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Problem Setup

Control problem

ẋ(t) = f
(
x(t), u(t), w(t)

)
, nonlinear dynamics

subject to

x(t) ∈ X, u(t) ∈ U ∀t ≥ 0, constraints

w(t) ∈ W = {w ∈ R
nw | ‖ w ‖∞≤ wmax}, bounded disturbances

Goal: Robust MPC of nonlinear system with bounded disturbances

Existing schemes

Min-Max MPC → Computationally intractable

MPC with contractive sets → Conservative solution

Suggested approach:

Nominal trajectory prediction + Robust invariant sets

Basic Idea

Error system

˙̄x(t) = f
(
x̄(t), ū(t), 0

)
,

v = x− x̄,

v̇ = f(x, u, w)− f(x̄, ū, 0),

Controller structure

u = ū+ κ(x, x̄).

ū: nominal input,

κ(x, x̄): feedback law renders

the set Ω robustly invariant

Nominal cost function

Nominal prediction trajectory

Actual traj. lie in Ω centered

on nominal trajectory.

Problem to solve

Calculation of Ω, κ(x, x̄)
based on error system

Solution based on ISS



Input-to-state stability

Input-to-state stability (ISS)

The system is ISS, if there exists a function E(v) such that

α1(‖v‖) ≤ E(v) ≤ α2(‖v‖), (1a)

dE(v)

dt
≤ −W (v), ‖v‖ ≥ ρ(wmax), (1b)

where αi(·) ∈ K∞ and ρ(·) ∈ K and W positive definite

Let E(x− x̄) = E(v) with
associated controller κ(x, x̄)

satisfy (1)

⇓
Ω is robustly invariant

Proposed concept to get Ω and κ:

Combine ISS and exponential stability

Exponential stability

Disturbance invariant sets using exponential stability

Let the function E(v) with α1(‖v‖) ≤ E(v) ≤ α2(‖v‖) and the scalars

λ > 0 and µ > 0 be such that

d

dt
E(v(t)) + λE(v(t)) − µwT (t)w(t) ≤ 0,

⇓

Ω :=
{
v ∈ Rnx |E(v) ≤

µw2
max

λ

}

is a disturbance invariant set for the error system, i.e.

v(t) ∈ Ω ∀t ≥ t0, w(t) ∈ W, if v(t0) ∈ Ω.

Remaining problem

Find κ and E

Suitably calculate

u = κ(x, x̄) and E(v) = E(x− x̄)

such that the error system

v̇ = f(x, u, 0)− f(x̄, u, w) [6= f(v, u, w) in general]

is exponentially stable

Possible solution

Backstepping

Passivity-based control

Linear differential inclusion [Yu et al., ACC,2010]

......

Any suitable nonlinear controller design

Proposed robust NMPC controller

Nominal prediction ū such that nominal cost function is minimized

Plus: auxiliary feedback law κ(x, x̄)
Applied input: u = ū+ κ(x, x̄)

Properties of the robust NMPC approach

Suppose that the NMPC optimization problem is feasible at time t0.

The MPC optimization problem is feasible at any time instant

The closed-loop system is robustly asymptotically ultimately

bounded

The closed-loop system is ISS (w.r.t. w(t))

Result is based on ISS

The error system controlled by κ(x, x̄) is ISS

⇓
NMPC controlled actual system is ISS in its whole feasible region

⇒ Extension of the local ISS property to the whole feasible region!!!



Simulation example

Numerical example

ẋ1 = 0.5x1 + 0.15x2
1 + x2 + 0.6u

ẋ2 = x1 − 0.2x2
2 + 0.6u+ w
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Input constraints

−2 ≤ u ≤ 2,

Disturbance bound

‖w‖∞ ≤ wmax = 0.1

Weighting matrices

Q =

[
0.5 0
0 0.5

]

,

R = 1.

Summary

Robust NMPC for systems with bounded disturbances

Minimization of nominal cost function

Nominal input plus auxiliary control law

Auxiliary control law designed for error system

Auxiliary controller design for error system in general hard task

Actual system trajectories remain in disturbance invariant set

Closed-loop system is ultimately bounded and ISS
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Other examples of time-delay systems

Chemical reactor model

HIV infection

model

System with

communication

delays

System setup

Nonlinear time-delay system

ẋ(t) = f(x(t), x(t − τ), u(t))

x(θ) = ϕ(θ) , ∀θ ∈ [−τ, 0] ,

state xt ∈ Cτ = C([−τ, 0],Rn)

defined by xt(s) = x(t+ s), s ∈ [−τ, 0]

→ infinite-dimensional system

input constraints u(t) ∈ U ⊂ R
m

f(0, 0, 0) = 0 ⇒ steady state at origin

Goal

stabilize the origin

achieve good performance

NMPC setup for time-delay systems

At each sampling instant ti solve

min
u(·)

J(xti , u(·)) =

∫ ti+T

ti

F (x(t′), u(t′)) dt′ + V (xti+T )

subject to

ẋ(t′) = f(x(t′), x(t′ − τ), u(t′))

u(t′) ∈ U

xti+T ∈ Ωτ ⊆ Cτ .

Optimal solution J∗(xt) for u
∗(·;xt).

