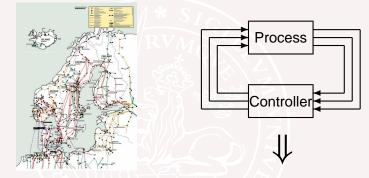
Distributed Synthesis and Validation of Model Predictive Controllers

Anders Rantzer and Pontus Giselsson

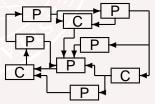
Lund University, Sweden

Building theoretical foundations for distributed control



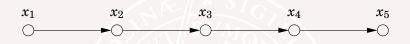
We need methodology for

- Decentralized specifications
- Decentralized design
- Verification of global behavior



Distributed Synthesis and Validation of Model Predictive Con

Example 1: A vehicle formation

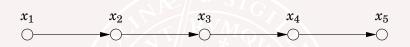


Each vehicle obeys the independent dynamics

$$\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ x_3(t+1) \\ x_4(t+1) \end{bmatrix} = \begin{bmatrix} * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix} + \begin{bmatrix} B_1 u_1(t) + w_1(t) \\ B_2 u_2(t) + w_2(t) \\ B_3 u_3(t) + w_3(t) \\ B_4 u_4(t) + w_4(t) \end{bmatrix}$$

The objective is to make $\mathbf{E}|Cx_{i+1} - Cx_i|^2$ small for i = 1, ..., 4.

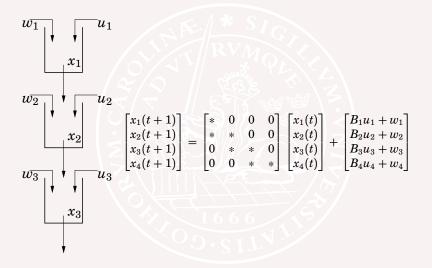
Example 2: A supply chain for fresh products



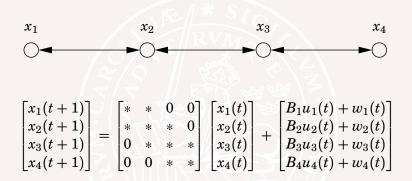
Fresh products degrade with time:

$$\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ x_3(t+1) \\ x_4(t+1) \end{bmatrix} = \begin{bmatrix} * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix} + \begin{bmatrix} -u_1(t) + w_1(t) \\ u_1(t) - u_2(t) \\ u_2(t) - u_3(t) \\ u_3(t) + w_4(t) \end{bmatrix}$$

Example 3: Water distribution systems



Example 4: Wind farms



The objective is to make $\sum_{i} \mathbf{E} |x_i|^2$ small. Can we get a solution where turbines only communicate with neighbors?

A long history

The saddle algorithm: Arrow, Hurwicz, Usawa 1958

Books on control and coordination in hierarchical systems:

Mesarovic, Macko, Takahara 1970 Singh, Titli 1978 Findeisen 1980

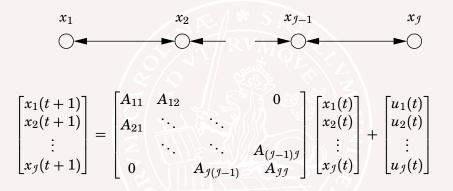
Major application to water supply network: Carpentier and Cohen, Automatica 1993

Our contribution: Analyze effects of suboptimality

Outline

- Introduction
- Dynamic dual decomposition
- Distributed Model Predictive Control

A control problem with graph structure



Minimize $V = \sum_{i=1}^{j} \sum_{t=0}^{N} (|x_i(t)|^2 + |u_i(t)|^2)$ subject to $x(0) = x^0$ while $x_i(t) \in X_i$ and $u_i(t) \in U_i$ for all i, t. (Assume $X_1 \times X_2 \times \cdots \times X_q$ control invariant.)

Decomposing the problem

Minimize
$$V = \sum_{i=1}^{f} \sum_{t=0}^{N} \left(|x_i(t)|^2_{Q_i} + |u_i(t)|^2_{R_i}
ight)$$

subject to

$$\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ \vdots \\ x_J(t+1) \end{bmatrix} = \begin{bmatrix} A_{11}x_1(t) \\ A_{22}x_2(t) \\ \vdots \\ A_{JJ}x_J(t) \end{bmatrix} + \begin{bmatrix} v_1(t) \\ v_2(t) \\ \vdots \\ v_J(t) \end{bmatrix} + \begin{bmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_J(t) \end{bmatrix}$$

where $x(0) = x^0$ and

$$v_i(t) = \sum_{j \neq i} A_{ij} x_j(t)$$
 for all i, t

Decomposing the Cost Function

$$\begin{split} &\max_{p} \min_{u,v,x} \sum_{t=0}^{N} \sum_{i=1}^{\mathcal{I}} \left[|x_{i}|_{Q_{i}}^{2} + |u_{i}|_{R_{i}}^{2} + 2p_{i}^{T} \left(v_{i} - \sum_{j \neq i} A_{ij} x_{j} \right) \right] \\ &= \max_{p} \sum_{i} \min_{u_{i},v_{i},x_{i}} \sum_{t=0}^{N} \left[|x_{i}|_{Q_{i}}^{2} + |u_{i}|_{R_{i}}^{2} + 2p_{i}^{T} v_{i} - 2x_{i}^{T} \left(\sum_{j \neq i} A_{ji}^{T} p_{j} \right) \right] \end{split}$$

