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Introduction

• Centralized (unconstrained) control has been solved for some time

• Control over networks of interconnected systems imposes decentralization constraints
(e.g. sparsity) on allowable control policies
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Introduction

• Control theory divided into two general areas

• Analysis: characterizing which problems are solvable in some sense

• Synthesis: Finding optimal control policies

• Decentralization constraints complicate both areas

• We will focus on synthesis in this talk
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Decentralized Control

• Much work has been done to characterize which network control problems are tractable

• Quadratic Invariance represents the largest known class of tractable systems [Rotkowitz
and Lall]

• Provides a Youla parametrization which recasts the optimization problem in
convex form

• Decentralization constraints imposed on Youla parameter
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Convex Optimization

• Although problem is now convex, finding optimal solutions may be non-trivial

• Problems are still infinite-dimensional

• Work in finite basis, vectorization, etc.

• Some SDP results have been found for some cases [Scherer ’02, Rantzer ’06]

• Suboptimal solutions, increased size of numerical computation, loss of intuition be-
hind control policy (separation, controller order, etc.)
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Decentralized Synthesis

• We would like a method to analytically find explicit state-space formulae for the
optimal control policies

• Use spectral factorization
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Problem Formulation

• Consider simplest two-player system

v1 v2

• Player 1 influences the dynamics of player 2; player 1 communicates his state infor-
mation player 2

• State-space dynamics can be written as

[
x1(t + 1)
x2(t + 1)

]
=

[
A11 0
A21 A22

] [
x1(t)
x2(t)

]
+

[
B11 0
B21 B22

] [
u1(t)
u2(t)

]
+

[
w1(t)
w2(t)

]
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Problem Formulation

• Player 1 makes decision u1(t) based on only x1(0), . . . , x1(t)

• Player 2 makes decision u2(t) based on x1(0), . . . , x1(t) and x2(0), . . . , x2(t)

• Allowable controllers must have the following block triangular structure




u1(0)
u1(1)

...
u2(0)
u2(1)

...




=










x1(0)
x1(1)

...
x2(0)
x2(1)

...
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Problem Formulation

P11 P12

P21 P22

Kx u

wz

• Our objective is to find an allowable controller, K ∈ S, which minimizes

E
N∑

t=0

x(t)TQx(t) + u(t)TRu(t)

• Our optimization problem is then

minimize ‖P11 + P12K(I − P22K)−1P21‖2
F

subject to K ∈ S
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Idea 1

• Without any network constraints, the optimal centralized controller is a static gain
K such that

u1(t) = K11x1(t) + K12x2(t)

u2(t) = K21x1(t) + K22x2(t)

where
K = −(R + BTPB)−1BTPA

and P satisfies the standard Riccati equation

• One naive approach is simply to drop the K12 term

u1(t) = K11x1(t)

u2(t) = K21x1(t) + K22x2(t)
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Idea 2

• Let η(t) be the expected value of x2(t) given x1(0), . . . , x1(t)

• Since player 1 does not know x2(t), we replace that term with η(t)

u1(t) = K11x1(t) + K12η(t)

u2(t) = K21x1(t) + K22x2(t)

• Very common heuristic

• Can be arbitrarily bad!
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Main Result

• The correct optimal solution is

u1(t) = K11x1(t) + K12η(t)

u2(t) = K21x1(t) + K22η(t) + J(x2(t)− η(t))

where
J = −(R22 + BT

22Y B22)
−1BT

22Y A22

and Y satisfies another Riccati equation

• Despite player 2 having full state information, he still needs to keep an estimate of
his own state x2(t)
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Review

• For the centralized case, define the Youla parameter Q as

Q = K(I − P22K)−1

• Then, Q is lower triangular if and only if K is lower triangular

• Our optimization problem is then

minimize ‖P11 + P12QP21‖2
F

subject to K is lower triangular

• Q ∈ S is optimal if and only if

PT
12P11PT

21 + PT
12P12QP21PT

21 is strictly upper
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Spectral Factorization

• We must find a lower triangular Q which satisfies
[ ]

︸ ︷︷ ︸
F

+

[ ]

︸ ︷︷ ︸
G

[ ]

︸ ︷︷ ︸
Q

[ ]

︸ ︷︷ ︸
H

=

[ ]

