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Building theoretical foundations for distributed control

We need methodology for

Decentralized specifications

Decentralized design

Verification of global behavior
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Example 1: A vehicle formation

x1 x2 x3 x4 x5

Each vehicle obeys the independent dynamics






x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)






=







∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







B1u1(t) +w1(t)
B2u2(t) +w2(t)
B3u3(t) +w3(t)
B4u4(t) +w4(t)







The objective is to make EpCxi+1 − Cxip2 small for i = 1, . . . , 4.
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Example 2: A supply chain for fresh products

x1 x2 x3 x4 x5

Fresh products degrade with time:






x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)






=







∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







−u1(t) +w1(t)
u1(t) − u2(t)
u2(t) − u3(t)
u3(t) +w4(t)
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Example 3: Water distribution systems

x1

x2

x3

w1

w2

w3

u1

u2

u3

2

6

6

4

x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)

3

7

7

5

=

2

6

6

4

∗ 0 0 0

∗ ∗ 0 0

0 ∗ ∗ 0

0 0 ∗ ∗

3

7

7

5

2

6

6

4

x1(t)
x2(t)
x3(t)
x4(t)

3

7

7

5

+

2

6

6

4

B1u1 +w1
B2u2 +w2
B3u3 +w3
B4u4 +w4

3

7

7

5

Anders Rantzer and Pontus Giselsson Distributed Synthesis a nd Validation of Model Predictive Contr



Example 4: Wind farms

x1 x2 x3 x4







x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)






=







∗ ∗ 0 0

∗ ∗ ∗ 0

0 ∗ ∗ ∗
0 0 ∗ ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







B1u1(t) +w1(t)
B2u2(t) +w2(t)
B3u3(t) +w3(t)
B4u4(t) +w4(t)







The objective is to make
∑

iEpxip
2 small. Can we get a solution

where turbines only communicate with neighbors?
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A long history

The saddle algorithm:
Arrow, Hurwicz, Usawa 1958

Books on control and coordination in hierarchical systems:
Mesarovic, Macko, Takahara 1970
Singh, Titli 1978
Findeisen 1980

Major application to water supply network:
Carpentier and Cohen, Automatica 1993

Our contribution:
Analyze effects of suboptimality
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Outline

○ Introduction

• Dynamic dual decomposition

○ Distributed Model Predictive Control
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A control problem with graph structure

x1 x2 xJ−1 xJ








x1(t+ 1)
x2(t+ 1)

...
xJ (t+ 1)







=









A11 A12 0

A21
. . . . . .
. . . . . . A(J−1)J

0 AJ(J−1) AJJ
















x1(t)
x2(t)

...
xJ (t)







+








u1(t)
u2(t)

...
uJ (t)








Minimize V =
∑J
i=1

∑N
t=0

(
pxi(t)p

2 + pui(t)p
2
)

subject to x(0) = x0 while xi(t) ∈ Xi and ui(t) ∈ Ui for all i, t.

(Assume X1 $ X2 $ ⋅ ⋅ ⋅$ XJ control invariant.)
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Decomposing the problem

Minimize V =
∑J
i=1

∑N
t=0

(

pxi(t)p
2
Qi
+ pui(t)p

2
Ri

)

subject to







x1(t+ 1)
x2(t+ 1)

...
xJ (t+ 1)







=








A11x1(t)
A22x2(t)

...
AJJ xJ (t)







+








v1(t)
v2(t)

...
vJ (t)







+








u1(t)
u2(t)

...
uJ (t)








where x(0) = x0 and

vi(t) =
∑

j ,=iAi jx j(t) for all i, t
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Decomposing the Cost Function

max
p
min
u,v,x

N∑

t=0

J∑

i=1

[

pxip
2
Qi
+ puip

2
Ri
+ 2pTi

(

vi −
∑

j ,=iAi jx j

) ]

= max
p

∑

i

min
ui,vi,xi

N∑

t=0

[

pxip
2
Qi
+ puip

2
Ri
+ 2pTi vi − 2x

T
i

(
∑

j ,=iA
T
jipj

) ]

so, given the sequences {pj(t)}Nt=0, agent i should minimize

N∑

t=0

pxip
2
Qi
+ puip

2
Ri

︸ ︷︷ ︸

local cost

+

what he expects others to charge him
︷ ︸︸ ︷

2

N∑

t=0

pTi vi − 2

N∑

t=0

xTi

(
∑

j ,=iA
T
jipj

)

︸ ︷︷ ︸

what he is payed by others

with xi(t+ 1) = Aiixi(t) + vi(t) + ui(t) and xi(0),vi(0) fixed.
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Distributed Optimization Procedure

Local optimizations in each node

V
N,p
i (x̄i) = min

ui,vi,xi

N∑

τ=0

{pi
(
xi(τ ),ui(τ ),vi(τ )

)

can be coordinated by (local) gradient updates of the prices

pk+1i (τ ) = pki (τ ) + γ ki

[

vki (τ ) −
∑

j ,=iAi jx
k
j (τ )

]

Future prices included in negotiation for first control input!

Finite horizon error bounds available under different types of
assumptions on the step size sequence γ ki .
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Outline

○ Introduction

○ Dynamic dual decomposition

• Distributed Model Predictive Control
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“Wind Farm” Revisited

Minimize V = E
∑n
i=1

(
pxip
2 + puip

2
)

subject to








x1(t+ 1)
x2(t+ 1)

...
xn(t+ 1)







=









0.6 0.1 0

0.3
. . . . . .
. . . . . . 0.1

0 0.3 0.6
















x1(t)
x2(t)

...
xn(t)







+








u1(t) +w1(t)
u2(t) +w2(t)

...
un(t) +wn(t)








We will solve this by “distributed MPC”. For every t, the agents
measure their local state xi(t). The vector of future prices is
then updated by K gradient iterations starting from the prices
computed at t− 1 for a time horizon of length N.

Re-negotiation of future prices at every time step!
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Performance Versus Number of Gradient Iterations
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A distributed controller with 100 agents, using only local data.
Performance close to optimal centralized controller!
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Challenges for theory

What prediction horizon is needed?

How many gradient iterations for the prices?

References:
Grüne and Rantzer, IEEE TAC October 2008.
Pannek, PhD thesis 2009
Giselsson and Rantzer, submission for CDC 2010.

Anders Rantzer and Pontus Giselsson Distributed Synthesis a nd Validation of Model Predictive Contr



Definition of Model Predictive Controller

With

V
N,p
i (x0i ) = min

u

N∑

t=0

l
p
i (xi(t),ui(t))

the corresponding model predicitve controller ui = µN,pi (x)
gives the inifinite horizon cost

∞∑

t=0

l(x(t),µN,p(x(t))

where x(t+ 1) = f (x(t),µN,p(x(t))), x(0) = x0

How does this compare to the optimal cost V∞(x0)?
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Distributed Validation of MPC Accuracy

Suppose that β ∈ [0, 1] and

V
N,p
i (xi(t)) ≥ V

N,p
i (xi(t+ 1)) + β lpi (xi,µ

N,p
i (x))

for all x along a trajectory obtained by starting in x0 and
applying the control law µN,p. Then

β

∞∑

t=0

l(x(t),µN,p(x(t)) ≤ V∞(x
0)

Hence the distance to optimality can be rigorously bounded
from trajectory data!
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Conclusions on Distributed MPC

We have synthesized a game that solves optimal control
problems via independent decision-makers in every node,
acting in their own interest!

Optimal strategies independent of global graph structure!

States are measured only locally

Linearly complexity (given horizon and iteration scheme)

Distributed bounds on distance to optimality
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