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Predictive control
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Measurement

MH Estimate

MPC control

Forecast

t time

Reconcile the past Forecast the future

sensors
y

actuators
u

min
u(t)

∫ T

0
|ysp − g(x , u)|2Q + |usp − u|2R dt

ẋ = f (x , u)

x(0) = x0 (given)

y = g(x , u)
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State estimation
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Measurement

MH Estimate

MPC control

Forecast

t time

Reconcile the past Forecast the future

sensors
y

actuators
u

min
x0,w(t)

∫ 0

−T
|y − g(x , u)|2R + |ẋ − f (x , u)|2Q dt

ẋ = f (x , u) + w (process noise)

y = g(x , u) + v (measurement noise)
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Electrical power distribution
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Chemical plant integration

Material flow

Energy flow
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MPC at the large scale

Decentralized Control

Most large-scale systems consist of networks of
interconnected/interacting subsystems

I Chemical plants, electrical power grids, water distribution networks, . . .

Traditional approach: Decentralized control
I Wealth of literature from the early 1970’s on improved decentralized

control a

I Well known that poor performance may result if the interconnections
are not negligible

a(Sandell Jr. et al., 1978; Šiljak, 1991; Lunze, 1992)
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MPC at the large scale

Centralized Control

Steady increase in available computing power has provided the
opportunity for centralized control

Coordinated control: Distributed optimization to achieve fast solution
of centralized control (Necoara et al., 2008; Cheng et al., 2007)

Most practitioners view centralized control of large, networked
systems as impractical and unrealistic

A divide and conquer strategy is essential for control of large,
networked systems (Ho, 2005)

Centralized control: A benchmark for comparing and assessing
distributed controllers
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Nomenclature: consider two interacting units

Objective functions V1(u1, u2), V2(u1, u2)

and V (u1, u2) = w1V1(u1, u2) + w2V2(u1, u2)

decision variables for units u1 ∈ Ω1, u2 ∈ Ω2

Decentralized Control min
u1∈Ω1

Ṽ1(u1) min
u2∈Ω2

Ṽ2(u2)

Noncooperative Control min
u1∈Ω1

V1(u1, u2) min
u2∈Ω2

V2(u1, u2)

(Nash equilibrium)

Cooperative Control min
u1∈Ω1

V (u1, u2) min
u2∈Ω2

V (u1, u2)

(Pareto optimal)

Centralized Control min
u1,u2∈Ω1×Ω2

V (u1, u2)

(Pareto optimal)
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Ṽ1(u1) min
u2∈Ω2
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Noninteracting systems
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Weakly interacting systems
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Moderately interacting systems
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Strongly interacting (conflicting) systems
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Strongly interacting (conflicting) systems
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Geometry of cooperative vs. noncooperative MPC
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Geometry of cooperative vs. noncooperative MPC
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Plantwide suboptimal MPC
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0
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Early termination of optimization gives suboptimal plantwide feedback

Use suboptimal MPC theory to prove stability
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Plantwide suboptimal MPC

Consider closed-loop system augmented with input trajectory(
x+

u+

)
=

(
Ax + Bu
g(x ,u)

)
Function g(·) returns suboptimal choice

Stability of augmented system is established by Lyapunov function

a |(x ,u)|2 ≤ V (x ,u) ≤ b |(x ,u)|2

V (x+,u+)− V (x ,u) ≤ −c |(x , u)|2

Adding constraint establishes closed-loop stability of the origin for all
u1

|u| ≤ d |x | x ∈ Br , r > 0

Cooperative optimization satisfies these properties for plantwide
objective function V (x ,u)

1(Rawlings and Mayne, 2009, pp.418-420)
Rawlings Optimization of supply chains 17 / 33
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Modeling

Plantwide step response

u1

y1

u2

y2

Interaction models found by decentralized identification2

y2 x+21 = A21x21 + B21u1

x+11 = A11x11 + B11u1y1
u1

2Gudi and Rawlings (2006)
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Modeling

Consider the linearized physical model

x+ = Ax + B1u1 + B2u2 y1 = C1x , y2 = C2x

Kalman canonical form of the triple (A,Bj ,Ci )


zocij
z ōcij
zoc̄ij
z ōc̄ij


+

=


Aoc
ij 0 Aocc̄

ij 0
Aōoc
ij Aōc

ij Aōcoc̄
ij Aōcc̄

ij

0 0 Aoc̄
ij 0

0 0 Aōc̄o
ij Aōc̄

ij



zocij
z ōcij
zoc̄ij
z ōc̄ij

+


Boc
ij

B ōc
ij

0
0

 uj

yij =
[
C oc
ij 0 C oc̄

ij 0
] 

zocij
z ōcij
zoc̄ij
z ōc̄ij

 yi =
∑
j

yij

Interaction models

Aij ← Aoc
ij Bij ← Boc

ij Cij ← C oc
ij xij ← zocij
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Unstable modes

For unstable systems, we zero the unstable modes with terminal
constraints.