︸ ︷︷ ︸
Λ

• Let us factorize G and H such that

G = UGLG =
[ ] [ ]

H = LHUH =
[ ] [ ]

• Then, [ ]

︸ ︷︷ ︸
U−1

G FU−1
H

+

[ ]

︸ ︷︷ ︸
LG

[ ]

︸ ︷︷ ︸
Q

[ ]

︸ ︷︷ ︸
LH

=

[ ]

︸ ︷︷ ︸
U−1

G ΛU−1
H



16 Synthesis of Decentralized Control Systems J. Swigart, Stanford

Spectral Factorization

• Suppose f is a trigonometric polynomial

f (λ) =

n∑

k=−n

ckλ
k

and f (λ) is real for all λ ∈ T. Then,

f (λ) ≥ 0 for all λ ∈ T
if and only if there exists a polynomial

q(λ) = a(λ− z1) . . . (λ− zn)

with all |zi| < 1 such that
f (λ) = q(λ)q̃(λ)

• Here, q̃(λ) = ā(λ−1 − z̄1) . . . (λ−1 − z̄n)

• Also called Wiener-Hopf factorization
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Spectral Factorization

• Suppose g ∈ RH∞, with no poles or zeros on T

g(λ) =
a(λ)

b(λ)

Then,

g(λ)g̃(λ) =
a(λ)ã(λ)

b(λ)b̃(λ)

• Find spectral factor of numerator and denominator

a(λ)ã(λ)

b(λ)b̃(λ)
=

α(λ)α̃(λ)

β(λ)β̃(λ)

• Then, let p(λ) = α(λ)
β(λ)

• p(λ) and p(λ)−1 have poles and zeros inside unit disc, and

g(λ)g̃(λ) = p(λ)p̃(λ)
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Spectral Factorization

• Note that

G = PT
12P12

= R + BTZT (I − ZA)−1Q(I − ZA)−1ZB

• The appropriate factorization is then

G = (I −K(I − ZA)−1ZB)T (R + BTPB)(I −K(I − ZA)−1ZB)

where P satisfies the Riccati equation

P = Q + ATPA− ATPB(R + BTPB)−1BTPA

and
K = −(R + BTPB)−1BTPA
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Spectral Factorization

• Define lower(·) to be the projection of a matrix to its lower triangular component,
so that for any matrix M ,

(lower(M))ij =

{
Mij i ≥ j

0 i < j
(1)

• Then,
lower(U−1

G FU−1
H ) + LGQLH = 0

• Thus, the optimal Q is

Q = −L−1
G lower(U−1

G FU−1
H )L−1

H
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Summary

• Youla parameter Q = K(I − P22K)−1 makes problem convex

• Optimality condition

PT
12P11PT

21 + PT
12P12QP21PT

21 is strictly upper

• Spectral factorization of PT
12P12 and P21PT

21 to find Q

• Invert Youla to find optimal K
K = (I +QP22)

−1Q
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Decentralized Control

• For the decentralized problem, we employ a similar technique

• Note that network structure imposes block triangular structure on P21 and P22

• System is quadratically invariant and can be recast as

minimize ‖P11 + P12Q‖2
F

subject to K ∈ S

where

S ∼
[ ]

• Q ∈ S is optimal if and only if

PT
12P11 + PT

12P12Q ∈ S⊥

where

S⊥ ∼
[ ]
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Optimality Condition

• We must find a block lower triangular Q which satisfies







︸ ︷︷ ︸
F

+







︸ ︷︷ ︸
G







︸ ︷︷ ︸
Q

=







︸ ︷︷ ︸
Λ

where

F = PT
12P11

G = PT
12P12
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Proof Outline

• Break it up into two separate problems

• Let Q =

[Q11

Q21 Q22

]

• Then, Q ∈ S is optimal if and only if both conditions hold:

1.

