Distributed Optimization: Analysis and Synthesis via Circuits

Stephen Boyd

LCCC, Lund, February 2010

Outline

- canonical form for distributed convex optimization
- circuit intepretation
- primal decomposition
- dual decomposition
- prox decomposition
- momentum terms

Distributed convex optimization problem

- convex optimization problem partitioned into coupled subsystems
- divide variables, constraints, objective terms into two groups
 - local variables, constraints, objective terms appear in only one subsystem
 - complicating variables, constraints, objective terms appear in more than one subsystem
- describe by hypergraph
 - subsystems are nodes
 - complicating variables, constraints, objective terms are hyperedges

Conditional separability

• separable problem: can solve by solving subsystems separately, e.g.,

minimize $f_1(x_1) + f_2(x_2)$ subject to $x_1 \in \mathcal{C}_1, \quad x_2 \in \mathcal{C}_2$

- in distributed problem, two subsystems are **conditionally separable** if they are separable when all other variables are fixed
- two subsystems not connected by a net are **conditionally separable**
- cf. conditional independence in Bayes net: two variables not connected by hyperedge are conditionally independent, given all other variables

Examples

- minimize $f_1(z_1, x) + f_2(z_2, x)$, with variables z_1, z_2, x
 - x is the **complicating variable**; when fixed, problem is separable
 - z_1 , z_2 are **private** or **local** variables
 - x is a **public** or **interface** or **boundary** variable between the two subproblems
 - hypergraph: two nodes connected by an edge
- optimal control problem
 - state is the complicating variable between past and future
 - hypergraph: simple chain

Transformation to standard form

- introduce slack variables for complicating inequality constraints
- introduce local copies of complicating variables
- implicitly minimize over private variables (preserves convexity)
- represent local constraints in domain of objective term
- we are left with
 - all variables are public, associated with a single node
 - all constraints are consistency constraints, *i.e.*, equality of two or more variables

Example

- minimize $f_1(z_1, x) + f_2(z_2, x)$, with variables z_1, z_2, x
- introduce local copies of complicating variable:

minimize $f_1(z_1, x_1) + f_2(z_2, x_2)$ subject to $x_1 = x_2$

• eliminate local variables:

minimize
$$\tilde{f}_1(x_1) + \tilde{f}_2(x_2)$$

subject to $x_1 = x_2$

with $\tilde{f}_i(x_i) = \inf_{z_i} f_i(z_i, x_i)$

LCCC, Lund, February 2010

General form

- n subsystems with variables x_1, \ldots, x_n
- *m* nets with common variable values z_1, \ldots, z_m

minimize
$$\sum_{i=1}^{n} f_i(x_i)$$

subject to $x_i = E_i z, \quad i = 1, \dots, n$

 matrices E_i give netlist or hypergraph (row k is e_p, where kth entry of x_i is in net p)

Optimality conditions

- introduce dual variable y_i associated with $x_i = E_i z$
- optimality conditions are

$$\nabla f_i(x_i) = y_i \qquad \text{(subsystem relations)} \\ x_i = E_i z \qquad \text{(primal feasibility)} \\ \sum_{i=1}^n E_i^T y_i = 0 \qquad \text{(dual feasibility)}$$

(for nondifferentiable case, replace $\nabla f_i(x_i)$ with $g_i \in \partial f_i(x_i)$)

- primal condition: (primal) variables on each net are the same
- dual condition: dual variables on each net sum to zero

Circuit interpretation (primal/voltages)

- subsystems are (grounded) nonlinear resistors
- nets are wires (nets); consistency constraint is KVL
- z_j is voltage on net j
- x_i is vector of pin voltages for resistor i

Circuit interpretation (dual/currents)

- y_i is vector of currents entering resistor i
- dual feasibility is KCL: sum of currents leaving net j is zero
- V-I characteristic for resistor *i*: $y_i = \nabla f_i(x_i)$
- $f_i(x)$ is **content function** of resistor *i*
- convexity of f_i is **incremental passivity** of resistor *i*:

$$(x_i - \tilde{x}_i)^T (y_i - \tilde{y}_i) \ge 0, \quad y_i = \nabla f_i(x_i), \quad \tilde{y}_i = \nabla f_i(\tilde{x}_i)$$

optimality conditions are exactly the circuit equations

Decomposition methods

- solve distributed problem iteratively
 - algorithm state maintained in nets
- each step consists of
 - (parallel) update of subsystem primal and dual variables, based only on adjacent net states
 - update of the net states, based only on adjacent subsystems
- algorithms differ in
 - interface to subsystems
 - state and update

