
Modeling and Optimization with Optimica and JModelica.org –
Languages and Tools for Solving Large-Scale Dynamic
Optimization problems

Outline

• Modelica

• Dynamic optimization and Optimica

• The JModelica.org open source project

• Applications

• What’s next?

Outline

• Modelica

• Dynamic optimization and Optimica

• The JModelica.org open source project

• Applications

• What’s next?

What is Modelica?

• A language for modeling of complex heterogeneous
physical systems

• Open language

– Managed an developed by non-profit organization Modelica
Association

– Several tools, commercial and free

• MapleSim

• Dymola

• Simulation X

• OpenModelica

• JModelica.org

• Extensive free standard library

– Electrical, mechanical, thermodynamics, fluid

Modelica history

• Evolved from continuous simulation community

– Simnon

– Omola/Omsim

– Bond graphs

• Wide range of applications from start

– Electronics

– Mechanics

– Thermodynamics

• Language development

– Modelica specification 1.0 in 1997

– Modelica specification 3.2 in March 2010

• Actively developed by tool vendors and practitioners

– 65th design meeting in Lund February 2010

Key features of Modelica

• Declarative equation-based modeling

– Text book style equations

• Multi-domain modeling

– Heterogeneous modeling

• Object oriented modeling

– Inheritance and generics

• Software component model

– Instances and (acausal) connections

• Model libraries

• Function support

• Hybrid Differential Algebraic Equation (DAE) formalism

• Large models (>10.000 equations)

A simple Modelica Model

model FirstOrder

input Real u;

parameter Real b = 1;

parameter Real a = -1;

Real x(start=1);

equation

der(x) = a*x + b*u;

end FirstOrder;

Parameter declaration

Variable declaration

Initialization

Derivative operator

Equation

First order differential equationClass definition

Hybrid modeling

© Johan Åkesson 2008

class BouncingBall //A model of a bouncing ball

parameter Real g = 9.81; //Acceleration due to gravity

parameter Real e = 0.9; //Elasticity coefficient

Real pos(start=1); //Position of the ball

Real vel(start=0); //Velocity of the ball

equation

der(pos) = vel; // Newtons second law

der(vel) = -g;

when pos <=0 then

reinit(vel,-e*pre(vel));

end when;

end BouncingBall;

class BBex

BouncingBall eBall;

BouncingBall mBall(g=1.62);

end BBex;

Graphical and textual modeling
model MotorControl

Modelica.Mechanics.Rotational.Inertia inertia;

Modelica.Mechanics.Rotational.Sensors.SpeedSensor speedSensor;

Modelica.Electrical.Machines.BasicMachines.DCMachines.DC_PermanentMagnet DCPM;

Modelica.Electrical.Analog.Basic.Ground ground;

Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltage;

Modelica.Blocks.Math.Feedback feedback;

Modelica.Blocks.Sources.Ramp ramp(height=100, startTime=1);

Modelica.Blocks.Continuous.PI PI(k=-2);

equation

connect(inertia.flange_b, speedSensor.flange_a);

connect(DCPM.flange_a, inertia.flange_a);

connect(speedSensor.w, feedback.u2);

connect(ramp.y, feedback.u1);

connect(signalVoltage.n, DCPM.pin_ap);

connect(signalVoltage.p, ground.p);

connect(ground.p, DCPM.pin_an);

connect(feedback.y, PI.u);

connect(PI.y, signalVoltage.v);

end MotorControl;

Translation of Modelica models

• Generation of a mathematical model description from
Modelica code

Flattening
Sorting

Index reduction

C code

generation

Modelica

code

Flat Modelica

Unstructured

DAE

Structured

hybrid index 1

DAE

Simulation

C code

Outline

• Modelica

• Dynamic optimization and Optimica

• The JModelica.org open source project

• Applications

• What’s next?

Optimization and Modelica

• Modelica increasingly used in industry

– Expert knowledge

– Capital investments

• Mainly simulation... ...but new areas emerge

– Model reduction

– Parameter identification

– Dynamic optimization

– Model predictive control

• Usages reported so far

– Cope with simulation-oriented interfaces

– Treat model essentially as a black box

• Fast algorithms explores model structure

– Real-time optimization

Dynamic optimization

• Many algorithms

– Applicability highly model-dependent (ODE, DAE, PDE, hybrid)

• Calculus of variations

• Direct single/multiple shooting

• Direct collocation methods

• Simulation-based methods (GA, simulated annealing)

• Analogy with different simulation algorithms

– Heavy burden to used numerical algorithms

– Fortran, C, (AMPL)

• Engineering need for high-level descriptions

– Shift focus from encoding

– to formulation of optimization problem

Typical workcycle

Modelica

Optimica

ResultC codeThe

Optimica

Compiler

Executable

Generate and solve

Analyze and tune

Dynamic optimization

Optimization with Modelica

• Strong support for modeling of dynamic systems

• Missing elements

– Cost function

– Constraints

– What to optimize

– Initial guesses

• Optimica

– Small extension of Modelica

– Enable high-level formulation of optimization problems

Optimica – an example

A Modelica model

An Optimica model

Outline

• Modelica

• Dynamic optimization and Optimica

• The JModelica.org open source project

• Applications

• What’s next?

