(ロ) (同) (E) (E) (E)

Logistics, queueing networks and model reduction

Fabian Wirth

Institute of Mathematics University of Würzburg

LCCC 2010 Lund, May 19–21, 2010.

joint work with: Michael Schönlein Sergey Dashkovskiy, Michael Kosmykov Thomas Makuschewitz, Bernd Scholzreiter

Contents

Motivation

Queueing Systems

Fluid Models

Ranking in Graphs

Motivation

Queueing Systems

Fluid Models

Ranking in Graphs

Motivation

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Motivation

Queueing Systems

Fluid Models

Contents

Motivation

Queueing Systems

Instability leads to

- · Unbounded work in progress
- · High inventory costs
- Standard simulation provides
 little information
- Large number of unsatisfied orders
- Loss of customers

Mathematical models for logistics networks

Institut für

MATHEMATIK

- Continuous dynamical system
- Hybrid dynamical system
- Queueing networks
- Fluid networks

Julius-Maximilians-

WÜRZBURG

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

SC pumps

Queueing Systems

Queueing systems provide a stochastic framework for the modelling of logistic systems

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Queueing Systems

Consider a set of servers which are able to treat different classes of jobs.

IIN

Queueing Systems

Without loss of generality each class only receives service at one given server. Unserved jobs wait in a queue.

TIMP

Queueing Systems

In open systems jobs arrive from the outside according to some stochastic process.

IIN

Queueing Systems

After service jobs leave the network or with a certain probability they go to another station to receive service there.

Queueing Systems - The Maths

Classes $k = 1, \ldots, K$.

Interarrival times: $\xi_k(n), n = 0, 1, 2, \dots$ i.i.d. $\mathbb{E}(\xi_k(0)) < \infty$

Service times: $\eta_k(n), n = 0, 1, 2, ...$ i.i.d. $\mathbb{E}(\mu_k(0)) < \infty$

routing matrix $P = (p_{ij})$, p_{ij} - probability that job of class *i* becomes a job of class *j* **Assumption:** r(P) < 1.

Luius-Maximilians: UNIVERSITÄT WÜRZBURG ・ロ・・西・・田・・田・ うらぐ

Queueing Systems - Balance Equations

Institut für

Classes k = 1, ..., KInterarrival times: $\xi_k(n), n = 0, 1, 2, ...$ i.i.d. $\mathbb{E}(\xi_k(0)) < \infty$ Service times: $\eta_k(n), n = 0, 1, 2, ...$ i.i.d. $\mathbb{E}(\eta_k(0)) < \infty$ routing matrix $P = (p_{ij}), p_{ij}$ - probability that job of class *i* becomes a job of class *j* **Assumption:** r(P) < 1.

$$Q(t) = Q(0) + A(t) + P^{T}S(t) - S(t)$$

with

$$A_j(t) = \max\left\{n \mid \sum_{m=0}^n \xi_k(m) \le t
ight\}$$

S(t) is the service process - depends on the service discipline. The state space X is very often countable, but also depends on the service discipline.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Stability of Queueing Systems

Definition A queueing system is called stable if it is Harris recurrent.

Stability of Queueing Systems

Definition A queueing system is called stable if it is Harris recurrent.

Technicalities aside, Harris recurrence means that there is an attractive invariant measure π for the Markov process. Here invariant means that for all t > 0 and all measurable sets A

$$\pi(A) = \int_{\mathbb{X}} P_t(x, A) \pi(dx) \,,$$

where $P_t(x, B)$ is the probability to go from x to the set B in time t.

In the long run, the probability of being in a set X is $\pi(X)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Queueing Systems - Fluid Limits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Queueing Systems - Fluid Limits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Queueing Systems - Fluid Limits

Queueing Systems - Fluid Limits

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ● のへ⊙

Queueing Systems - Fluid Limits

Metatheorem (Rybko/Stolyar 1992, Dai 1995) If the fluid limit model is stable at 0, then the corresponding queueing system is Harris recurrent.

Motivation

Queueing Systems

Fluid Models

Ranking in Graphs

Ranking schemes try to extract information about the importance/relevance of a vertex from graph properties.

Given a weighted adjecency matrix A corresponding to a directed graph, the following steps are performed

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Given a weighted adjecency matrix A corresponding to a directed graph, the following steps are performed

• Colums are rescaled to have column sum 1 (where possible).

