

Deferment Control for Reoptimization

How to Find Fair Reoptimized Dispatches Jörg Rambau

LS Wirtschaftsmathematik

- First Two Real-World Dynamic Optimization Problems
- ILP Reoptimization Policies and Infinite-Deferment
- > Why Classical Evaluation Methods Fail
- b How to Obtain Performance Guarantees
- Summary and Remarks

http://www.wm.uni-bayreuth.de

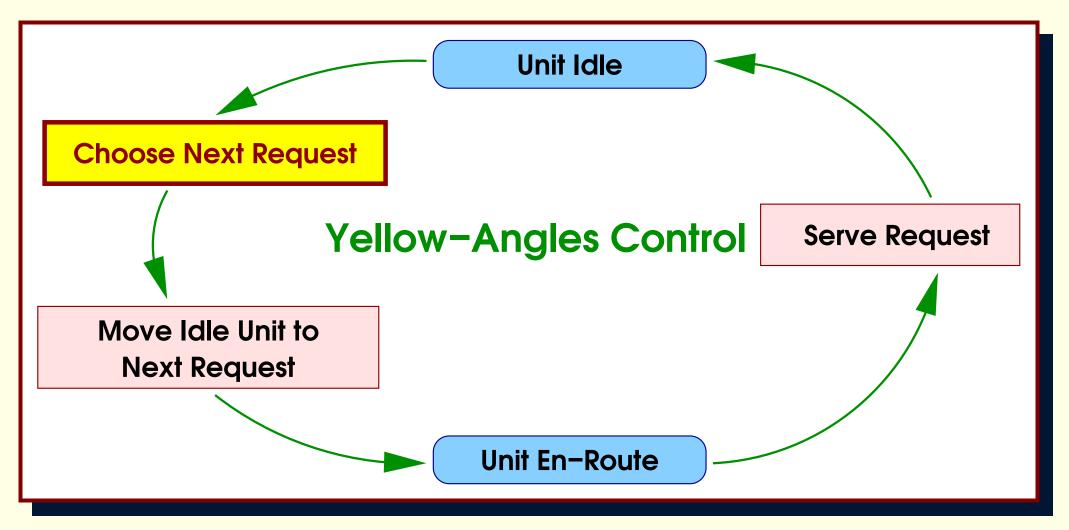
TWO REAL-WORLD DYNAMIC OPTIMIZATION PROBLEMS

VEHICLE DISPATCHING FOR ADAC

Team: Sven O. Krumke, Benjamin Hiller Luis Miguel Torres System: \sim 1,700 service units of ADAC ~5,000 service contractors 5 help centers Task: requests \rightarrow units/contractors units \rightarrow tours Goals: productivity & service quality Before Project: geographic clustering manual dispatching Project Goal: automatic decision support

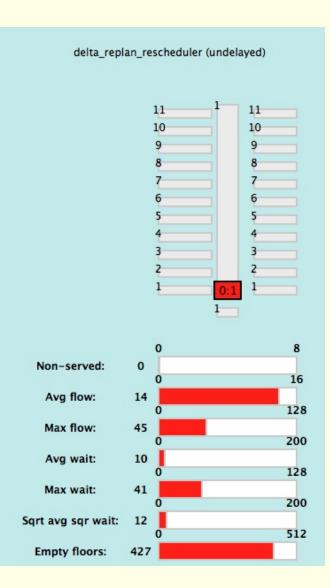
Two Real-World Dynamic Optimization Problems

