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Can Systems be Certified Distributively?

Componentwise performance verification without global model?
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Outline

○ Introduction

• Distributed Positive Test for Matrices

○ Distributed Performance Verification of Linear Systems

○ Open problems
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A Matrix Decomposition Theorem

The sparse matrix on the left is positive semi-definite if and only
if it can be written as a sum of positive semi-definite matrices
with the structure on the right.
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Proof idea

The decomposition follows immediately from the band structure
of the Cholesky factors:
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Generalization

Cholesky factors inherit the sparsity structure of the symmetric
matrix if and only if the sparsity pattern corresponds to a
“chordal” graph.
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[Blair & Peyton, An introduction to chordal graphs and clique trees, 1992]
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A Sparse Stability Test

For the sparse matrix A, let the left hand side illustrate the
structure of (sI − A)∗(sI − A). Then the matrix is stable if and
only if the right hand side split can be done with all squares
positive definite for s in the right half plane.
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︸ ︷︷ ︸

(sI−A)∗(sI−A)

Hence global stability can always be verified by local tests!
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A Sparse Passivity Test

Suppose

ẋ = Ax + Bx +w x(0) = 0

y= Cx

Then
∫ T

0

(

γ
2u(t)y(t) + pw(t)p2

)

dt ≥ 0 for all u,w,T

if and only if the matrix
[
(sI − A)∗(sI − A) γ 2CT − (sI − A)∗B

γ 2C − B∗(sI − A) BTB

]

is positive semi-definite for Re s ≥ 0.

Passivity can be tested componentwise without conservatism!
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Conclusions

A “general” distributed non-conservative performance test

Relation to existing sufficient criteria

Storage function interpretation

Non-linear versions?
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