Regression on Manifolds: Nonparametric system identification with applications in control and systems biology

Anil Aswani
Peter Bickel
Claire Tomlin

Joint work with Mark Biggin, Charless Fowlkes, Soile Keränen, and Jitendra Malik

Electrical Engineering and Computer Sciences, UC Berkeley ACCESS Linnaeus Center School of Electrical Engineering, KTH April 2010

Experimental Platform: STARMAC

The Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control [Hoffmann, Waslander, Vitus, Huang, Gillula, Mercer, Bouffard, Li]

Case Study: Collision Avoidance

Pilots instructed to attempt to collide vehicles

Image analysis can record 3D gene expression at cellular resolution

3D confocal images

a "PointCloud" table

Luengo et al, 2006

a 3D gene expression atias

Fowlkes et al, 2008

a 3D gene expression atlas

16 million cells 3,000 embryos 7 time points protein 20 factors

Fowlkes et al, 2008

Quantitative changes in expression are evident along both axes for almost all genes

visualizing expression along both axes

cylindrical projection

Quantitative changes in expression are evident along both axes for almost all genes

eve

eve expression along D/V axis

sna

sna expression along A / P axis

Toy Example: Pendulum

- Dynamics: $\ddot{\hat{A}}=i \frac{g}{i} \sin \mu$
$x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}\theta \\ \dot{\theta}\end{array}\right] \rightarrow \dot{x}=f(x)$
$f(x)=\left[\begin{array}{c}x_{2} \\ -\frac{g}{l} \sin x_{1}\end{array}\right]$
- Write this as: $\dot{x}=\beta X$

$$
\beta=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{l} & 0
\end{array}\right] \quad X=\left[\begin{array}{c}
\sin x_{1} \\
x_{2}
\end{array}\right]
$$

[Jeremy Gillua]

Pendulum

Suppose:

- model is unknown
- noisy measurements are available of velocity

Identify a model $\dot{x}=\beta X$
where

$$
X={ }^{\prime \prime} \mu \mu \sin \mu \sin \mu \cos \mu \cos \mu \mu^{2} \mu^{2}::^{1 T}
$$

and β is unknown
[Jeremy Gillula]

Pendulum

Learned Result:

$$
\begin{aligned}
& x 1^{\prime} \text { dot }=0.23^{*} x 1+0.96 * x 2+-0.27 * \sin (x 1)+ \\
& -0.02^{*} \cos (x 1)+0.15 * \sin (x 2)+-0.01 * \cos (x 2) \\
& x 2 _ \text {dot }=3.66 * x 1+0.00 * x 2+-13.92 * \sin (x 1)+ \\
& 0.01 * \cos (x 1)+-0.00 * \sin (x 2)+0.01 * \cos (x 2)
\end{aligned}
$$

Online System Identification

[Kloetzer and Belta; Ma, Vidal, and Sastry; Soatto; Vijayakumar; Atkeson; Ting; Hunt...]

Online System Identification

[Kloetzer and Belta; Ma, Vidal, and Sastry; Soatto; Vijayakumar; Atkeson; Ting; Hunt...]

Online System Identification

Online System Identification

- Undersampling for high-dimensional systems
- Constrained dynamics
- Fast-slow dynamics
[Bickel and Li, 2007]

Online System Identification

Online System Identification

Online System Identification

Online System Identification

\longrightarrow Look for a geometric structure for sparsity Local linear models are easy to manipulate

eve mRNA data shown in 3D and 2D projections

KrP

hbP

eveP

Data, Stage 5: 4-8

hbP

eveP

Data, Stage 4: 9-25

Local Linear Regression

Solve for $\left(A_{\alpha}, b_{\alpha}\right)$ in $\dot{x}=A_{\alpha} x+b_{\alpha}$ for all α

Rewrite as:

$$
Y=\beta X
$$

where

$$
\begin{aligned}
Y^{T} & =\left[\dot{x}_{1}\left(t_{1}\right) \ldots \dot{x}_{E}\left(t_{T}\right)\right] \\
\beta & =\left[\begin{array}{ll}
A & b
\end{array}\right] \\
X^{T} & =\left[x_{1}\left(t_{1}\right) \ldots x_{E}\left(t_{T}\right) 1\right]
\end{aligned}
$$

Existing Approaches

Estimator	Considers geometry	Sparsity	High-dimensionality
Moore-Penrose 1	Yes		
Ridge 2			
Principal Components Regression			
Res	Yes	Yes	Yes
Lasso ${ }^{4,5}$		Yes	Yes
Elastic Net ${ }^{6}$	Yes		
Partial Least Squares			

${ }^{1}$ (Knight and Fu, 2000); ${ }^{2}$ (Hoerl and Kannard, 1970); ${ }^{3}$ (Massy, 1965); ${ }^{4}$ (Tibshirani, 1996); ${ }^{5}$ (Zou, 2006); ${ }^{6}$ (Zou and Hastie, 2005); ${ }^{7}$ (Wold, 1975)