・ロ・・「「・」・「」・(」・(」・

Given a weighted adjecency matrix A corresponding to a directed graph, the following steps are performed

- Colums are rescaled to have column sum 1 (where possible).
- A is made colum stochastic by adding artificial entries in zero columns.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ♪ ♪

Ranking in Graphs

Given a weighted adjecency matrix ${\cal A}$ corresponding to a directed graph, the following steps are performed

- Colums are rescaled to have column sum 1 (where possible).
- A is made colum stochastic by adding artificial entries in zero columns.
- A is made irreducible e.g. by considering for some $lpha \in (0,1)$

$$\tilde{A} := \alpha A + (1 - \alpha) \mathbf{e} \mathbf{e}^T$$

Then Perron-Frobenius theory says that there is an eigenvector r > 0 such that

$$Ar = r$$

The entries of r quantify the importance of the nodes.

UNIVERSITÄT

WÜRZBURG

Ranking in Graphs

Ranking in Graphs: Eliminating zero columns

Institut für

MATHEMATIK

Ranking in Graphs: Eliminating zero columns

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Ranking in Graphs - Ensuring irreducibility

Given the weighted adjecency matrix $A \in \mathbb{R}^{n \times n}$ consider the enlarged matrix

$$\begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{(n+m) \times (n+m)}$$

Consider the graph described by A as weakly coupled with a larger network. Coupling described by vectors v and w.

$$B = \begin{bmatrix} \alpha A + (1 - \alpha) v_n \mathbf{e}_n^T & w_n \mathbf{e}_m^T \\ (1 - \alpha) v_m \mathbf{e}_n^T & w_m \mathbf{e}_m^T \end{bmatrix}$$

Notation: $\mathbf{e} := \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^T$

Institut für

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Fluid Models

Ranking in Graphs

$$B = \begin{bmatrix} \alpha A + (1 - \alpha) v_n \mathbf{e}_n^T & w_n \mathbf{e}_m^T \\ (1 - \alpha) v_m \mathbf{e}_n^T & w_m \mathbf{e}_m^T \end{bmatrix}$$

Proposition Assume that *B* is irreducible, then if $x = \begin{bmatrix} x_n^T & x_m^T \end{bmatrix}^T$ is an eigenvector corresponding to the eigenvalue 1 of *B* then x_n is an eigenvector corresponding to the eigenvalue 1 of the matrix

$$A_{\alpha}(\mathbf{v}, \mathbf{w}) := \alpha A + (1 - \alpha) \left(\mathbf{v}_n + \frac{\mathbf{e}_m^T \mathbf{v}_m}{1 - \mathbf{e}_m^T \mathbf{w}_m} \mathbf{w}_n \right) \mathbf{e}_n^T.$$

Furthermore, $A_{\alpha}(v, w)$ is irreducible.

UNIVERSITÄT WÜRZBURG

A simple example

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Fluid Models

Ranking in Queueing Networks

How can we evaluate if a reduced order model is sufficiently close to the original one ?

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Fluid Models

Ranking in Queueing Networks

How can we evaluate if a reduced order model is sufficiently close to the original one ?

The invariant probability distributions should be close to the original one.

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ④ < ④

Particular case: Jackson Networks

In Jackson networks each server serves exactly one class of jobs. The arrival process is Poisson and the service times are exponentially distributed.

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Particular case: Jackson Networks

In Jackson networks each server serves exactly one class of jobs. The arrival process is Poisson and the service times are exponentially distributed. Vector of external arrivals: α

Particular case: Jackson Networks

In Jackson networks each server serves exactly one class of jobs. The arrival process is Poisson and the service times are exponentially distributed.

- Vector of external arrivals: α
- Traffic equation for effective load of a server:

$$\lambda = P^T \lambda + \alpha \,.$$

Without the embedding in a larger network λ is the ranking vector. λ determines the stationary probability distribution. So in this case there is no problem.

Contents

Motivation

Queueing Systems

Fluid Models

Ranking in Graphs

Heuristics

Theorem The following procedures for reduction do not change the rank of unaffected nodes.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ● のへ⊙

Heuristics

Heuristics

◆□ > ◆□ > ◆臣 > ◆臣 > ● 臣 = のへの

Heuristics

◆□ > ◆□ > ◆ □ > ● □ >

Contents

Motivation

Queueing Systems

Fluid Models

Ranking in Graphs

Thank you