Primal decomposition

repeat

- 1. distribute net variables to adjacent subsystems $x_i := E_i z$
- 2. optimize subsystems (separately) solve subproblems to evaluate $y_i = \nabla f_i(x_i)$
- 3. collect and sum dual variables for each net

$$w := \sum_{i=1}^{n} E_i^T y_i$$

4. update net variables

$$z := z - \alpha_k w.$$

• step factor α_k chosen by standard gradient or subgradient rules

Primal decomposition

- algorithm state is net variable z (net voltages)
- $w = \sum_{i=1}^{n} E_i^T y_i$ is dual residual (net current residuals)
- primal feasibility maintained; dual feasibility approached in limit
- subsystems are **voltage controlled**:
 - voltage x_i is asserted at subsystem pins
 - pin currents y_i are then found

Circuit interpretation

- connect capacitor to each net; system relaxes to equilibrium
- forward Euler update is primal decomposition
- incremental passivity implies convergence to equilibrium

Dual decomposition

initialize y_i so that $\sum_{i=1}^{n} E_i^T y_i = 0$ (dual variables sum to zero on each net)

repeat

- optimize subsystems (separately)

 find x_i with ∇f_i(x_i) = y_i, i.e., minimize f_i(x_i) y_i^Tx_i

 collect and average primal variables over each net

 z := (E^TE)⁻¹E^Tx
 update dual variables
 - . update dual variables

 $y := y - \alpha_k (x - Ez)$

Dual decomposition

- algorithm state is dual variable y
- x Ez is consistency residual
- dual feasibility maintained; primal feasibility approached in limit
- subsystems are **current controlled**:
 - pin currents y_i are asserted
 - pin voltages y_i are then found

Circuit interpretation

- connect inductor to each pin; system relaxes to equilibrium
- forward Euler update is dual decomposition
- incremental passivity implies convergence to equilibrium

Prox(imal) interface

• prox operator:

$$P_{\rho}(y,\bar{x}) = \underset{x}{\operatorname{argmin}} \left(f(x) - y^{T}x + (\rho/2) \|x - \bar{x}\|_{2}^{2} \right)$$

- contains usual dual term $y^T x$ and 'proximal regularization' term

- amounts to solving $\nabla f(x) + \rho(x-\bar{x}) = y$
- circuit interpretation: drive via resistance $R = 1/\rho$ cf. voltage (primal) drive or current (dual) drive

Prox decomposition

initialize y_i so that $\sum_{i=1}^n E_i^T y_i = 0$

repeat

- 1. optimize subsystems (separately) minimize $f_i(x_i) - y_i^T x_i + (\rho/2) ||x_i - E_i z||^2$
- 2. collect and average primal variables over each net $z := (E^T E)^{-1} E^T x$
- 3. update dual variables

$$y := y - \rho(x - Ez)$$

• step size ρ in dual update guaranteed to work

Prox decomposition

- has many other names . . .
- algorithm state is dual variable y
- $y \rho(x \bar{x})$ is dual feasible
- primal and dual feasibility approached in limit
- subsystems are resistor driven; must support prox interface
- interpretations
 - regularized dual decomposition
 - PI feedback (as opposed to I only feedback)

Circuit interpretation

- connect inductor || resistor to each pin; system relaxes to equilibrium
- forward Euler update is prox decomposition
- incremental passivity implies convergence to equilibrium

Momentum terms

- in optimization method, current search direction is
 - standard search direction (gradient, subgradient, prox . . .)
 - plus last search direction, scaled
- interpretations/examples
 - smooth/low pass filter/average search directions
 - add momentum to search algorithm ('heavy-ball method')
 - two term method (CG)
 - Nesterov optimal order method
- often dramatically improves convergence

You guessed it

- algorithm: prox decomposition with momentum
- just add capacitor to prox LR circuit

Conclusions

to get a distributed optimization algorithm:

- represent as circuit with interconnecting wires
- replace interconnect wires with passive circuits that reduce to wires at equilibrium
- discretize circuit dynamics
- subsystem interfaces depend on circuit drive (current, voltage, via resistor)
- convergence hinges on incremental passivity