YELLOW ANGELS CONTROL CYCLE



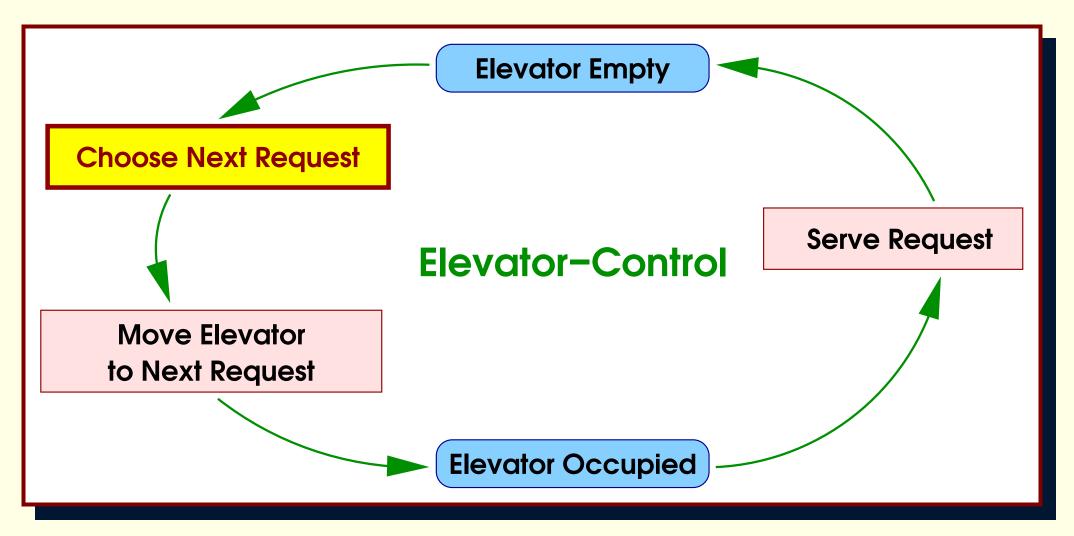
TWO REAL-WORLD DYNAMIC OPTIMIZATION PROBLEMS

ELEVATOR GROUP CONTROL FOR HERLITZ Team: Sven O. Krumke, Philipp Friese System: pallet transportation Herlitz PBS AG, Falkensee near Berlin Task: requests \rightarrow elevators elevators \rightarrow schedules Goals: productivity & service quality Before Project: choice between: FIRSTFIT+FIFO or FIRSTFIT+NEARESTNEIGHBOR Project Goal: efficient control with manageble deferment

