa

vIb vGb

vIc vGc

9 / 42



Motivation Microgrids Stability & power sharing with droop control Distributed voltage control Conclusions and outlook

Inverter operated in grid-forming mode

vDC
2

vDC
2

vDC

Rf1 Lf

Cf

Rf2

vIa
Rg Lg vGa

vIb vGb

vIc vGc

Modulator

Current controller

Voltage controller

iref

vref

D
ig
it
al

si
gn

al
p
ro
ce
ss
or

(D
S
P
)

vI

iI

9 / 42



Motivation Microgrids Stability & power sharing with droop control Distributed voltage control Conclusions and outlook

Grid-forming inverter as controllable voltage source

Model assumptions:
Inverter is operated in grid-forming mode
Its inner current and voltage controllers track references ideally
If inverter connects intermittent DG unit to network, it is equipped
with some sort of fast-reacting storage
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Inverter model

Inverter dynamics

δ̇i = uδi ,

τPi
Ṗm

i = −Pm
i + Pi ,

Vi = uV
i ,

τPi
Q̇m

i = −Qm
i + Qi

Power flows at i-th node

Pi =
∑

k∼Ni

|Bik | sin(δik )ViVk

Qi = |Bii |V
2
i −

∑
k∼Ni

|Bik | cos(δik )ViVk

δi phase angle
Vi voltage

magnitude

uδi control inputs
uV

i

Pi active power
Qi reactive power

Pm
i measured

active power
Qm

i measured
reactive power

τPi
time constant
of meas. filter
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Example network
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Power sharing in microgrids

Definition (Power sharing)

Consider an AC electrical network, e.g. an AC microgrid

Denote its set of nodes by N = [1, n] ∩ N

Choose positive real constants γi , γk , χi and χk

Proportional active, respectively reactive, power sharing between
units at nodes i ∈ N and k ∈ N , if

Ps
i
γi

=
Ps

k
γk
, respectively

Qs
i
χi

=
Qs

k
χk
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Power sharing is an agreement problem

N ⊆ N

U = diag(1/γi ), i ∈ N

D = diag(1/χi ), i ∈ N

Control objective

lim
t→∞

UPN (δ,V ) = υ1|N|,

lim
t→∞

DQN (δ,V ) = β1|N|, υ ∈ R>0, β ∈ R>0
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Motivation for droop control of inverters

1 Droop control: widely used in SG-based power systems to
address problems of frequency stability and active power sharing

⇒ Adapt droop control to inverters
⇒ Make inverters mimic behavior of SGs with respect to frequency

and active power

2 How to couple actuactor signals (δ̇ and V ) with powers (P and Q)
to achieve power sharing?

⇒ Pose MIMO control design problem as set of decoupled SISO
control design problems

⇒ Analyze couplings in power flow equations over a power line
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Power flows over a power line

Assumptions
Dominantly inductive power line with admittance Yik ∈ C between
nodes i and k

Small phase angle differences, i.e. δi − δk ≈ 0

⇒ Approximations

Yik = Gik + jBik ≈ jBik , sin(δik ) ≈ δik , cos(δik ) ≈ 1

⇒ Active and reactive power flows simplify to

Pik = −Bik ViVkδik ,

Qik = −Bik V 2
i + Bik ViVk = −Bik Vi (Vi − Vk )

16 / 42



Motivation Microgrids Stability & power sharing with droop control Distributed voltage control Conclusions and outlook

Standard droop control for inverters

Frequency droop control

uδi = ωd − kPi
(Pm

i − Pd
i )

Voltage droop control

uV
i = V d

i − kQi
(Qm

i −Qd
i )

Further details: see, e.g., Chandorkar et al.
(1993)

kPi
∈ R>0 frequency droop

gain
ωd ∈ R>0 desired (nominal)

frequency
Pd

i ∈ R active power
setpoint

Pm
i ∈ R active power

measurement
kQi
∈ R>0 voltage droop

gain
V d

i ∈ R>0 desired (nominal)
voltage amplitude

Qd
i ∈ R reactive power

setpoint
Qm

i ∈ R reactive power
measurement
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Droop control - schematic representation
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Closed-loop droop-controlled microgrid

δ̇i = ωd − kPi
(Pm

i − Pd
i ),

τPi
Ṗm

i = −Pm
i + Pi ,

Vi = V d
i − kQi

(Qm
i −Qd

i ),

τPi
Q̇m

i = −Qm
i + Qi

⇓
change of variables

+
vector notation

⇓

δ̇ = ω,

T ω̇ = −ω + 1nω
d − KP(P − Pd ),

T V̇ = −V + V d − KQ(Q −Qd )

