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Desiderata

Biological Learning is Fast and Flexible

• learning must be model-based

• models must flexible

• inference must be efficient
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Probabilistic Models and Inference

Systems which rely on experience will always have some uncertainty associated
with any prediction

• use probabilistic models

Probabilistic models capture all types of uncertainty

• inherent stochasticity
• measurement noise
• model uncertainty

To reason efficiently about past experience

• probabilistic, Bayesian inference
• principled framework
• forces you to be explicit about your assumptions
• exact computations may be intractable
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Parametric vs Non-parametric Models

Different kinds of learning

• sometimes we’re unsure about the value of some parameter
• more typically, we’re unsure about functional relationships

Non-parametric models

• don’t have a fixed parametric structure
• don’t have a finite number of parameters
• automatically adapt their complexity to the observed data (Occam’s Razor)
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Gaussian Process Models

A Gaussian Process (GP) is a distribution over functions.

GPs are flexible, non-parametric, fully probabilistic Bayesian kernel machines
where inference can be done in closed form.
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Understanding Control as Learning

Key idea: Bayesian inference provides as flexible and principled approach to
control.

Traditional approaches first do identification of a dynamical system based on
1 simplifying assumptions
2 measurements

Then design a controller

My approach Don’t make (parametric) assumptions. Use a stochastic model,
taking into account uncertainties due to noise and lack of
knowledge.
Controller based on predicted performance, integrating over all
forms of uncertainty.
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Short and Long Prediction Horizons

Typically, there is a dilemma concerning prediction horizons

• it is only feasible to learn short time dynamics
• good control requires the understanding of long term consequences

To resolve this we learning short time dynamics, then

• probabilistically, cascade many short term predictions to get long term
consequences

Initially, this will typically cause rapidly rising uncertainties
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The Learning Procedure

Repeatedly:

• Observe the behavior of the dynamical system, fit stochastic short term
dynamics model

• Probabilistically, cascade short term predictions, to predict long term
behavior

• Optimize the simulated behaviour wrt the controller.
• Apply the control law, record additional data
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What priors did I use?

The prior information was

• short term dynamics are
• smooth
• time invariant

• a time scale: eigen frequency about 2 Hz
• time discretisation 100 ms
• horizon 2.5 s

• an error scale
• 30 degrees is a ’moderate’ error
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Conclusions

• Learning is a powerful paradigm in
• biology
• can be exploited in engineering

• Fast learning from weak prior knowledge is possible and advantageous
• avoid simplifying (parametric) assumptions
• avoid deterministic ‘model identification’

• Probabilistic Inference and Stochastic models are ideally suited for learning
• Implications for

• understanding biological systems
• engineering control systems, eg robotics
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