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• Bamieh, Paganini, Daleh (2002)

• D’Andrea, Dullerud (2003)

• Langbort, D’Andrea, Chandra (2004)

• Di, Farhood, Dullerud (2006) and Fan, Antsaklis (2008)
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• Analysis and Distributed Synthesis: Static IQCs

• Dynamic IQCs: Analysis

• Gain-Scheduling Synthesis with Dynamic IQCs

• Sketch of Applications and Conclusions
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The LTI systems


ẋi

ei

zi


 =



Ai Bi

1 Bi
2

Ci
1 Di

1 Di
12

Ci
2 Di

21 Di
2






xi

di

wi


 , i = 1, . . . , L

are interconnected as

wi =
L∑

j=1

∆ij(zj) with ∆ij ∈∆ij for i, j = 1, . . . , L.

Here ∆ij captures information about the

• structure of the interconnection (sparsity)

• nature of the interconnection (static, dynamic, delay)

• uncertainties in the interconnection (sets of dynamics)
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Diagonally combine the LTI systems into


ẋ

e

z


 =




A B1 B2

C1 D1 D12

C2 D21 D2






x

d

w


 , A =



A1 · · · 0
...

. . .
...

0 · · · AL


 , . . .

that are interconnected as w = ∆(z) with

∆ ∈∆ =








∆11 · · · ∆1L

...
. . .

...

∆L1 · · · ∆LL


 : ∆ij ∈∆ij for i, j = 1, . . . , L




.

Example: ∆ ∈∆ are matrix multiplication operators.

Structured of interconnection reflected in sparsity pattern of matrix.
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w1,1

w1,2

w1,3

w2,1

w3,1

w3,2

w3,3




=




1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1







z1,1

z1,2

z1,3

z2,1

z3,1

z3,2

z3,3




Langbort, D’Andrea, Chandra (2004)
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∆ ∈∆ satisfies static IQC with multiplier P = P> if

∫ T

0

(
z(t)

∆(z)(t)

)>
P

(
z(t)

∆(z)(t)

)
dt ≥ 0

for all z ∈ L2[0, T ] and T ≥ 0.

Let P denote any family of multipliers

P =

(
Q S

S> R

)

for which the IQC holds for all uncertainties ∆ ∈∆.
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Simplest case ∆ = {∆0} with some matrix ∆0 ...

... Fixed interconnection topology.

Set of multipliers

P = P>=

(
Q S

S> R

)
:

(
I

∆0

)>
P

(
I

∆0

)
= 0



 .

∆ set of time-varying matrices ∆(t) ... Time-varying topology.

Set of multipliers

P = P> :

(
I

∆(t)

)>
P

(
I

∆(t)

)
< 0 for all t ≥ 0, ∆ ∈∆



 .

Technical assumption: Contain at least one non-singular element.
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Interconnection well-posed, stable and L2-gain of d→ e bounded by γ

if there exists X � 0 and a multiplier

(
Q S

S> R

)
∈ P with




A B1 B2

I 0 0

C1 D1 D12

0 I 0

C2 D21 D2

0 0 I




>


0 X 0 0 0 0

X 0 0 0 0 0

0 0 I 0 0 0

0 0 0 −γ2I 0 0

0 0 0 0 Q S

0 0 0 0 S> R







A B1 B2

I 0 0

C1 D1 D12

0 I 0

C2 D21 D2

0 0 I




≺ 0.

Very closely related to classical stability/dissipation theory.

Popov, Yakubovich, Zames, Willems, Hill, Moylan, Desoer, Vidyasagar, ...
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LMI implies along any interconnection trajectory that

∫ T

0

d

dt
x(t)>Xx(t)− γ2‖d(t)‖2 + ‖e(t)‖2 dt+

+

∫ T

0

(
z(t)

w(t)

)>
P

(
z(t)

w(t)

)
dt ≤ 0.

Since w(t) = ∆(z)(t) the last term is non-negative. With X � 0 get
∫ T

0

‖e(t)‖2 dt ≤ γ2

∫ T

0

‖d(t)‖2 dt+ x(0)>Xx(0).
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de

y

System

u

∆
z w

Controller

∆c(∆)

Synthesis of controller and

scheduling function for

robust stability/performance

↓

Convex Optimization!

Packard (94)

Apkarian, Gahinet (94)

Helmersson (95)

Scorletti & El-Ghaoui (98)

Scherer (01)

Our work allows for general static multipliers.
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Fixed interconnection topology ∆ = {∆0}

In the class of multipliers

P =



P = P>=

(
Q S

S> R

)
:

(
I

∆0

)>
P

(
I

∆0

)
= 0





let Q,S,R share their block-diagonal structure with system matrices.
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Exists X � 0 with



A1 0

0 A2

I 0

0 I




>


0 0 X1 X12

0 0 X21 X2

X1 X12 0 0

X21 X2 0 0







A1 0

0 A2

I 0

0 I



≺ 0

iff exist X1 � 0, X2 � 0 with
(

I

A1

)>(
0 X1

X1 0

)(
I

A1

)
≺ 0,

(
I

A2

)>(
0 X2

X2 0

)(
I

A2

)
≺ 0.