δ = col(δi ) ∈ Rn

ω = col(ωi ) ∈ Rn

V = col(Vi ) ∈ Rn

V d = col(V d
i ) ∈ Rn

T = diag(τPi
) ∈ Rn×n

KP = diag(kPi
) ∈ Rn×n

KQ = diag(kQi
) ∈ Rn×n

P = col(Pi ) ∈ Rn

Q = col(Qi ) ∈ Rn

Pd = col(Pd
i ) ∈ Rn

Qd = col(Qd
i ) ∈ Rn
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Problem statement

1 Derive conditions for asymptotic stability of generic
droop-controlled microgrids

2 Investigate if droop control is suitable to achieve control objective
of active power sharing, i.e.,

Ps
i
γi

=
Ps

k
γk
, γi ∈ R>0, γk ∈ R>0
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Stability analysis

Coordinate transformation

Follow interconnection and damping assignment passivity-based
control (IDA-PBC) approach (Ortega et al. (2002))

Represent microgrid dynamics in port-Hamiltonian form

Can easily identify energy function
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Port-Hamiltonian systems

ẋ = (J(x)− R(x))∇H + g(x)u, x ∈ X ⊆ Rn, u ∈ Rm,

y = gT (x)∇H, y ∈ Rm

J(x) ∈ Rn×n, J(x) = −J(x)T (interconnection matrix)
R(x) ≥ 0 ∈ Rn×n for all x ∈ X (damping matrix)

H : X→ R (Hamiltonian), ∇H =
(
∂H
∂x

)T

Power balance equation

Ḣ︸︷︷︸
stored power

= −∇HT R(x)∇H︸ ︷︷ ︸
dissipated power

+ uT y︸︷︷︸
supplied power

≤ uT y
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Synchronized motion

Synchronized motion starting in (δs, 1nω
s,V s) ∈ Sn × Rn × Rn

>0

δ∗(t) = mod2π
{
δs + 1nω

st
}
,

ω∗(t) = 1nω
s,

V∗(t) = V s

Aim: derive conditions, under which solutions of microgrid
converge asymptotically to synchronized motion
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Power flows depend on angle differences δik

Pi (δ1, . . . , δn,V1, . . . ,Vn) =
∑

k∼Ni

|Bik | sin(δik )ViVk ,

Qi (δ1, . . . , δn,V1, . . . ,Vn) = |Bii |V
2
i −

∑
k∼Ni

|Bik | cos(δik )ViVk

⇒ Flow of system can be described in reduced angle coordinates

⇒ Transform convergence problem into classical stability problem
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Main result (1) - Stability

Proposition (A condition for local asymptotic stability)

Fix τPi
, kPi

, ωd and Pd
i

If V d
i , kQi

and Qd
i are chosen such that

D + T −W>L−1W > 0 (1)

⇒ equilibrium point is locally asymptotically stable

L > 0, T > 0, D = diag
(

V d
i + kQi

Qd
i

kQi
(V s

i )2

)
> 0

Condition (1) ensures that Hamiltonian is locally positive definite
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Main result (2) - Active power sharing

Lemma (A condition for active power sharing)

Assume microgrid possesses synchronized motion

Then all generation units share active power proportionally with
respect to γi and γk in steady-state if

kPi
γi = kPk

γk and
Pd

i
γi

=
Pd

k
γk
, i ∼ N , k ∼ N

Condition holds independently of line admittances
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CIGRE MV benchmark model
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Simulation example
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Reactive power sharing

Voltage droop control does, in general, not guarantee desired
reactive power sharing

⇒ Several other or modified (heuristic) decentralized voltage control
strategies proposed in literature
(Zhong (2013), Li et al. (2009), Sao et al. (2005), Simpson-Porco
et al. (2014),...)

But: no general conditions or formal guarantees for reactive
power sharing are given
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Inverter model revisited

Inverter dynamics

δ̇i = uδi ,

τPi
Ṗm

i = −Pm
i + Pi ,

Vi = uV
i ,

τPi
Q̇m

i = −Qm
i + Qi

Reactive power flow at i-th node

Qi (δ1, . . . , δn,V1, . . . ,Vn) = |Bii |V
2
i −

∑
k∼Ni

|Bik | cos(δik )ViVk

δi phase angle
Vi voltage

magnitude

uδi control inputs
uV

i

Pi active power
Qi reactive power

Pm
i measured

active power
Qm

i measured
reactive power

τPi
time constant
of meas. filter
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Problem statement - Voltage stability and reactive
power sharing

Problem
Design a voltage control law such that

1 the microgrid possesses an asymptotically stable equilibrium
point

2 the DG units share their reactive powers proportionally in
steady-state

⇔ limt→∞ DQ(V ) = β1n, D = diag(1/χi ) ∈ Rn×n, β ∈ R
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Consensus-based distributed voltage control (DVC)

uV
i = V d

i − ki

∫ t

0
ei (τ)dτ,

ei =
∑

k∼Ci

(
Qm

i
χi
−

Qm
k
χk

)

=
∑

k∼Ci

(Q̄i − Q̄k )