For subsystem 1

Su
11
′x11(N) = 0 Su

21
′x21(N) = 0

To ensure terminal constraint feasibility for all x , we require (A1,B1)
stabilizable

A1 =

[
A11

A21

]
B1 =

[
B11

B21

]

For output feedback, we require (A1,C1) detectable

A1 =

[
A11

A12

]
C1 =

[
C11 C12

]
Similar requirements for other subsystem
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Output feedback

Consider augmented system perturbed by stable estimatorx̂+

u+

e+

 =

Ax̂ + Bu + Le
g(x̂ ,u, e)

ALe


Stable estimator error implies Lyapunov function

ā |e| ≤J(e) ≤ b̄ |e|
J(e+)−J(e) ≤ −c̄ |e|

Stability of perturbed system established by Lyapunov function

W (x̂ ,u, e) = V (x̂ ,u) + J(e)
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Two reactors with separation and recycle

F0, xA0

Q

Fpurge

D, xAd, xBd

Hr Hm

B→ C
A→ BA→ B

B→ C

Hb

F1, xA1

Fm, xAm, xBm

Fb, xAb, xBb,T

Fr, xAr, xBr

MPC3

MPC1 MPC2
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Two reactors with separation and recycle
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Two reactors with separation and recycle

Performance comparison

Cost (×10−2) Performance loss

Centralized MPC 1.75 0
Decentralized MPC ∞ ∞
Noncooperative MPC ∞ ∞
Cooperative MPC (1 iterate) 2.2 25.7%
Cooperative MPC (10 iterates) 1.84 5%
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Cooperative MPC of supply chains

Previous work on supply chain modeling and optimization3

Inventories and backorders are subsystem states

Downstream product shipments and upstream orders are subsystem
inputs

Inventories and backorders modeled as integrators (tanks)

Stabilizability and detectability assumptions not satisfied

Ai =

[
I

I

]
Bi =

[
B1i

B2i

]
Ai =

[
I

I

]
Ci =

[
Ci1 Ci2

]

Implementation of cooperative MPC for supply chains remains a
challenge

3Perea López et al. (2003); Mestan et al. (2006); Braun et al. (2002); Seferlis and
Giannelos (2004)
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Cooperative MPC of supply chains

Possible solution I: Coupled constraints

Work with minimal (A,B,C ) supply chain model

Terminal constraint Su ′x(N) = 0 coupled in subsystem inputs

Challenge

Cooperative optimization does not converge to Pareto optimum with
coupled constraints

Share coupled inputs among subsystems to achieve Pareto optimal
performance

In the limit of full supply chain coupling, each subsystem solves the
centralized optimization

Alternative

To avoid centralized optimization, share inputs with only nearest
neighbors for near optimal performance
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Cooperative MPC of supply chains

Possible solution II: Centralized estimation

(Ai ,Bi ) not stabilizable, but there is a stabilizable subspace Xi

Xi =
{

xi | ∃ ui :
[
An−1
i Bi · · · Bi

]
ui = −An

i xi
}

Any xi ∈ Xi can be brought to the origin

Challenge

Must ensure estimated states are in stabilizable subspace

Estimation must be centralized

Trade-offs

No coupled constraints, therefore cooperative optimization converges
to Pareto optimum

Easy to enforce xi ∈ Xi

Subsystems must share output measurements

Supply chain subsystems cannot choose estimators independently
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Conclusions

Cooperative MPC theory maturinga

I satisfies hard input constraints
I provides nominal stability for plants with even strongly interacting

subsystems
I retains closed-loop stability for early iteration termination
I converges to Pareto optimal control in the limit of iteration
I remains stable under perturbation from stable state estimator
I avoids coordination layer

Cooperative MPC for supply chains remains a challenge
I stabilizability and detectability assumptions not satisfied
I many alternative solution strategies exist
I each strategy has drawbacks

aStewart et al. (2010b); Maestre et al. (2010)

Rawlings Optimization of supply chains 28 / 33



Conclusions

Cooperative MPC theory maturinga

I satisfies hard input constraints
I provides nominal stability for plants with even strongly interacting

subsystems
I retains closed-loop stability for early iteration termination
I converges to Pareto optimal control in the limit of iteration
I remains stable under perturbation from stable state estimator
I avoids coordination layer

Cooperative MPC for supply chains remains a challenge
I stabilizability and detectability assumptions not satisfied
I many alternative solution strategies exist
I each strategy has drawbacks

aStewart et al. (2010b); Maestre et al. (2010)

Rawlings Optimization of supply chains 28 / 33



Future directions

Supply chains

Evaluate alternative supply chain cooperative control strategiesa

Industrial application: gas supplier (Praxair), steel mill, power utility

aAltmüller et al. (2010); Mårtensson and Rantzer (2009)

Cooperative MPC

Hierarchical implementationa

I time scale separation
I delayed communication
I reduced information sharing
I optimization at MPC layer only

Nonlinear models

aStewart et al. (2010a)
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MPC Monograph — Chapter 6 on distributed MPC

576 page text

214 exercises

335 page solution manual

3 appendices on web (133
pages)

www.nobhillpublishing.com
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D. D. Šiljak. Decentralized Control of Complex Systems. Academic Press, London,
1991. ISBN 0-12-643430-1.

B. T. Stewart, J. B. Rawlings, and S. J. Wright. Hierarchical cooperative distributed
model predictive control. In Proceedings of the American Control Conference,
Baltimore, Maryland, June 2010a.

B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G. Pannocchia.
Cooperative distributed model predictive control. Sys. Cont. Let., February 2010b.
Accepted for publication.

Rawlings Optimization of supply chains 33 / 33


	Overview of Distributed Model Predictive Control
	Control of large-scale systems
	Stability theory for cooperative MPC

	Challenges for Cooperative MPC of Supply Chains
	Conclusions and Future Outlook
	

