Model Predictive Control:
Robustness and Time Delays

Frank Allgdwer

Institute for Systems Theory and Automatic Control
University of Stuttgart

Workshop on
Distributed Model Predictive Control and Supply Chains
Lund, May 19-21, 2010

Outline

0 Robust NMPC with Disturbance Invariant Sets
@ Problem Setup
@ Preliminaries
@ Robust NMPC Controller
@ Summary

e MPC with Guaranteed Stability for Nonlinear Time-Delay Systems
@ Motivation
@ System Setup
@ NMPC for Time-Delay Systems
@ Three Schemes for Calculating Stabilizing Design Parameters
@ Summary

List?

Problem Setup

Control problem
#(t) = f(a(t),u(t), w(t)),

subject to

nonlinear dynamics

z(t) € X, wu(t)eUVt>0, constraints
w(t) € W={weR"™| || w o< Wnaz}, bounded disturbances

Goal: Robust MPC of nonlinear system with bounded disturbances

Existing schemes

® Min-Max MPC — Computationally intractable
@ MPC with contractive sets — Conservative solution

Suggested approach:
Nominal trajectory prediction + Robust invariant sets

Basic Idea

Controller structure
Error system

i(t) = f(2(t),a(t),0),

v =3 = 1,

'l.):f(l',u,'lU)—f(ff‘,ﬂ,(»,

u=1u+ k(x,T).

u: nominal input,
k(z,): feedback law renders
the set €2 robustly invariant

@ Nominal cost function
@ Nominal prediction trajectory

@ Actual traj. lie in 2 centered
on nominal trajectory.

Problem to solve

@ Calculation of Q, k(z, )
based on error system

@ Solution based on ISS




Input-to-state stability

Input-to-state stability (ISS)

The system is ISS, if there exists a function E(v) such that

on (o] < Bw) < ol (12)
L) < W), ol = plotmas) (1b)

where «;(-) € K and p(-) € K and W positive definite

Let E(z — z) = E(v) with

Proposed concept to get ©2 and k:
Combine ISS and exponential stability
'
Q2 is robustly invariant

Bi=fre R, Sw.0}

Q={xeR™|V(x)<a}

Exponential stability

Disturbance invariant sets using exponential stability

Let the function E(v) with o (||v]]) < E(v) < as(||v]|) and the scalars
A > 0and u > 0 be such that

& B(u() + AB(u(t)) — p” (thu(t) <0,

I
pw;,
Q:={veR™"|E(v) < %}

is a disturbance invariant set for the error system, i.e.
v(t) € QVt > tg, w(t) € W, if u(ty) € .

Remaining problem

Find x and £
Suitably calculate

such that the error system

0= f(:c,u,O) _ f(fauauo {# f(v,u7w) in general]
is exponentially stable
Possible solution
@ Backstepping

@ Passivity-based control
@ Linear differential inclusion [Yu et al., ACC,2010]

@ Any suitable nonlinear controller design
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Proposed robust NMPC controller

?

@ Nominal prediction u such that nominal cost function is minimized
@ Plus: auxiliary feedback law «(x, )
@ Applied input: u = @ + k(z, Z)

Properties of the robust NMPC approach
Suppose that the NMPC optimization problem is feasible at time #.

@ The MPC optimization problem is feasible at any time instant

@ The closed-loop system is robustly asymptotically ultimately
bounded

@ The closed-loop system is ISS (w.r.t. w(t))

Result is based on ISS
The error system controlled by «(z, z) is ISS

4

NMPC controlled actual system is ISS in its whole feasible region

= Extension of the local ISS property to the whole feasible region!!!
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Simulation example

Numerical example
&1 = 0.5z1 + 0.152% + 25 + 0.6u
&y =21 — 0.222 + 0.6u +w

@ Input constraints
—2<u<?2,
@ Disturbance bound
||| oo < Wiaz = 0.1

@ Weighting matrices

0.5 0
@ = {0 0.5]’
R = L

Summary

&' Robust NMPC for systems with bounded disturbances

@ Minimization of nominal cost function
@ Nominal input plus auxiliary control law
@ Auxiliary control law designed for error system

X Auxiliary controller design for error system in general hard task
v Actual system trajectories remain in disturbance invariant set

v Closed-loop system is ultimately bounded and ISS
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Other examples of time-delay systems

?

model

delays

HIV infection

System with
communication

System setup

Nonlinear time-delay system

w(t) = flz@),=(t—7),u(t))
z(0) = @), VOe[-7,0],
@ state z, € C; =C([—7,0],R")
defined by z:(s) = z(t + s),s € [-7,0]
— infinite-dimensional system

@ input constraints u(t) e Y C R™
@ f(0,0,0) = 0 = steady state at origin

Goal
@ stabilize the origin
@ achieve good performance
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NMPC setup for time-delay systems

?

At each sampling instant ¢; solve

: bt / !/ /
min TG, u() = [ @) ult))df +Vizr)

i

subject to

a(t') = fla@)zt' —7),u))
u(lt) € U
S

Lt;+T

Optimal solution J*(x) for u*(-; x).