V d
i ∈ R>0 desired (nominal)

voltage magnitude

ki ∈ R>0 feedback gain

Ci set of neighbor
nodes of node i
in graph induced
by communication
network

Assumption: graph induced by communication network is
connected and undirected

32 / 42



Motivation Microgrids Stability & power sharing with droop control Distributed voltage control Conclusions and outlook

Consensus-based distributed voltage control (DVC)

Inverter
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Closed-loop voltage and reactive power dynamics

V̇i = −kiei = −ki
∑

k∼Ci

(
Qm

i
χi
−

Qm
k
χk

)
, Vi (0) = V d

i

τPi
Q̇m

i = −Qm
i + Qi , Qm

i (0) = Qm
0i
∈ R

⇓
vector notation

⇓

V̇ = −KLDQm, V (0) = V d

T Q̇m = −Qm + Q, Qm(0) = Qm
0

V = col(Vi ) ∈ Rn
>0

Qm = col(Qm
i ) ∈ Rn

Q = col(Qi ) ∈ Rn

K = diag(ki ) ∈ Rn×n

D = diag(1/χi ) ∈ Rn×n

T = diag(τPi
) ∈ Rn×n

L ∈ Rn×n . . . Laplacian matrix of connected undirected graph induced
by communication network
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Main result (3) - Reactive power sharing in
steady-state

Claim
The DVC achieves proportional reactive power sharing in
steady-state.

Sketch of proof

L . . . Laplacian matrix of connected undirected graph
⇒ L = LT ≥ 0, L1n = 0n, vTLv > 0 for all v ∈ R \ {β1n}, β ∈ R

Steady-state

V̇ = 0n = −KLDQs ⇔ DQs = β1n ⇔
Qs

i
χi

=
Qs

k
χk
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Voltage conservation law

1T
nL = 0T

n

⇒ 1T
n K−1V̇ = 1T

n K−1KLDQm = 0T
n DQm

⇔
∑n

i=1
V̇i
ki

= 0

⇒ Describe flow of system in reduced voltage coordinates for
stability analysis

VR = col(Vi ) ∈ Rn−1
>0 ,

Vn = Vn(VR) =
n∑

i=1

Vi (0)

ki
−

n−1∑
i=1

kn

ki
Vi
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Main result (4) - Necessary and sufficient condition
for local exponential stability

Proposition

Fix D and a positive real constant τ
Set τPi

= τ, i ∼ N and K = κD, κ ∈ R>0

Let N = ∂Q
∂V

∣∣
xs

Let µi = ai + jbi be the i-th nonzero eigenvalue of the matrix
product NDLD with ai ∈ R and bi ∈ R
Then µi ∈ C+

Furthermore, xs is a locally exponentially stable equilibrium point
if and only if the positive real parameter κ is chosen such that

τκb2
i < ai

for all µi

Moreover, xs is locally exponentially stable for any positive real κ
if and only if NDLD has only real eigenvalues
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Subnetwork 1 of CIGRE MV benchmark model

Main electrical
network

PCC
110/20 kV

1

2

3

4

8

910

11

∼
=

∼
= ∼

=

∼
=

∼
=

∼
=

∼
=

∼
=

∼
=

∼
=

9a

9b

9c

10a

10b

10c

9c

9b

10c

10b

Graph model of
distributed communication

network

38 / 42



Motivation Microgrids Stability & power sharing with droop control Distributed voltage control Conclusions and outlook

Simulation example

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.3

0.4

D
Q

[p
u]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.1

0.2

Q
[p

u]

Voltage droop control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.98

1

t [s]

V
[p

u]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.3

0.4

D
Q

[p
u]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.1

0.2

Q
[p

u]

Distributed voltage control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.98

1

t [s]

V
[p

u]

39 / 42



Motivation Microgrids Stability & power sharing with droop control Distributed voltage control Conclusions and outlook

Conclusions and outlook

Microgrids are a promising concept in networks with large
amount of DG

Condition for local asymptotic stability in lossless
droop-controlled inverter-based microgrids

Selection criterion for parameters of frequency droop control that
ensures desired active power sharing in steady-state

Proposed distributed voltage control (DVC), which solves open
problem of reactive power sharing
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Outlook and related work

Analysis of microgrids with frequency droop control and
distributed voltage control (DVC)
Control schemes for highly ohmic networks
Influence of clock drift and delay induced by digital controllers of
inverters on microgrid performance (submitted to ACC’15)

Secondary frequency control
(Simpson-Porco et al. (2013), Bürger et al. (2014), Andreasson et al. (2012),
Bidram et al. (2013), Shafiee et al. (2014))

Optimal operation control
(Dörfler et al. (2014), Bolognani et al. (2013), Hans et al.(2014))

Alternative inverter control schemes
(Zhong et al. (2011), Torres et al. (2014), Dhople et al. (2014))
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