Control input according to the receding horizon strategy

u(t) = u∗(t;xti) , ti ≤ t ≤ ti +∆ .

Conditions for asymptotic stability

Theorem

Assume the following conditions are satisfied.

(a) The open loop finite horizon problem admits a feasible solution

at initial time t = 0.

(b) For the nonlinear time-delay system ẋ(t) = f(x(t), x(t − τ), u(t)),
there exists a locally asymptotically stabilizing controller
u(t) = k(xt) such that

(i) ∀xt ∈ Ωτ : u(t) = k(xt) ∈ U
(ii) the terminal region Ωτ is positively invariant and

(iii) ∀xt ∈ Ωτ : V̇ (xt) ≤ −F (x(t), k(xt)) .

Then, the closed-loop system using MPC is asymptotically stable.



NMPC for time-delay systems

First result:

Setup and stability conditions are similar to the delay-free case.

Question:

How to get stabilizing design parameters?

How to define an appropriate terminal region Ωτ ⊆ Cτ?

How to obtain a local controller k(·)?

How to calculate the terminal cost function(al) V ?

Overview of different schemes

Kwon, Lee and Han, 2001,

2002
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x
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xti

Prediction horizon

global controller

Raff, Angrick, Findeisen,

Kim and Allgöwer, 2007
t

x
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xti

EZTSC

“New”: Quasi-infinite

horizon scheme
t

x

0

ti − τ ti

xti

ti + Tti + T − τ

terminal
region Ωτ

Basic idea

Quasi-infinite horizon

Consider Jacobi linearization

Σ̄ : ˙̄x(t) = Ax̄(t) +Aτ x̄(t− τ) +Bu(t)

Σ : ẋ(t) = Ax(t) +Aτx(t− τ) +Bu(t) + Φ(x(t), x(t − τ), u(t))
︸ ︷︷ ︸

higher order terms

Choose quadratic stage cost

F (x(t), u(t)) = x(t)TQx(t) + u(t)TRu(t)

Calculate linear controller u(t) = k(xt) for linearized system Σ̄

Determine a region Ωτ such that for nonlinear system Σ

(i) Ωτ is positively invariant

(ii) ∀xt ∈ Ωτ : V̇ ≤ −F (xt, k(xt))
(iii) ∀xt ∈ Ωτ : |k(xt)| ∈ U

Quasi-infinite horizon for delay-free systems

Delay-free systems

Lyapunov function V (x) = xTPx

Local controller u(t) = Kx(t)

Define terminal region using level set

Ωτ = {x ∈ R
n : V (x) = xTPx ≤ α}

By choosing α > 0 small enough, it is possible to guarantee

(iii) ∀x ∈ Ωτ : |Kx| ∈ U

(ii) ∀x ∈ Ωτ : V̇ ≤ −F (x,Kx)

possible because Φ consists of only higher order terms

(i) Ωτ is positively invariant due to (ii)

Definition of terminal region using level sets is not possible in

infinite-dimensional case!



Why is such a definition not useful?

Terminal region

Ωτ =






xt ∈ Cτ : V (xt) = xT (t)Px(t) +

t∫

t−τ

xT (s)Sx(s) ds ≤ α







For arbitrarily small α > 0,

x(t− τ) could be arbitrarily large

condition (ii)

∀xt ∈ Ωτ : V̇ ≤ −F (x,Kx)
cannot be guaranteed!

set invariance condition (i) cannot be

guaranteed!

x

0

t− τ t

Quasi-infinite horizon for time-delay systems

Possible schemes

Combination of Lyapunov-Krasovskii and Lyapunov-Razumikhin

[CDC 2009]

Lyapunov-Krasovskii arguments and norm bounds [accepted at

IFAC TDS 2010]

Lyapunov-Razumikhin [submitted to CDC 2010]

Brief overview on results

Krasovskii condition plus norm bound

only Krasovskii condition on local control law

more complicated terminal region V (xt) ≤
β α2

4 , ‖xt‖τ ≤ α
2

Krasovskii functional V

Combination of Krasovskii and Razumikhin

Razumikhin condition on local control law

simple terminal region max
θ∈[−τ,0]

x(t+ θ)TPx(t+ θ) ≤ α

Krasovskii functional V

Razumikhin condition

Razumikhin condition on local control law

simple terminal region max
θ∈[−τ,0]

x(t+ θ)TPx(t+ θ) ≤ α

V = max
θ∈[−τ,0]

x(t+ θ)TPx(t+ θ)

Summary

Derivation of a ’finite’ terminal region for MPC of nonlinear time-

delay systems

Three schemes based on Jacobi-linearization

Each scheme contains delay-free case as special case

Additional arguments necessary compared to delay-free case

Shorter prediction horizon than for EZTSC

Only locally stabilizing control law necessary



Conclusions

Summary

1 Robust NMPC for systems with bounded disturbances

prediction of nominal trajectories

disturbance invariant sets

auxiliary control law

ISS and exponential stability of error system

2 NMPC for time-delay systems

terminal region in infinite-dimensional space

calculation using Jacobi-linearization

different possible extensions of delay-free results

Future work

How can the presented results be applied to distributed NMPC?

uncertain neighbour information → ISS

communication delays
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