
Distributed Optimization:

Analysis and Synthesis via Circuits

Stephen Boyd

LCCC, Lund, February 2010



Outline

• canonical form for distributed convex optimization

• circuit intepretation

• primal decomposition

• dual decomposition

• prox decomposition

• momentum terms

LCCC, Lund, February 2010 1



Distributed convex optimization problem

• convex optimization problem partitioned into coupled subsystems

• divide variables, constraints, objective terms into two groups

– local variables, constraints, objective terms appear in only one
subsystem

– complicating variables, constraints, objective terms appear in more
than one subsystem

• describe by hypergraph

– subsystems are nodes
– complicating variables, constraints, objective terms are hyperedges

LCCC, Lund, February 2010 2



Conditional separability

• separable problem: can solve by solving subsystems separately, e.g.,

minimize f1(x1) + f2(x2)
subject to x1 ∈ C1, x2 ∈ C2

• in distributed problem, two subsystems are conditionally separable if
they are separable when all other variables are fixed

• two subsystems not connected by a net are conditionally separable

• cf. conditional independence in Bayes net: two variables not connected
by hyperedge are conditionally independent, given all other variables

LCCC, Lund, February 2010 3



Examples

• minimize f1(z1, x) + f2(z2, x), with variables z1, z2, x

– x is the complicating variable; when fixed, problem is separable
– z1, z2 are private or local variables
– x is a public or interface or boundary variable between the two

subproblems
– hypergraph: two nodes connected by an edge

• optimal control problem

– state is the complicating variable between past and future
– hypergraph: simple chain

LCCC, Lund, February 2010 4



Transformation to standard form

• introduce slack variables for complicating inequality constraints

• introduce local copies of complicating variables

• implicitly minimize over private variables (preserves convexity)

• represent local constraints in domain of objective term

• we are left with

– all variables are public, associated with a single node
– all constraints are consistency constraints, i.e., equality of two or

more variables

LCCC, Lund, February 2010 5



Example

• minimize f1(z1, x) + f2(z2, x), with variables z1, z2, x

• introduce local copies of complicating variable:

minimize f1(z1, x1) + f2(z2, x2)
subject to x1 = x2

• eliminate local variables:

minimize f̃1(x1) + f̃2(x2)
subject to x1 = x2

with f̃i(xi) = infzi
fi(zi, xi)

LCCC, Lund, February 2010 6



General form

• n subsystems with variables x1, . . . , xn

• m nets with common variable values z1, . . . , zm

minimize
∑n

i=1 fi(xi)
subject to xi = Eiz, i = 1, . . . , n

• matrices Ei give netlist or hypergraph
(row k is ep, where kth entry of xi is in net p)

LCCC, Lund, February 2010 7



Optimality conditions

• introduce dual variable yi associated with xi = Eiz

• optimality conditions are

∇fi(xi) = yi (subsystem relations)
xi = Eiz (primal feasibility)
∑n

i=1 ET
i yi = 0 (dual feasibility)

(for nondifferentiable case,replace ∇fi(xi) with gi ∈ ∂fi(xi))

• primal condition: (primal) variables on each net are the same

• dual condition: dual variables on each net sum to zero

LCCC, Lund, February 2010 8



Circuit interpretation (primal/voltages)

PSfrag

• subsystems are (grounded) nonlinear resistors

• nets are wires (nets); consistency constraint is KVL

• zj is voltage on net j

• xi is vector of pin voltages for resistor i

LCCC, Lund, February 2010 9



Circuit interpretation (dual/currents)

• yi is vector of currents entering resistor i

• dual feasibility is KCL: sum of currents leaving net j is zero

• V-I characteristic for resistor i: yi = ∇fi(xi)

• fi(x) is content function of resistor i

• convexity of fi is incremental passivity of resistor i:

(xi − x̃i)
T (yi − ỹi) ≥ 0, yi = ∇fi(xi), ỹi = ∇fi(x̃i)

• optimality conditions are exactly the circuit equations

LCCC, Lund, February 2010 10



Decomposition methods

• solve distributed problem iteratively

– algorithm state maintained in nets

• each step consists of

– (parallel) update of subsystem primal and dual variables, based only
on adjacent net states

– update of the net states, based only on adjacent subsystems

• algorithms differ in

– interface to subsystems
– state and update

LCCC, Lund, February 2010 11



Primal decomposition

repeat

1. distribute net variables to adjacent subsystems
xi := Eiz

2. optimize subsystems (separately)
solve subproblems to evaluate yi = ∇fi(xi)

3. collect and sum dual variables for each net
w :=

∑n
i=1 ET

i yi

4. update net variables
z := z − αkw.

