Modeling and blind deconvolution via sparse representations

Tryphon Georgiou University of Minnesota

Joint work with Lipeng Ning and Allen Tannenbaum

Motivation

disturbance source localization sinusoids in noise dynamics

distributed sensor network

Sparsity and L1

more than 20 years of history...

Sparse representations

 $\|v\|_0 =$ # or nonzero entries $\|v\|_1 = \sum_k |v_k|$

Problem: $\min\{||v||_0 \text{ subject to } Bv = x\}$ — a combinatorial problem

Relaxation: $\min\{||v||_1 \text{ subject to } Bv = x\}$ — a convex problem

Primer on sparsity

Def (Donoho & Elad): spark(B) = least number of linearly dependent columns

Proposition: Bv = xif $\|v\|_0 < \frac{1}{2} \operatorname{spark}(B)$, then v is the sparsest solution

Primer (cont.)

Bv = x, if B is $m \times n$ (with m < n) for a general x, $\|v_{\text{optimal}}\|_0 = m$ But what if $\|v_{\text{optimal}}\|_0 < m$?

Observation: generically $\operatorname{argmin}\{||v||_1 : Bv = x\}$ will lie on a vertex, or edge, etc.

Primer (cont.)

Thm Donoho, Candes & Tao, Elad, Zhang, ...
If B is suitably "well-conditioned",
<u>and</u> there is a sufficiently sparse solution
then:

 $\operatorname{argmin}\{\|v\|_1 : Bv = x\} = \operatorname{argmin}\{\|v\|_0 : Bv = x\}$

Approximate solutions, noisy data

$$\min \{ \|v\|_1 \text{ subject to } \|Bv - x\|_2 \le \epsilon \}$$
$$\min \{ \|Bv - x\|_2 \text{ subject to } \|v\|_1 \le \sigma \}$$
$$\min \{ w\|v\|_1 + \|Bv - x\|_2^2 \}$$

Least Absolute Shrinkage and Selection Operator (LASSO) Relaxed Basis Pursuit

Basis Pursuit Denoising

Joint sparsity, etc.

"promote" coherent choices of cosines and sines

Identification: signals + dynamics

Blind deconvolution, sinusoids in colored noise, etc.

Sparsity vs. modeling error

$$v^* = \arg\min_{v} \{w \|v\|_1 + \frac{1}{2} \|y - Bv\|_2^2\}$$

Dual Problem:

$$\begin{split} \min_v \frac{1}{2} \|Bv\|_2^2 \\ \text{s.t.} \ |B^T(y-Bv)|_i \leq w \end{split}$$

— minimizer $v^* = \lambda + n$, λ multiplier and $n \in Null(B)$.

— if $w > |B^T y|_{\infty}$, v is zero

Sparsity vs. weight

sinusoids in white noise

$$\min_{v} w \|v\|_1 + \frac{1}{2} \|y - Bv\|_2^2$$

 $\|y - Bv\|^2$ vs. weight

Signal recovery

signal + noise

recovered

Iterative re-weighting

Candes, Wakin, Boyd

$$\min_{v} \|Wv\|_1 + \frac{1}{2}\|y - Bv\|_2^2$$

with $W = \operatorname{diag}(w_i)$, and update

$$w_i^{k+1} = \frac{1}{|v_i^k| + \epsilon}$$

in the limit. $\frac{|v_i|}{|v_i|+\epsilon} \approx \begin{cases} 0, \ |v_i| \ll \epsilon \\ 1, \ |v_i| \gg \epsilon \end{cases}$

Insight

Candes, Wakin, Boyd

— iterative minimization of a surrogate function "interpolating" $||v||_0$ and $||v||_1$

looking at duality

$$\begin{split} \min_{v} \frac{1}{2} \|Bv\|_{2}^{2} \\ \text{s.t.} \ |B^{T}(y - Bv)|_{i} \leq w_{i} \end{split}$$

How well does it do?

for sinusoids in white noise... very well

Candes, Wakin, Boyd

What if noise is colored?

Insight

e.g., choose W accordingly...

System identification

System identification (cont.)

$$\begin{bmatrix} y_k \\ y_{k+1} \\ \vdots \end{bmatrix} = \begin{bmatrix} y_{k-1} & y_{k-2} & \dots & y_{k-l} \\ y_k & y_{k-1} & \dots & y_{k-l-1} \\ \vdots & \ddots & \ddots & \vdots \end{bmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_l \end{pmatrix} + \begin{pmatrix} x_k \\ x_{k+1} \\ \vdots \end{pmatrix} + \text{noise}$$

$$y = H_y a + Bv +$$
noise

$$\min_{a,v} w \|v\|_1 + \frac{1}{2} \|y - H_y a - Bv\|_2^2$$

System identification (cont.)

noise =
$$\begin{pmatrix} 1 & -a_1 & \dots & -a_l & 0 & \dots & \dots \\ 0 & 1 & -a_1 & \dots & -a_l & 0 & \dots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \end{pmatrix} \begin{pmatrix} \begin{bmatrix} y_k \\ y_{k+1} \\ \vdots \end{bmatrix} - Bv \end{pmatrix}$$

noise =
$$T_a(y - Bv)$$

$$\min_{a,v} \|Wv\|_1 + \frac{1}{2} \|T_a(y - Bv)\|_2^2$$

Sparsity vs. weight

 $\min_{a,v} w \|v\|_1 + \frac{1}{2} \|y - H_y a - Bv\|_2^2$

— if $w > \|B^T(I - P_H)y\|_{\infty}$, v is zero

Iterative re-weighting a la Candes etal.

$$\min_{a,v} \|Wv\|_1 + \frac{1}{2}\|y - H_ya - Bv\|_2^2$$

— update

$$w_i = \frac{1}{SNNR(i) + \epsilon}$$

e.g. $w_i \sim 1/(||(v_{\sin}, v_{\cos})|| + \epsilon)$... perio/AR-spectrum

Example

spectral lines

dynamics

Example

Recap

sparse representations in system identification resolution (limits?)

— interplay between dynamics and sparsity?

if (v = 0, a) satisfy conditions of the dual, then v_{opt} is "small". is there a "uniqueness" result? stability of the AR model?