Online System Identification

-Difficulty in interpreting regression coefficients
-Gradient of function does not exist

Online System Identification

Exterior derivative of function does exist

- Extension of gradients to manifolds
- Best local linear approximation of function on manifold

New Estimation Approach

- Locally learn manifold
- Constrain regression vector to lie on the manifold by penalizing for deviations from manifold

$$
\widehat{\beta}=\arg \min _{\beta}\left(\|W(Y-\beta X)\|_{2}^{2}+\lambda\|\Pi \beta\|_{2}^{2}\right)
$$

- Where Π is chosen to penalize β for lying off of the manifold

Correlation over space and time

temporal change in mRNA expression
correlation of gt protein with change in eve mRNA

Drosophila Embryo, Stage 5

$$
\frac{d[e v e]}{d t}=f(b c d P, g t P, h b P, k r P, k n i P, e v e P, e v e)
$$

$$
\frac{d[e v e]}{d t}=\beta_{0}+\beta_{1}[b c d P]+\beta_{2}[g t P]+\beta_{3}[h b P]+\beta_{4}[k r P]+\ldots
$$

Results: eve, Stage 5: 0-25

Stage 5:0-3

Stage 5:4-8

Stage 5:9-25

Results: eve, Stage 5: 26-100

Stage 5:26-50

Factor activity, Stage 5: 4-8

Rate of eve production vs gtP, Stage 5: 4-8

predicted gt activity simulated
predicted gt activity "correlation model"

Stage 5:4-8

predicted kr activity simulated
predicted kr activity "correlation model"

Stage 5:4-8

Potential insights

- factors appear to have concentration dependent effects
- repressing at one concentration, activating at another
- spurious correlations or real effects?
- starting to analyze the other data sets (binding data)
- if true, could add a new layer to the complexity of the signaling network
- model overlaps, but also gives some different results from the spatial correlation model
- can distinguish between weakening of repression, and repression, for example

Summary ...

- Method for local linear regression, designed for systems evolving on a manifold of lower dimension than overall space
- Designed to prevent overfitting
- Can be used as a tool to help identify network structure
- Another new project: network and parameter identification of HER2/3 network in cancer (with Joe Gray, Young-Hwan Chang, Steven Xie, and Soulaiman Itani)

Nonparametric Identification of Regulatory Interactions from Spatial and Temporal Gene Expression Data

Anil Aswani
Peter Bickel
Claire Tomlin

Joint work with Mark Biggin, Charless Fowlkes, Soile Keränen, and Jitendra Malik

Electrical Engineering and Computer Sciences, UC Berkeley ACCESS Linnaeus Center, School of Electrical Engineering, KIH

Thanks: NSF, NIH NCI

Air Traffic Control: Separation Assurance

Safety: 5 mile lateral, 1000 ft vertical separation

Case Study 2: Back-Flip

- Divide flip into three modes
- Hit desired target sets while avoiding unsafe sets

Back-flip: Method

- Identify target region in rotational state space for each mode
- Use reachable sets to calculate capture basin for each target
- Dynamic game formulation accounts for worst-case disturbances
- Verify that target of each mode is contained by
 capture basin of next mode

Toy Example: Mass-Spring System

$\boldsymbol{L}=$ Length of uncompressed spring

$$
\left[\begin{array}{c}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
L k_{1}-k_{2} \lambda m & \left.-k_{1}+k_{2}\right\rceil m & 0 \\
k_{2} L / m & k_{2} m & -k_{2} m
\end{array}\right]\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]
$$

Mass-Spring System

- $X=$ matrix of low noise measurements of positions
- $Y=$ vector of noisy measurements of acceleration

$$
Y=\left[\begin{array}{c}
\ddot{x}_{1} \\
\vdots \\
\ddot{x}_{1}
\end{array}\right]+\eta
$$

- $K=$ vector of estimated coefficients for the first ODE

$$
\begin{aligned}
K & =\arg \min _{\beta}\|Y-X \beta\|_{2}^{2} \\
& =\left(X^{T} X^{\geqslant} X^{T} Y\right.
\end{aligned}
$$

Degenerate Mass-Spring System

$L=$ Length of uncompressed spring
k_{2} is a very stiff spring

$$
\begin{aligned}
& \ddot{x}_{1}=-\frac{k_{1}}{2 m} \mathbb{K}_{1}-L \\
& x_{2}=x_{1}+L
\end{aligned}
$$

Degenerate Mass-Spring System

- $X=$ matrix of low noise measurements of positions
- $Y=$ vector of noisy measurements of acceleration
- $K=$ vector of estimated coefficients for the first ODE

$$
\begin{aligned}
K & =\underset{\beta}{\arg \min _{\beta}\|Y-X \beta\|_{2}^{2}} \\
& =X^{T} X^{\top} X^{T} Y
\end{aligned}
$$