Can work with diagonally structured X without loss of generality.
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Fixed interconnection topology ∆ = {∆0}

In the class of multipliers

P =



P = P>=

(
Q S

S> R

)
:

(
I

∆0

)>
P

(
I

∆0

)
= 0





let Q,S,R share their block-diagonal structure with system matrices.

• Synthesis conditions: L LMIs and multiplier equation constraints

• Controller shares interconnection structure ∆0 with system.

• Less conservative than what’s known.

Reduction of conservatism by adapting structure of multipliers.
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• Analysis and Distributed Synthesis: Static IQCs

• Dynamic IQCs: Analysis

• Gain-Scheduling Synthesis with Dynamic IQCs

• Sketch of Applications and Conclusions



Dynamic Multipliers

14/30

Delft Center for Systems and ControlDelft Center for Systems and Control
Delft Center for Systems and Control

Recall the IQC

∫ T

0

(
z(t)

∆(z)(t)

)>
P

(
z(t)

∆(z)(t)

)
dt ≥ 0 for all T ≥ 0.

Static multipliers P are conservative.

Use dynamic multipliers. IQC then reads in the frequency domain as

∫ ∞

−∞

(
ẑ(iω)

∆̂(z)(iω)

)∗
Π(iω)

(
ẑ(iω)

∆̂(z)(iω)

)
dt ≥ 0.
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G

∆

z w

Interconnection

z = Gw and w = ∆(z)

remains robustly stable if
(
G(iω)

I

)∗
Π(iω)

(
G(iω)

I

)
≺ 0 for all ω ∈ R ∪ {∞}.
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w1,1

w1,2

w1,3

w2,1

w3,1

w3,2

w3,3




=




δ1 0 0 0 0 0 0

0 0 0 δ2 0 0 0

0 0 0 0 δ3 0 0

0 δ4 0 0 0 0 0

0 0 δ5 0 0 0 0

0 0 0 0 0 δ6 0

0 0 0 0 0 0 δ6







z1,1

z1,2

z1,3

z2,1

z3,1

z3,2

z3,3




, ‖δj‖H∞ = 1
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Suitable class of multipliers Π(iω) is



q1(iω) 0 0 0 0 0 0 0 0 0 0 0

0 q2(iω) 0 0 0 0 0 0 0 0 0 0

0 0 q3(iω) 0 0 0 0 0 0 0 0 0

0 0 0 q4(iω) 0 0 0 0 0 0 0 0

0 0 0 0 q5(iω) 0 0 0 0 0 0 0

0 0 0 0 0 Q6(iω) 0 0 0 0 0 0

0 0 0 0 0 0 −q1(iω) 0 0 0 0 0

0 0 0 0 0 0 0 −q4(iω) 0 0 0 0

0 0 0 0 0 0 0 0 −q5(iω) 0 0 0

0 0 0 0 0 0 0 0 0 −q2(iω) 0 0

0 0 0 0 0 0 0 0 0 0 −q3(iω) 0

0 0 0 0 0 0 0 0 0 0 0 −Q6(iω)




Corresponding static multipliers used by D’Andrea, Dullerud (2003)
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y

System

u

∆
z w

Controller

∆c(∆)

Synthesis with dynamic multipliers was completely open.
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Consider structured uncertainty

∆ =

(
δ1I 0

0 δ2I

)

with linear time-invariant SISO systems

δ1, δ2 whose gains are bounded by 1.

G

∆

z w

With frequency-dependent multiplier

Q =

(
Q1 0

0 Q2

)
satisfying ∆Q = Q∆,

robust stability guaranteed by
(
G

I

)∗(
Q 0

0 −Q

)(
G

I

)
≺ 0 and Q � 0 on C0.
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For pole p > 0 choose basis that has dense span in RH∞:

ψ(s) =




I(
s−p
s+p

)
I

...(
s−p
s+p

)l
I



, l = 0, 1, 2, . . .

Parameterize structured scalings with structured M as

Q =

(
Q1 0

0 Q2

)
=

(
ψ 0

0 ψ

)∗(
M1 0

0 M2

)

︸ ︷︷ ︸
M

(
ψ 0

0 ψ

)

︸ ︷︷ ︸
Ψ

= Ψ∗MΨ
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Parametrization Q = Ψ∗MΨ leads to FDIs
(

ΨG

Ψ

)∗(
M 0

0 −M

)(
ΨG

Ψ

)
≺ 0 and Ψ∗MΨ � 0 on C0.

Choose realizations

Ψ =

[
AΨ BΨ

CΨ DΨ

]
and G =

[
A B

C D

]

and thus

(
ΨG

Ψ

)
=




AΨ 0 BΨC BΨD

0 AΨ 0 BΨ

0 0 A B

CΨ 0 DΨC DΨD

0 CΨ 0 DΨ




=:

[
Ap Bp

Cp Dp

]
.
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The two FDIs translate into feasibility of LMIs




I 0

Ap Bp

Cp Dp




T 


0 X 0

X 0 0

0 0 diag(M,−M)







I 0

Ap Bp

Cp Dp


 ≺ 0




I 0

AΨ BΨ

CΨ DΨ




T 


0 X̂ 0

X̂ 0 0

0 0 M







I 0

AΨ BΨ

CΨ DΨ


 � 0.