Control input according to the receding horizon strategy

u(t) = u(tay,), 6<t<t;+A.

_ist®

Conditions for asymptotic stability

?

Theorem
Assume the following conditions are satisfied.
(a) The open loop finite horizon problem admits a feasible solution
at initial time ¢t = 0.
(b) For the nonlinear time-delay system &(t) = f(z(t), z(t — 1), u(t)),
there exists a locally asymptotically stabilizing controller
u(t) = k(x) such that
(i) Vor € Qr s u(t) =k(z) €U
(i) the terminal region - is positively invariant and
(iii) Vae € Qr V() < —F(x(t), k(x:)) .
Then, the closed-loop system using MPC is asymptotically stable.
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NMPC for time-delay systems

First result:
Setup and stability conditions are similar to the delay-free case.

Question:

How to get stabilizing design parameters?
@ How to define an appropriate terminal region Q. € C,?
@ How to obtain a local controller k(-)?
@ How to calculate the terminal cost function(al) V'?

Overview of different schemes (P

Prediction horizon

FS [ \
Kwon, Lee and Han, 2001, global controller !
2002 |
0 Lt
T T T N—~ 7
FS ‘ \
xr
|
Raff, Angrick, Findeisen, 7t | |
Kim and Allgéwer, 2007 0 | EZTSC | ;
| y )
S |
xr
|
“Ngw”: Quasi-infinite terminal !
horizon scheme 0 region €2 "

Basic idea

Quasi-infinite horizon
@ Consider Jacobi linearization

Y a(t) = Az(t)+ A;z(t — 1) + Bu(t)
Y:a(t) = Axz(t)+ Arx(t — 1)+ Bu(t) + @(z(t), z(t — 7),u(t))

higher order terms
@ Choose quadratic stage cost
F(xz(t),u(t)) = (t)" Qu(t) +u(t)” Ru(t)
@ Calculate linear controller u(t) = k(x;) for linearized system 3
@ Determine a region 2. such that for nonlinear system X
(i) Q. is positively invariant

(i) Vz: € Q, 1V < —F(xt, k(1))
(ii) Vz: € Qr :|k(ze)| €U
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Quasi-infinite horizon for delay-free systems (P

Delay-free systems
@ Lyapunov function V (z) = 27 Px
@ Local controller u(t) = Kx(t)
@ Define terminal region using level set

Q. ={zeR" : V(z) =2TPz < a}

@ By choosing a > 0 small enough, it is possible to guarantee
(i) Vo € Qr : |Kz| €U
(i) Ve € Qr : V < —F(z,Kx)
@ possible because ® consists of only higher order terms
(iy Q- is positively invariant due to (ii)

Definition of terminal region using level sets is not possible in
infinite-dimensional case!
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Why is such a definition not useful?

?

Terminal region

Q, = {xt €C; : V(xy) = 2T (t)Px(t) + / 27 (s)Sx(s) ds < a}

t—T

For arbitrarily small o > 0,

@ (¢t — 7) could be arbitrarily large
@ condition (ii)
Vo, € Qr : V< —F(z,Kx)

x
cannot be guaranteed!
@ set invariance condition (i) cannot be
guaranteed! 0

v

Quasi-infinite horizon for time-delay systems (P

Possible schemes

@ Combination of Lyapunov-Krasovskii and Lyapunov-Razumikhin
[CDC 2009]

@ Lyapunov-Krasovskii arguments and norm bounds [accepted at
IFAC TDS 2010]

@ Lyapunov-Razumikhin [submitted to CDC 2010]

Brief overview on results

Krasovskii condition plus norm bound
@ only Krasovskii condition on local control law

. . 0 2
@ more complicated terminal region V' (x;) < BT"‘ s el <
@ Krasovskii functional V

Combination of Krasovskii and Razumikhin
@ Razumikhin condition on local control law
@ simple terminal region . H[laXO] z(t+0)TPx(t+0)<a
el—m,

@ Krasovskii functional V/

Razumikhin condition
@ Razumikhin condition on local control law
@ simple terminal region , n[laXO] r(t+0)TPx(t+0) <a
E|—7,

@ V= max z(t+0)TPx(t+0)
oe[—7,0]
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Summary (P

Derivation of a ’finite’ terminal region for MPC of nonlinear time-
delay systems

Three schemes based on Jacobi-linearization
Each scheme contains delay-free case as special case
Additional arguments necessary compared to delay-free case

Shorter prediction horizon than for EZTSC

A< x «

Only locally stabilizing control law necessary
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Conclusions

Summary

@ Robust NMPC for systems with bounded disturbances

@ prediction of nominal trajectories

@ disturbance invariant sets

@ auxiliary control law

@ ISS and exponential stability of error system

© NMPC for time-delay systems

o terminal region in infinite-dimensional space
@ calculation using Jacobi-linearization
@ different possible extensions of delay-free results

Future work

How can the presented results be applied to distributed NMPC?
@ uncertain neighbour information — 1SS
@ communication delays
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