- PROBLEM: Covariance matrix is (nearly) singular
- CAUSE: States have geometric constraints

Mass-Spring Example

	Model (8.10)			
	with $k_{1}=0.4, k_{2}=0.25, L=1, m=1$			
	$n M S E\left(\hat{B}, B_{1}\right)$	$n M S E\left(\hat{B}, B_{2}\right)$		
OLS/MP	0.096	(0.011)	1.422	(0.130)
RR	0.091	(0.009)	1.286	(0.115)
EN	0.091	(0.009)	1.286	(0.115)
PLS	0.096	(0.011)	1.422	(0.130)
PCR	0.096	(0.011)	1.422	(0.130)
EDE	0.091	(0.009)	1.286	(0.115)
ALEDE	0.091	(0.009)	1.286	(0.115)
EDEP	0.091	(0.009)	1.286	(0.115)
ALEDEP	0.091	(0.009)	1.286	(0.115)
	Model			
	$8.11)$			
	with $k_{1}=0.4, k_{2}$	$10000, L=1, m=1$		
	$n M S E\left(\hat{B}, B_{1}\right)$	$n M S E\left(\hat{B}, B_{2}\right)$		
OLS/MP	1.000	(0.000)	0.231	(0.162)
RR	1.000	(0.000)	0.118	(0.058)
EN	1.000	(0.000)	0.135	(0.074)
PLS	1.000	(0.000)	0.160	(0.167)
PCR	1.000	(0.000)	0.162	(0.166)
EDE	1.000	(0.000)	0.112	(0.060)
ALEDE	1.000	(0.000)	0.129	(0.077)
EDEP	1.000	(0.000)	0.111	(0.060)
ALEDEP	1.000	(0.000)	0.128	(0.078)

Window Size

log10(Error Bars)

Window Size

log10(Error Bars)

Window Size

log10(Error Bars)

RESULTS:
 Heatmap of Coefficients Times Factor Concentrations on Eve Stripes at Stage 5:4-8 with Changing Window Size

In general need to explain the weakening of repression etc.

KrP

eveP

Heatmap of Coefficients Times Factor Concentrations on Eve Stripes at Stage 5:4-8
with Fixed Window Size of Circle with Width of 6 Cells

Heatmap of Correlation Between Factor Concentration and Eve Stripes at Stage 5:4-8

KrP

Experimental eve mRNA Patterns

Stage $5: 0-3$

Stage $5: 9-25$

Simulated eve mRNA Patterns

Percent Error

Regulation is often associated with correlations in expression

Regression analysis detects known regulatory interactions

$$
M(x, t)=F\{P(x, t)\}
$$

\square Activator
Repressor

Transcription factors

Fowlkes et al, 2008

The method can be rapidly applied to any large quantitative dataset

100s of expression stripes from 95 genes

The measured expression correlates well with that predicted by the regression

Most expression stripes r>0.6

Talk outline

- One slide on PCP - use as motivation (here, we assumed a structure - given to us from Jeff, before modeling). What if we didn't have, or weren't confident with, the structure?
- Simple pendulum example
- Mark's system
- Local linear regression - justify, as a basis for identifying a potentially nonlinear system
- Method gives the regions of best fit, so there is a higher density of models in "very nonlinear" regions
- Key: protect against overfitting. If the system dynamic lies on a lower dimensional manifold, find it. (you can use the hb kr example here if you want)
- Sparsity, high dimensionality(?), non-parametric
- Results

Questions

- Anil - what is the diagram on slide 74 of quals pres?
- Mark - hb, kr well known interaction?
- Anil: NEDE is equivalent to an optimization formulation of principal components regression; Elastic net is equivalent to NALEDE in which the data is pure noise (no manifold) - explain clearly what is different

Comparison to Previous Work

- NEDE is equivalent to an optimization formulation of principal components regression
- Elastic net is equivalent to NALEDE in which the data is pure noise (no manifold)
- Combines positive aspects of different estimators
- Computational effort comparable to that of existing estimators

Simulation Results - Normalized Mean

Squared Error

Simulation Results - Classification Rate

$\mathrm{n}=50$

- In previous models of the HER2/3 signaling pathway, the structure was fixed a priori (from biological knowledge.)
- Structure from different cell types, animals, and in vitro experiments was used. These do not necessarily hold.
- Some parts of the structure might not have been discovered to date.
- We therefore need to search for the correct structure, and not only the parameters given a certain structure.

- To include structure modifications in the optimization, we introduce a module that creates possible networks, in a controlled fashion, and a module that creates different experiments.
- Connections in a network can be forced, prohibited, encouraged, or discouraged.