• step factor αk chosen by standard gradient or subgradient rules

LCCC, Lund, February 2010 12



Primal decomposition

• algorithm state is net variable z (net voltages)

• w =
∑n

i=1 ET
i yi is dual residual (net current residuals)

• primal feasibility maintained; dual feasibility approached in limit

• subsystems are voltage controlled:

– voltage xi is asserted at subsystem pins
– pin currents yi are then found

LCCC, Lund, February 2010 13



Circuit interpretation

• connect capacitor to each net; system relaxes to equilibrium

• forward Euler update is primal decomposition

• incremental passivity implies convergence to equilibrium

z

x1 x2 x3

LCCC, Lund, February 2010 14



Dual decomposition

initialize yi so that
∑n

i=1 ET
i yi = 0

(dual variables sum to zero on each net)

repeat

1. optimize subsystems (separately)
find xi with ∇fi(xi) = yi, i.e., minimize fi(xi) − yT

i xi

2. collect and average primal variables over each net
z := (ETE)−1ETx

3. update dual variables
y := y − αk(x − Ez)

LCCC, Lund, February 2010 15



Dual decomposition

• algorithm state is dual variable y

• x − Ez is consistency residual

• dual feasibility maintained; primal feasibility approached in limit

• subsystems are current controlled:

– pin currents yi are asserted
– pin voltages yi are then found

LCCC, Lund, February 2010 16



Circuit interpretation

• connect inductor to each pin; system relaxes to equilibrium

• forward Euler update is dual decomposition

• incremental passivity implies convergence to equilibrium

z

x1 x2 x3

↑ y1 ↑ y2 ↑ y3

LCCC, Lund, February 2010 17



Prox(imal) interface

• prox operator:

Pρ(y, x̄) = argmin
x

(

f(x) − yTx + (ρ/2)‖x − x̄‖2
2

)

– contains usual dual term yTx and ‘proximal regularization’ term

• amounts to solving ∇f(x) + ρ(x − x̄) = y

• circuit interpretation: drive via resistance R = 1/ρ
cf. voltage (primal) drive or current (dual) drive

x

y→

x̄
∇f(x)→

LCCC, Lund, February 2010 18



Prox decomposition

initialize yi so that
∑n

i=1 ET
i yi = 0

repeat

1. optimize subsystems (separately)
minimize fi(xi) − yT

i xi + (ρ/2)‖xi − Eiz‖
2

2. collect and average primal variables over each net
z := (ETE)−1ETx

3. update dual variables
y := y − ρ(x − Ez)

• step size ρ in dual update guaranteed to work

LCCC, Lund, February 2010 19



Prox decomposition

• has many other names . . .

• algorithm state is dual variable y

• y − ρ(x − x̄) is dual feasible

• primal and dual feasibility approached in limit

• subsystems are resistor driven; must support prox interface

• interpretations

– regularized dual decomposition
– PI feedback (as opposed to I only feedback)

LCCC, Lund, February 2010 20



Circuit interpretation

• connect inductor ‖ resistor to each pin; system relaxes to equilibrium

• forward Euler update is prox decomposition

• incremental passivity implies convergence to equilibrium

z

x1 x2 x3

↑ y1 ↑ y2 ↑ y3

LCCC, Lund, February 2010 21



Momentum terms

• in optimization method, current search direction is

– standard search direction (gradient, subgradient, prox . . . )
– plus last search direction, scaled

• interpretations/examples

– smooth/low pass filter/average search directions
– add momentum to search algorithm (‘heavy-ball method’)
– two term method (CG)
– Nesterov optimal order method

• often dramatically improves convergence

LCCC, Lund, February 2010 22



You guessed it

• algorithm: prox decomposition with momentum

• just add capacitor to prox LR circuit

z

x1 x2 x3

↑ y1 ↑ y2 ↑ y3

LCCC, Lund, February 2010 23



Conclusions

to get a distributed optimization algorithm:

• represent as circuit with interconnecting wires

• replace interconnect wires with passive circuits that reduce to wires at
equilibrium

• discretize circuit dynamics

• subsystem interfaces depend on circuit drive
(current, voltage, via resistor)

• convergence hinges on incremental passivity

LCCC, Lund, February 2010 24


