Value-based Q(s, S) policy for joint replenishments

Presentation at:

LCCC Workshop: Distributed Model Predictive Control and Supply Chains

Lund, Sweden May 19-21, 2010

Anders Thorstenson

CORAL – Centre for O.R. Applications in Logistics Aarhus School of Business, Aarhus University, Denmark

Joint work with:

Søren Glud Johansen

Dept. of Operations Research, Aarhus University (DK)

Outline

Objective

□ Joint Replenishment Problem (JRP)

Control policies (Literature)

- □ Value-based Q(s,S) policy
 - Idea
 - Model

Numerical study (Computations & Simulations)

Conclusions & extension

Objective

Two-fold objective:

Obtain improved solutions to the classical JRP

Apply a dynamic decision-making procedure to improve a static decision rule

Joint Replenishment Problem (JRP)

- *n* items
- Setup costs
 - Joint setup cost K
 - Item-specific setup costs k_i
- Holding cost rates h_i
- Penalty costs
 - Backorder cost rate *b_i*
 - Shortage cost per unit π_i
- Independent (pure) Poisson demands with rates λ_i
- Deterministic lead times *L_i*

JRP (cont'd))

Interpretations:

Conventional: Multi-item replenishment coordination

Control policies (Literature)

- Can-order policies (*s*, *c*, *S*)
 - Continuous review
 - Periodic review
- Periodic review (*R*, *T*) policies
- Periodic review P(s, S) policy
- 'Demand-reporting' Q(s, S) policies
 - QS policy
 - Pure Q(s, S) policy
 - Value-based Q(s, S) policy
- Recent contributions

Balintfy (1964), ... Melchiors (2002) Johansen & Melchiors (2003)

Atkins & Iyogun (1988)

Viswanathan (1997)

Pantumsinchai (1992)

Nielsen & Larsen (2005)

Johansen & Thorstenson (2006/09)

Özkaya et al. (2006) Gürbüz et al. (2007) Viswanathan (2007)

Control policies (cont'd)

 (S_i, c_i, s_i) or 'Can-Order' systems

- Continuous review system (or periodic)
- S_i = order-up-to level, c_i = `can'-order point, s_i = `must'-order point

 $Q(S_i)$ system

- Continuous review order-up-to system
- Q = total demand since last replenishment to trigger new order
- $Q(s_i, S_i)$ system
 - Continuous review (*s*, *S*) system
 - Q = total demand since last replenishment to trigger new order

 $P(s_i, S_i)$ system

- Periodic review system
- *P* = optimized common review period

Value-based Q(s,S) policy

Q(s, S) policy

- Spec. and algorithm: Nielsen & Larsen (2005)
- Improvement: Q ≠ Q* ? Johansen & Thorstenson (2006/09)

Q(s, S) policy

Intuitive

 Analytically tractable with long-run average cost:

$$C(Q) = \frac{K\mu}{Q} + \sum_{i=1}^{n} g(Q, s_i^*(Q), S_i^*(Q))$$

• In many cases gives (very) good results

• But:

Dependence on aggregate parameter *Q*?

Value-based Q(s, S) policy

Basic ideas:

- Consider economic value of deviating from Q* in the pure Q(s, S) policy
- Approach:
 - I. Estimate relative values of system's state at a decision instant
 - II. Apply single policy-improvement step
 - Cf. Tijms (2003) Adelman (2004) Axsäter (2006)

Value-based Q(s, S) policy

Basic ideas (cont'd):

 Value comparisons when total demand since last replenishment is 'close to' Q* (threshold value Q₁):

Research questions

How can the value-based Q(s, S) policy be computed?

What is the effect on long-run average cost of using the value-based Q(s, S) policy rather than the pure Q(s, S) policy?

Value-based Q(s, S) policy

Model features:

- Basis in pure Q(s, S) policy
- Relative state values from Markov chain
- State representation: # of orders since last ordered $0 \le r_i \le Group(i)$ i = 1, 2, ..., n

• Value iteration:
$$V_N(\mathbf{r}) = c_{\mathbf{r}} + \sum_{\mathbf{r'} \in R(\mathbf{r})} P_{\mathbf{r},\mathbf{r'}} V_{N-1}(\mathbf{r'}), \quad \mathbf{r} \in R$$

• Cost comparisons: $V_{now}(\mathbf{r}, \mathbf{x}); I(\mathbf{r}, \mathbf{x}); V_{postpone}(\mathbf{r}, \mathbf{x}; q)$

Questions

How can the value-based Q(s, S) policy be computed?

What is the effect on long-run average cost of using the value-based Q(s, S) policy rather than the pure Q(s, S) policy?

Numerical study

Computational tools:

- **Pure** Q(s, S) policy by algorithm in VBA; Golden section search procedure for Q*
- Value-based Q(s, S) policy by algorithm in VBA and simulation model in Arena
 - Simulation setup:
 - 95% confidence intervals
 - 10 replications
 - 10,000 time units + 100 warm-up time units
 - Initialization with $x_i = S_i^*(Q^*)$

Average costs of various policies in four cases under variations of the setup cost K in the 12-item problem introduced by Atkins and Iyogun (1988)

	Can-order		Periodic review		Demand reporting			
	$\operatorname{Erlang}^{1}$	$Compensation^2$	$(R,T)^{3}$	$\mathbf{P}(s,S)^4$	$Q(s,S)^5$	Value-based		
(d) $h = 6, b = 0$ and $\pi = 30$								
K = 50	*	*	*	*	2052.5	2035.0 ± 1.4		
K = 100	*	*	*	*	2159.1	2140.7 ± 1.8		
K = 150	$2288.7{\pm}0.6$	$2313.0{\pm}0.8$	2291	2267	2251.5	$2233.3 {\pm} 1.9$		
K = 200	*	*	*	*	2335.2	$2319.6{\pm}1.6$		

Item-specific parameter values of the three-item example in Brønmo (2005)

	item 1	item 2	item 3
demand rate	$\lambda_1 = 0.5$	$\lambda_2 = 0.5$	$\lambda_3 = 0.25$
holding cost rate	$h_1 = 2$	$h_{2} = 1$	$h_{3} = 2$
backorder cost rate	$b_1 = 4$	$b_2 = 2$	$b_{3} = 3$
shortage cost per unit	$\pi_1 = 30$	$\pi_2 = 20$	$\pi_3 = 20$

The other parameter values are K = 30, $L_i = 2$ and as reported in Table 2.

Average costs of the pure Q(s, S) policy and the value-based policy for various examples with three items

	b = (32, 16, 32)		b = (64, 32)	b = (64, 32, 64)		b = (128, 64, 128)	
(c) $h_3 = 8$				5	Pure Q(s, S)	
K = 60	45.28	Q*=9	51.01	Q*=8	56.64	Q*=8	
n = 00	40.77 +/- 0.21	10.0%	46.35 +/- 0.23	9.1%	49.69 +/- 0.26	12.3%	

Conclusions & Extension

- Dynamic value-based Q(s, S) policy modifies the static pure Q(s, S) policy by evaluating expected cost of deviating from it
- Value-based Q(s, S) policy dominates the pure Q(s, S) policy – in some cases cost savings of more than 10%
- Although state representation limits state space, Curse of dimensionality still may apply!
- Extension: Value-based P(s, S) policy Decomposes in items => smaller state space

Value-based Q(s,S) policy

Questions and ...?