so, given the sequences $\{p_j(t)\}_{t=0}^N$, agent *i* should minimize

what he expects others to charge him

$$\underbrace{\sum_{t=0}^{N} |x_i|_{Q_i}^2 + |u_i|_{R_i}^2}_{\text{local cost}} + \underbrace{2\sum_{t=0}^{N} p_i^T v_i}_{\text{total cost}} - \underbrace{2\sum_{t=0}^{N} x_i^T \left(\sum_{j \neq i} A_{ji}^T p_j\right)}_{\text{what he is payed by others}}$$

with $x_i(t+1) = A_{ii}x_i(t) + v_i(t) + u_i(t)$ and $x_i(0), v_i(0)$ fixed.

Distributed Optimization Procedure

Local optimizations in each node

$$V_i^{N,p}(\bar{x}_i) = \min_{u_i, v_i, x_i} \sum_{\tau=0}^N \ell_i^p(x_i(\tau), u_i(\tau), v_i(\tau))$$

can be coordinated by (local) gradient updates of the prices

$$p_i^{k+1}(au) = p_i^k(au) + \gamma_i^k \Big[v_i^k(au) - \sum_{j
eq i} A_{ij} x_j^k(au) \Big]$$

Future prices included in negotiation for first control input!

Finite horizon error bounds available under different types of assumptions on the step size sequence γ_i^k .

Outline

- Introduction
- Dynamic dual decomposition
- Distributed Model Predictive Control

"Wind Farm" Revisited

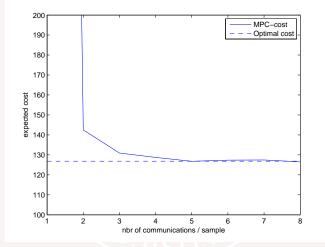
Minimize $V = \mathbf{E} \sum_{i=1}^{n} (|x_i|^2 + |u_i|^2)$ subject to

$\left\lceil x_1(t+1) \right\rceil$	0.6	0.1		0.]	$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$		$\left\lceil u_1(t) + w_1(t) \right\rceil$	
$x_2(t+1)$	0.3		1.	32	$x_2(t)$		$u_2(t) + w_2(t)$	
	$\gamma_{\mathbf{x}}$		// s	0.1	2	\mathbf{T}	5\ :	
$\lfloor x_n(t+1) \rfloor$	0		0.3	0.6	$\lfloor x_n(t) \rfloor$		$\left\lfloor u_n(t) + w_n(t) \right\rfloor$	

We will solve this by "distributed MPC". For every t, the agents measure their local state $x_i(t)$. The vector of future prices is then updated by K gradient iterations starting from the prices computed at t - 1 for a time horizon of length N.

Re-negotiation of future prices at every time step!

Performance Versus Number of Gradient Iterations



A distributed controller with 100 agents, using only local data. Performance close to optimal centralized controller!

Anders Rantzer and Pontus Giselsson Distributed Synthesis and Validation of Model Predictive Con

Challenges for theory

- What prediction horizon is needed?
- How many gradient iterations for the prices?

References: Grüne and Rantzer, IEEE TAC October 2008. Pannek, PhD thesis 2009 Giselsson and Rantzer, submission for CDC 2010.

Definition of Model Predictive Controller

With

$$V_i^{N,p}(x_i^0) = \min_u \sum_{t=0}^N l_i^p(x_i(t), u_i(t))$$

the corresponding model predicitve controller $u_i = \mu_i^{N,p}(x)$ gives the inifinite horizon cost

$$\sum_{t=0}^{\infty} l(x(t),\mu^{N,p}(x(t)))$$
 where $x(t+1) = f(x(t),\mu^{N,p}(x(t))), \quad x(0) = x^0$

How does this compare to the optimal cost $V_{\infty}(x^0)$?

Distributed Validation of MPC Accuracy

Suppose that $\beta \in [0,1]$ and

$$V_i^{N,p}(x_i(t)) \ge V_i^{N,p}(x_i(t+1)) + \beta l_i^p(x_i, \mu_i^{N,p}(x))$$

for all *x* along a trajectory obtained by starting in x^0 and applying the control law $\mu^{N,p}$. Then

$$eta \sum_{t=0}^\infty l(x(t),\mu^{N,p}(x(t)) \leq V_\infty(x^0))$$

Hence the distance to optimality can be rigorously bounded from trajectory data!

Conclusions on Distributed MPC

We have synthesized a game that solves optimal control problems via independent decision-makers in every node, acting in their own interest!

- Optimal strategies independent of global graph structure!
- States are measured only locally
- Linearly complexity (given horizon and iteration scheme)
- Distributed bounds on distance to optimality