[
F11

F21

]
+ G

[Q11

Q21

]
=

[
Λ11

Λ21

]

2. F22 + G22Q22 = Λ22
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Proof Outline

• Condition 2 is just
[ ]

︸ ︷︷ ︸
F22

+

[ ]

︸ ︷︷ ︸
G22

[ ]

︸ ︷︷ ︸
Q22

=

[ ]

︸ ︷︷ ︸
Λ22

• We can use our results from the centralized problem to find Q22

• System matrices used here are A22, B22, Q22, R22

• Consequently, the optimal Q22 is

Q22 = J(I − Z(A22 + B22J))−1

where
J = −(R22 + BT

22Y B22)
−1BT

22Y A22

and Y satisfies the Riccati equation

Y = Q22 + AT
22Y A22 − AT

22Y B22(R22 + BT
22Y B22)

−1BT
22Y A22
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Proof Outline

• Define P as the permutation matrix such that

P







x1

x2
...
y1

y2
...







=




x1

y1

x2

y2
...
...




• Then, P
([Q11

Q21

])
is lower triangular

P




×
× ×
×
× ×


 =




×
×
× ×
× ×
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Proof Outline

• Condition 1 is






︸ ︷︷ ︸
F11

F21




+







︸ ︷︷ ︸
G







︸ ︷︷ ︸
Q11

Q21




=







︸ ︷︷ ︸
Λ11

Λ21




• Multiplying by P, it can be rewritten as
[ ]

︸ ︷︷ ︸
P


F11

F21




+

[ ]

︸ ︷︷ ︸
PGPT

[ ]

︸ ︷︷ ︸
P


Q11

Q21




=

[ ]

︸ ︷︷ ︸
P


Λ11

Λ21
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Proof Outline

• Condition 1 can now be solved using our centralized results

• The optimal

[Q11

Q21

]
is given by

[Q11

Q21

]
= PTK(I − Z(A + BK))−1P

[
I
0

]

where
K = −(R + BTPB)−1BTPA

and P satisfies the Riccati equation

P = Q + ATPA− ATPB(R + BTPB)−1BTPA
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Optimal Controller

• The optimal Q ∈ S is given by
[Q11

Q21

]
= PTK(I − Z(A + BK))−1P

[
I
0

]

Q22 = J(I − Z(A22 + B22J))−1

• To find the optimal K ∈ S, we use the mapping

K = (I +QP−1
21 P22)

−1QP−1
21

• This leads to

K =

[
K11 + K12Φ 0

K21 + (K22 − J)Φ J

]

where

Φ = (I − Z(A22 + B21K12 + B22K22))
−1Z(A21 + B21K11 + B22K21)
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Estimator

• Define M and N as

M = A22 + B22J

N = A + BK

• Let η = Φx1. This represents the following state-space system

η(t + 1) = N22η(t) + N21x1(t)

• The optimal policy is

[
u1(t)
u2(t)

]
=

[
K11 0 K12

K21 J K22 − J

] 


x1(t)
x2(t)
η(t)
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Estimator

• The closed-loop state-space system is



x1(t + 1)
η(t + 1)
x2(t + 1)


 =




N11 N12 0
N21 N22 0
N21 N22 −M M







x1(t)
η(t)
x2(t)


 +




I 0
0 0
0 I




[
w1(t)
w2(t)

]

• Let µ(t) = E
(
x2(t) | x1(0), . . . , x1(t), η(0), . . . , η(t)

)

• Given the block triangular structure of this system, it is straightforward to show that

µ(t + 1) = Mµ(t) +
[
N21 N22 −M

] [
x1(t)
η(t)

]

= η(t + 1) + M
(
µ(t)− η(t)

)

• Since µ(0) = η(0) = 0, we inductively see that µ(t) = η(t) for all t
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Optimal Controller

• Let

AK = A22 + B21K12 + B22K22

BK = A21 + B21K11 + B22K21

• The optimal controllers are:

• Controller 1 has realization

q1(t + 1) = AKq1(t) + BKx1(t)

u1(t) = K12q1(t) + K11x1(t)

• Controller 2 has realization

q2(t + 1) = AKq2(t) + BKx1(t)

u2(t) =
(
K22 − J

)
q2(t) + K21x1(t) + Jx2(t)

• Order of the optimal controller dynamics is the size of A22
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Extensions

• Formally treat the infinite-horizon case

• Other methods for obtaining explicit state-space solutions (dynamic programming,
etc.)

• Output feedback

• Arbitrary networks

• Systems with link delays
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Conclusion

• Found optimal state-space solution to simple two-player network

• Estimator required for both systems; not the classical certainty equivalence

• Optimal controller order is the size of A22

• Naturally extends to arbitrary networks