The JModelica.org open source project

What?

JModelica.org is an extensible Modelica-based open source
platform for optimization, simulation and analysis of complex
dynamic systems.

Origin:

JModelica.org is the result of research at the Department of
Automatic control, Lund University, and is now maintained and
developed by Modelon AB in cooperation with academia.

Our mission:

To offer a community-based, free, open source, accessible,
user and application oriented Modelica environment for
optimization and simulation of complex dynamic systems, built
on well-recognized technology and supporting major platforms

JModelica.org is open source

• Source code is freely available

– Open Source Initiative approved licenses

– GPL (CPL)

• Infrastructure supporting a community

– Transparency of development

– Interactive web site

– User forums

Community

• Documentation

• News

• Forums

• Transparency

• Track activity

• Releases

Technologies

• Modelica

• JastAdd meta-compiler tool

– Modelica/Optimica compiler front-ends pure Java

– Easily embedded jar-files

• Python

– Scientific computing environment

– Scripting and visualization

– Custom application development

• XML

– Model meta data and equations

• Eclipse

– Modelica and Optimica IDE

– Refactoring

JModelica.org architecture

Modelica

Optimica

Compiler
F

ro
n
t-

e
n
d

M
id

d
le

-

e
n
d

B
a
c
k
-

e
n
d

Eclipse plugin

(IDE)

C

XML OD

E

Opt.DA

E

Init.

DA

E

JMI Runtime Library

Generated Code DLL

Python

Integration

Algorithms

Scripts

User Applications

Interface I: C model execution API–JMI

• C functions for evaluation of:

– DAE residual

– DAE initialization system

– Event indicator functions (hybrid systems)

– Cost function

– Constraints

• Integrated AD package: CppAD

– High-accuracy Jacobians

– Sparsity patterns

• Direct collocation algorithm

– Approximate controls and states by piecewise polynomials

– Large but sparse non-linear program

– NLP solver IPOPT

Interface II: XML export

• Standardized format for DAE model exchange

• Neutral w.r.t. model usage

– Simulation, optimization, LFTs, model reduction

• (Not yet quite) neutral w.r.t. modeling language

• Model meta data

– Variable names

– Parameter values

• Model equations

– DAE

– Initialization system

– Functions and algorithms

– Optimization

• XML import to ACADO
MSc project by Roberto Parrotto in

collaboration with Joel Andersson, KU Leuven

Outline

• Modelica

• Dynamic optimization and Optimica

• The JModelica.org open source project

• Applications

• What’s next?

Grade change optimization

• Collaboration with plastics manufacturer Borealis

• Polyethylene production

• Tree reactors in series

– Pre-loop

– Loop

– Gas phase

• Decision support

– Flexible production

– Raw material prices vary

– Minimize off-spec

• JModelica.org for optimization

– Grade changes and parameter estimation

• PhD student project: Per-Ola Larsson and Niklas Andersson

Time optimal robot control

• Track specified paths in 3D

• Record path

• Generate splines

• Optimize

• Implement

Master’s theses by Marin Hast, Björn Olofsson and Henrik Nilsson

Outline

• Modelica

• Dynamic optimization and Optimica

• The JModelica.org open source project

• Applications

• What’s next?

What’s next?

• Improved Modelica compliance

– Generics

– Fluid modeling support

• Simulation

– SUNDIALS

– Hybrid systems

• Continued work on Python interface

– Feedback appreciated

• Algorithm integration

• Application-driven development

JModelica.org in research

• Continued work on Optimica language extension

– Execution of Model Predictive Controllers

• PIC-LU (Process Industrial Center at Lund University)

– Grade change optimization at Borealis

– Poly-ethane process

– Robust optimization

• Parallelization of optimization algorithms (Texas A&M)

– Explore the power of multi and many core

– Decomposition schemes for interior point methods

• Safe refactoring

– Modelica source code transformations

– Exploit research related to JastAdd

– Adapt and extend framework developed for Java

Join the community

• Use in industrial applications

• Education

• Interfacing your algorithms

• Research

• Develop