How to characterize nominal stability of A?
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A is stable and the FDIs hold iff the following LMIs are feasible:



I 0

Ap Bp

Cp Dp




T 


0 X 0

X 0 0

0 0 diag(M,−M)







I 0

Ap Bp

Cp Dp


 ≺ 0,




I 0

AΨ BΨ

CΨ DΨ




T 


0 X̂ 0

X̂ 0 0

0 0 M







I 0

AΨ BΨ

CΨ DΨ


 � 0,



X11 − X̂ X12 X13

X21 X22 + X̂ X23

X31 X32 X33


 � 0.

LMIs for nominal and robust stability analysis.
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• Analysis and Distributed Synthesis: Static IQCs

• Dynamic IQCs: Analysis

• Gain-Scheduling Synthesis with Dynamic IQCs

• Sketch of Applications and Conclusions



Gain-Scheduling Controller Synthesis

24/30

Delft Center for Systems and ControlDelft Center for Systems and Control
Delft Center for Systems and Control

y

P

u

∆
z w

K

wc zc

∆c




w
wc







∆ 0
0 ∆c




P ? K




z
zc




Scalings for extended uncertainty: For Q, Q12, Q22 as above have
(

∆ 0

0 ∆c

)(
Q Q12

Q∗12 Q22

)
=

(
Q Q12

Q∗12 Q22

)

︸ ︷︷ ︸
�0

(
∆ 0

0 ∆c

)
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Note that P ? K is given by


z

zc

y

wc




=




P11 0 P12 0

0 0 0 I

P21 0 P22 0

0 I 0 0







w

wc

u

zc



,

(
u

zc

)
=

(
K11 K12

K21 K22

)(
y

wc

)

With abbreviation

L =

(
K11 K12

K21 K22

)(
I −

(
P22 0

0 0

)(
K11 K12

K21 K22

))−1

we have

P ? K =

(
P11 0

0 0

)
+

(
P12 0

0 I

)
L

(
P21 0

0 I

)
.
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Analysis FDI

(?)∗




Q Q12 0 0

Q∗12 Q22 0 0

0 0 −Q −Q12

0 0 −Q∗12 −Q22







(
P11 0

0 0

)
+

(
P12 0

0 I

)
L

(
P21 0

0 I

)

(
I 0

0 I

)



≺0

Apply the elimination lemma to get rid of L. Note that the inverse

(
Q̃ Q̃12

Q̃∗12 Q̃22

)
=

(
Q Q12

Q∗12 Q22

)−1

shares its structure with the original scaling.
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Elimination of L leads to

(P21)∗⊥

(
P11

I

)∗(
Q 0

0 −Q

)(
P11

I

)
(P21)⊥ ≺ 0

and

(P ∗12)∗⊥

(
I

−P ∗11

)∗(
Q̃ 0

0 −Q̃

)(
I

−P ∗11

)
(P ∗12)⊥ � 0

and (
Q I

I Q̃

)
� 0.

Obtain convex constraints on Q and Q̃ !

Problem: We neglected that controller has to be internally stabilizing!
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Synthesis LMIs: Dynamic Scalings

UT




I 0

Ap Bp

Cp Dp




T 


0 X 0

X 0 0

0 0 diag(M,−M)







I 0

Ap Bp

Cp Dp


U ≺ 0

V T



−AT

d −CT
d

I 0

BT
d DT

d




T 


0 Y 0

Y 0 0

0 0 diag(N,−N)






−AT

d −CT
d

I 0

BT
d DT

d


V � 0




X11 − X̂ X12 X13 −Ẑ 0 0

X21 X22 + X̂ X23 0 −Ẑ 0

X31 X32 X33 0 0 I

−ẐT 0 0 Y11 − Ŷ Y12 Y13

0 −ẐT 0 Y21 Y22 + Ŷ Y23

0 0 I Y31 Y32 Y33




� 0.
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• Reduction of conservatism by dynamics in scalings

• Allows scheduling on dynamic changes in plant

• Lossless gain-scheduling synthesis for slowly

time-varying dynamic uncertainties

• Graceful mixing of

scheduled and robust synthesis

• Distributed synthesis

D’Andrea, Dullerud (03)



Conclusions

30/30

Delft Center for Systems and ControlDelft Center for Systems and Control
Delft Center for Systems and Control

Have seen:

• Relation of gain-scheduling and distributed synthesis

• Recap of technique with static multipliers

• Sketch of complete solution for dynamic D-scalings

Next steps:

• Numerical implementations and experimentation

• Precise understanding: Interconnection and multiplier structures

• Extension to general IQC multipliers (expected to be tough)


