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A universal pattern of motion 

Locusts (Buhl, Sumpter, Couzin et al, Science, 2006) 

Bacteria (Czirok, Ben-Jacob,…T.V., PRE 1996) 



3d 

bacteria 

Amobae (dyctyostelium discodeum) 





 Observation: complex units exhibit simple collective  
                         behaviours.  

Different types of collective motion patterns in a sense       
correspond to various kinds of „consensus”. 

 Our goals are: - classification of patterns   
                                                                      of collective motion 
                         - finding the basic laws 
                         (microscopic versus global)  



 Understanding through modeling and simulation 

- First flocking model by C. Reynolds, 1987,  
         - few dozen “boids”, computer graphics appl.  
         - attraction, repulsion, common direction (continuous, deterministic) 

- Statistical physics model for flocking, T.V. et al, 1995 
          - many thousands of particles (SPP) 
          - average direction  + noise (discrete in time) phase transition                
                                                                                               (continuous) 
Recent models (stat. phys.):     
         - average direction, cohesion + noise (Gregoire et al, 2003) 
         - vectorial noise, first order phase trans. (2004 Gregoire, Chaté)                     
        - interacting active Brownian particles (Ebeling, Schweitzer, others)  
         - models with “leaders” (Couzin, others, 2005) 
         - „soft” interaction potential (Cucker and Smale, 2005) 
         - model with escape and pursuit (Romanczuk, Couzin, &  
                         Schimansky-Geier, 2009)  
         - model with physical collisions only  (Grossman et al 2008) 
         - cell-sorting enhanced by swarming (Chaté and co-workers, 2008)                  



Swarms, flocks and herds 
•  Model*:  The particles 

  - maintain a given absolute  
         value of  the velocity v0 
  - follow their neighbours 
  - motion is perturbed by fluctuations η 

(E  normalizes the magnitude into unity) 

•  Follow the neighbours rule is an abstract 
way to take into account interactions of 
very different possible origins 

•  Result: ordering is due to motion   

* T.V, A. Czirok, E. Ben-Jacob and I. Cohen, PRL, 1995 
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Lessons: 

1. Most patterns of collective motion     
     are universal 

2. Simple models can reproduce this  
    behavior 

3. A simple noise term can account  
    for numerous complex deterministic  
    factors 

4. In many cases ordering  
    is due to motion! In other words: 
    in SPP systems momentum is not 
    conserved! 

Without alignment rule! 



Visualizations of various 3d versions 

Scalar noise 
(1995 PRL Vicsek et al model) 
Low velocity (v=0.1) 

More “realistic” model 
(with repulsion + attraction  
Reynolds, Couzin and others) 
Periodic boundary conditions 

More “realistic” model 

In a cylinder 

More “realistic” model 

Birds’ view 



A further lesson: 

The „critical” state (between ordered and disordered, with large 
 fluctuations) seems to be optimal for the propagation  
of information (due to higher level of mixing) which is useful  
from the points of 

     - exploration 
     - collective decision making 



Universal classes of flocking patterns (“phases”) 

i) disordered (particles moving in random directions) 

ii) fully ordered (particles moving in the same direction) 

iii) rotational (within a rectangular or circular area) 

vi) critical (flocks of all sizes moving coherently in different  
     directions. The whole system is very sensitive to perturbations) 

v) quasi-long range velocity correlations (ripple?) 
        (for elongated particles) 

vi) Jamming 

Types of transitions                

- Continuous (second order) 
- Discontinuous (first order) 
- No singularity in the level of directedness 
- Jamming 



Second part:  

Recent, ongoing investigations in our lab 

a) Dynamically changing clusters in the simplest SPP model 

b) Tracking the trajectory of  

                   -       toy boats and  

                   -       homing pigeons 



                is interaction with the “wall” of a given slope,  
co-moving with the centre of mass 

“side view” of the  
associated potential 

Network dynamics in flocking models 
Network: nodes (particles) and edges (connections, representing  
                interaction) 
Network of k-cliques (k (e.g., k=4) fully connected particles), 
representing a stronger, more relevant tie within a cluster of particles 

Comoving boundary condition! 

Questions: 

What is p the probability that a “large” cluster exists?  
What is the rate of change of clusters?  



Dynamics of k-clique clusters 

Two nodes belong to the same cluster if there is connected path of  
neighbouring k-cliques (overlapping cluster analysis of the underlying graph) 
Here: k = 4 
Method after Palla, Barabasi and T.V, Nature, 2007  

η = 0.4 η = 0.3 



Dynamics of k-clique clusters 

Emergence of a large single k-clique component (a percolating cluster) 

η = 0.10 



Cluster size distribution                1 - Rate of change  

                                                              probability of belonging to the    
                                                              same cluster after time ΔT 

η = 0.4 
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Smallest close to criticality 

Power law, all sizes 



Dynamics of the largest cluster 

Power spectrum of the time dependence of the number of particles in the largest  
cluster 



Radio control 
      forward 
      stop 
      Noise: backward (with some random  
                      turning, like bacteria) 

We control:   duration of  
    propelling/not propelling the boats 

sequence 
  -> forward -> no propelling -> 
  -> backward -> no propelling -> 

Video from above, digital video analysis 

Note: there is no alignment force ! 
Do physical constraints alone lead to ordered motion? 

Next stage: we shall introduce computer controlled „leaders” 

Toy boats in a circular pool 



Results from digital image analysis 



Simulations by P. Várkonyi 



Hierarchical group dynamics in  pigeon flocks 
M. Nagy, Zs. Akos, D. Biro and TV,   this part cannot be made public yet    


