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Multiplexed Model Predictive Control (MMPC)

• MPC increasingly used for fast systems.

• Reduce complexity of optimization problem.

• Various distributed schemes proposed

— but all with synchronous control updates.

• MMPC updates 1 input at a time (or subset of inputs).

• Do something now better than Do optimal thing later?

• Motivation: Speed, Scaling with number of inputs.
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Multiplexed MPC — multi-input systems

Sequential updates of control inputs

time

Plant inputs (MV’s) Plant inputs (MV’s)

time

T

Left: Conventional MPC, Right: Multiplexed MPC
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Assumptions

• Plant has m inputs. Update cycle period is T .

• Only one input updated at each time step (at time kT/m),

in sequence.

• Optimise only one input over future horizon at each step.

Can be thought of as m controllers.

• Measurements of state vector are made at intervals of T/m.

• Current state xk is known when deciding the update of each

input. xk is known to each controller.

• N = (Nu − 1)m + 1, where Nu is the number of moves to be

optimized per input channel.
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Update one input at a time

Plant: If only one input is updated at each k then

xk+1 = Axk +

m
∑

j=1

Bjuj,k

= Axk + Bσ(k)ũk

where

σ(k) = (k mod m) + 1

is a periodic switching function: σ(k + m) = σ(k)

So multi-input LTI plant looks like periodic single-input plant.
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Periodic Invariance

• Assume ũk+N−1 = −Kσ(k)xk+N−1 (beyond horizon).

• Kσ(k) stabilises the periodic system.

•
(

XI(Kσ(k))
)

is ‘periodically invariant’ sequence of sets:

xk ∈ XI(Kσ(k)) and − Kσ(k)xk ∈ Uσ(k) ⇒

(A − Bσ(k)Kσ(k))xk ∈ XI(Kσ(k+1))

and

XI(Kσ(k)) ⊂ X,

for σ(k) = 1, . . . , m.
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What will the non-optimised inputs do?

• Controller j decides future sequence of j’th input only.

• Other inputs are treated as known disturbances.

• Assume that controller j knows the future plans of the other

controllers, and assumes uσ(k),k+i = −Kσ(k)xk+i beyond the

planning horizon.

What will the optimised inputs do?

• Either remain fixed until the next optimisation,

• Or varies as uσ(k),k+i = −Kσ(k)xk+i.
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Optimisation problem: Basic MMPC

Minimise Jk = Fσ(k)(xk+N |k) +
∑N−1

i=0

(

‖xk+i|k‖
2
q + ‖ũk+i|k‖

2
r

)

wrt uk+i|k, (i = 0, m, 2m, . . . , N − 1)

s.t. uk+i|k ∈ Uσ(k+i), (i = 0, . . . , N − 1)

xk+i|k ∈ X, (i = 1, . . . , N)

xk+N |k ∈ XI(Kσ(k))

−Kσ(k+N)xk+N |k ∈ Uσ(k+N)

xk+i+1|k = Axk+i|k + Bσ(k+i)uk+i|k

uk+i|k = uk+i|k−1, (i 6= 0, m, . . . , N − 1).

Note: Fσ(k)(xk+N |k) ≥ 0 is a terminal cost.

8



Lund LCCC Workshop 19–21 May 2010

Basic MMPC Algorithm

1. Initialise by solving the optimisation problem, but

optimising over all the variables ũk+i|k, i = 0, 1, . . . , N − 1.

2. Apply control move uσ(k),k = ũk|k

3. Store planned moves ~uk,m|k.

4. Pause for one time step, increment k,

obtain new measurement xk.

5. Solve the optimisation problem.

6. Go to step 2.

Implicit assumption: N is large enough.
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Stability Theorem

MMPC, obtained by implementing the basic MMPC Algorithm, gives

closed-loop stability if the problems are well-posed, and if the set of

terminal costs {Fσ(·)} satisfies

Fσ+([A−Bσ+Kσ+ ]x) + ‖x‖2
q + ‖Kσ+x‖2

r ≤ Fσ(x) for σ = 1, . . . , m.

where σ+ = (σ mod m) + 1, namely the cyclical successor value to σ.

Standard MPC proof, using the value function

as a Lyapunov function.
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Robust MMPC

Suppose that

•

xk+1 = Axk +

m
∑

j=1

Bj∆uj,k + Ewk.

• wk satisifies wk ∈ W ∀k and W is a known, bounded set

containing 0.

• wk is not measured — but can be estimated with 1-step delay.
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Correct for disturbances, Tighten constraints

• ũk+i|k+1 = ũ∗
k+N−1|k + Mi−1,σ(k+1)Ewk for i = 1, . . . , N − 1,

• Xi+1,σ(k) = Xi,σ(k+1) ∼ Li,σ(k+1)EW with X0,σ(k) = X,

• Ui,σ(k) = Ui−1,σ(k+1) ∼ Mi−1,σ(k+1)EW with U0,σ(k) = Uσ(k),

• Li+1,σ(k) = ALi,σ(k) + Bσ(k+i)Mi,σ(k) with L0,σ(k) = I.

• Mi,σ(k) and Kσ(k) are chosen off-line.

• Terminal sets have robust invariance property,

• Modify the constraints in the optimisation problem.
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Robust MMPC Theorem

If the system is controlled using the Robust MMPC algorithm and

the initial optimisation at time k = k0 is feasible, and xk0
∈ X, then:

1. the optimisation remains feasible, and

2. the constraints xk ∈ X and ũk ∈ Uk are satisfied for k > k0 and

for all admissible disturbances.

Note:

• Feasibility ⇒ stability.

• Tightening constraints reduces the chances of initial feasibility.
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Applications and Examples

• µ-PCR temperature control (2n regions). Interactions will

increase and time constants decrease as n increases.

• A-7A Corsair II longitudinal flight dynamics, with 2 inputs and

input disturbances. 25% better performance, 4× speedup.

• Air-traffic management, with stochastic wind.
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Air-traffic: En-route conflict resolution

• Coupling through constraints only — separation rules.

• Non-convex constraints. Stochastic wind disturbances.

• SESAR ‘A3’ concept: No ground ATC assistance.

• Assume System-Wide Information Management (SWIM)

available.

• Treat each aircraft (agent) as an ‘input’.

• Initial solution available from Reference Business Trajectory.

• Non-quadratic costs, finite duration (cf. Richards and How).

Theorem still holds, gives guaranteed completion.

• Effective solutions for up to 6 aircraft, using CPLEX.

• Obvious protocol in case of comms failure.
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Conclusions

• Multiplexed MPC updates one input at a time.

• Do something sooner can be better than

Do optimal thing later.

• Basic and robust versions.

• Theoretical guarantees available.

• Generalisations: Unequal intervals; Groups of inputs;

‘Channel-hopping’ MPC.
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