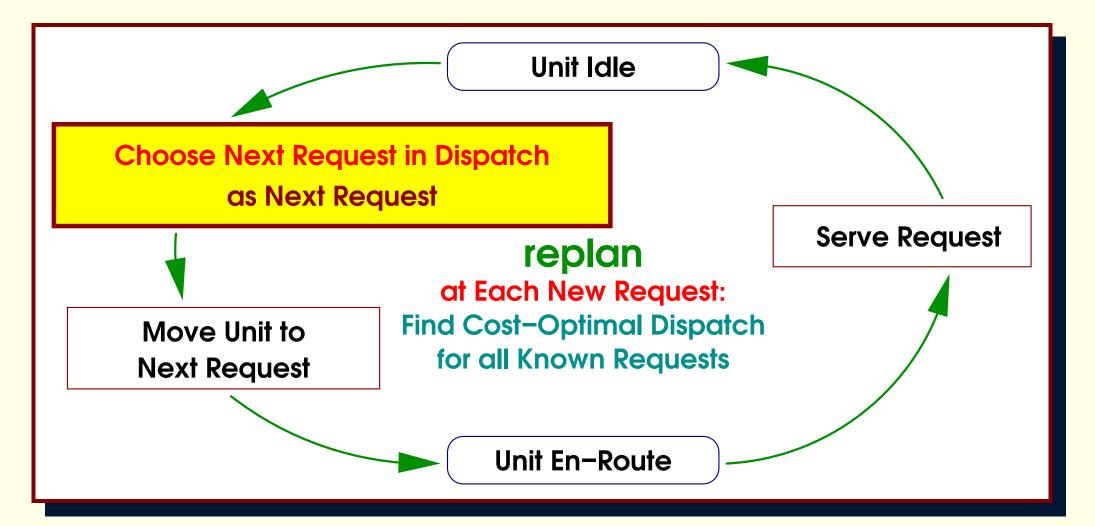


Two Real-World Dynamic Optimization Problems

THE ELEVATOR CONTROL CYCLE

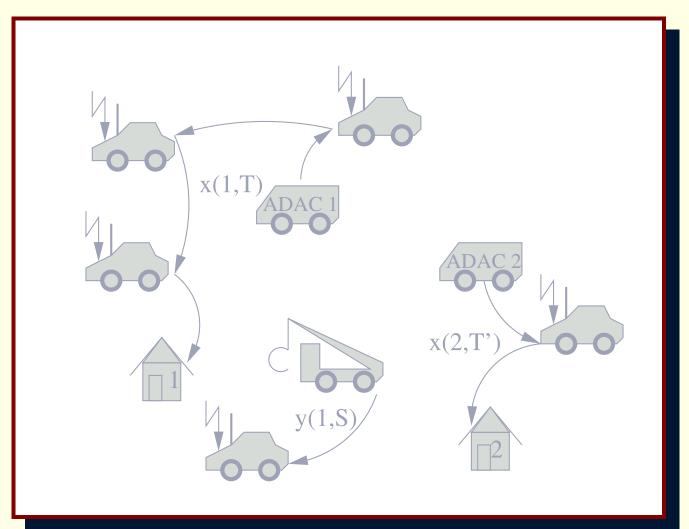


The Reoptimization Policy for the ADAC Problem



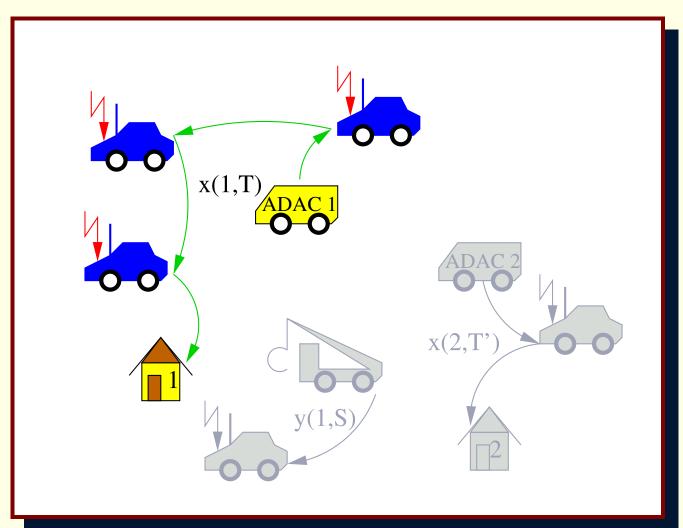
The ILP Reoptimization Model for ADAC

The ILP Reoptimization Model for ADAC



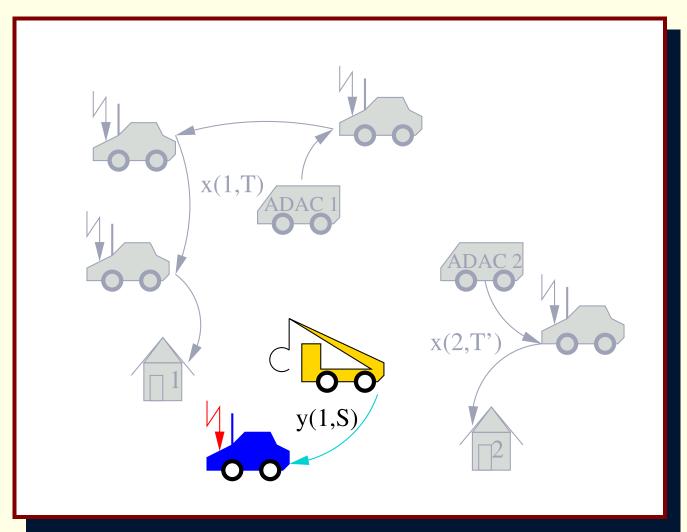
Model with tour variables for units and partners.

The ILP Reoptimization Model for ADAC



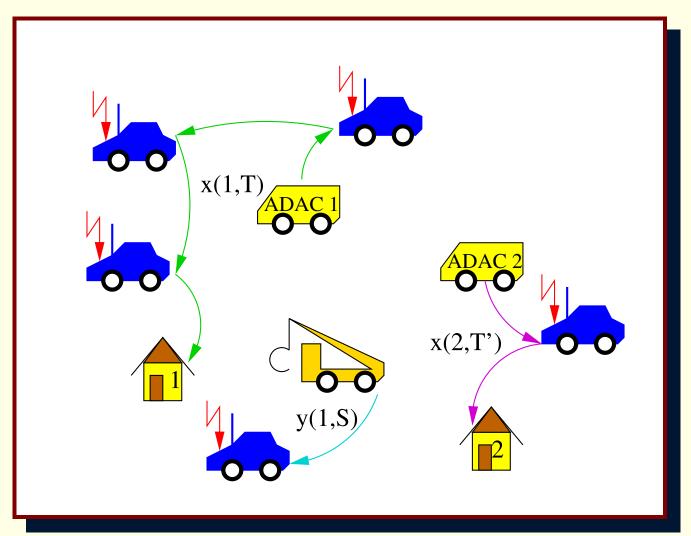
Vehicle 1 goes along Tour T.

The ILP Reoptimization Model for ADAC



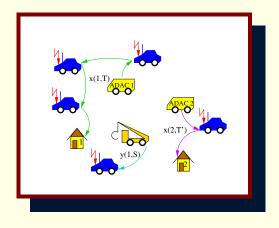
Contractor 1 is assigned Requests S.

The ILP Reoptimization Model for ADAC



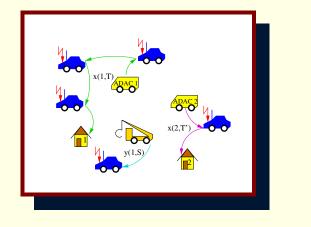
Feasible Solution: partition of requests into tours.

THE ILP REOPTIMIZATION MODEL FOR ADAC



$$\begin{split} \min \sum_{T \in \mathcal{T}} c_T x_T \quad \text{s.t.} \\ \sum_{T \in \mathcal{T}} a_{\nu T} x_T &= 1 & \forall \text{requests } \nu \quad (\text{Partitioning Requests}) \\ \sum_{T \in \mathcal{T}_u} x_T &= 1 & \forall \text{units } u \quad (\text{Partitioning Units}) \\ x_T \in \{0, 1\} \quad \forall T \in \mathcal{T} \quad (\text{Binary Variables}) \end{split}$$

The ILP Reoptimization Model for ADAC



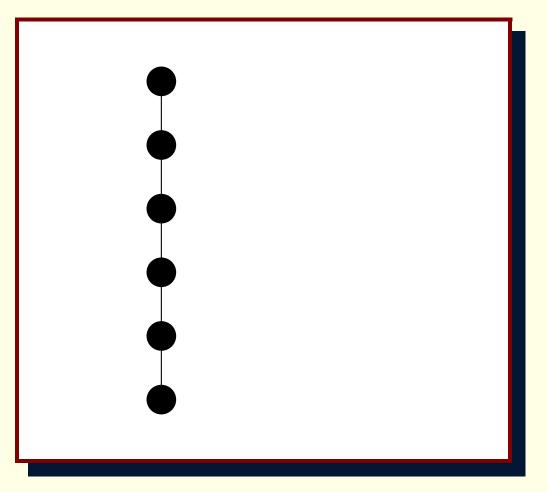
$$\begin{split} \min \sum_{T \in \mathcal{T}} c_T x_T \quad \text{s.t.} \\ \sum_{T \in \mathcal{T}} a_{\nu T} x_T &= 1 & \forall \text{requests } \nu \quad (\text{Partitioning Requests}) \\ \sum_{T \in \mathcal{T}_u} x_T &= 1 & \forall \text{units } u \quad (\text{Partitioning Units}) \\ x_T \in \{0, 1\} \quad \forall T \in \mathcal{T} \quad (\text{Binary Variables}) \end{split}$$

(No) Problem:

In practice $\sim 100.000.000$ variables \Rightarrow Dynamic Column Generation

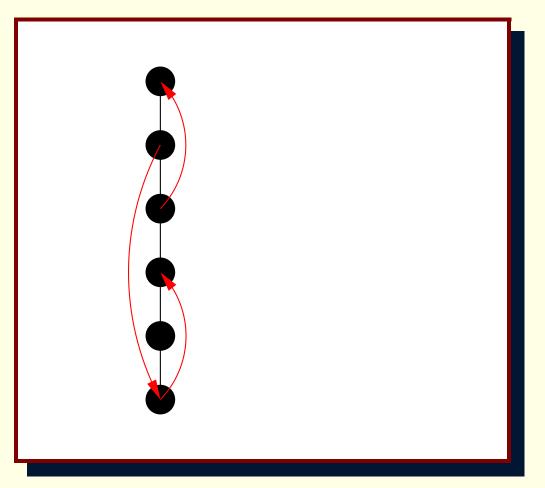
The ILP Reoptimization Model for Elevator Groups

The ILP Reoptimization Model for Elevator Groups



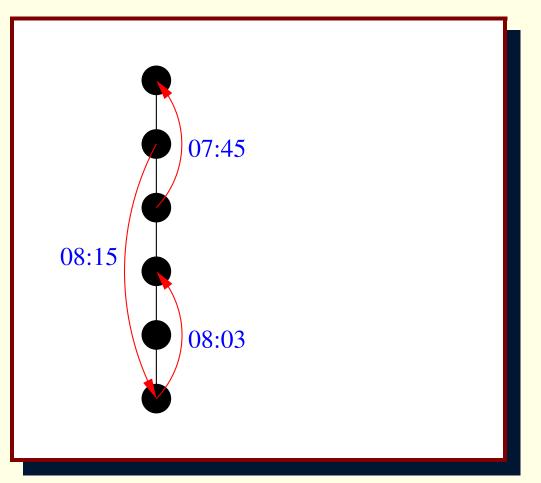
The transport graph for one elevator.

The ILP Reoptimization Model for Elevator Groups



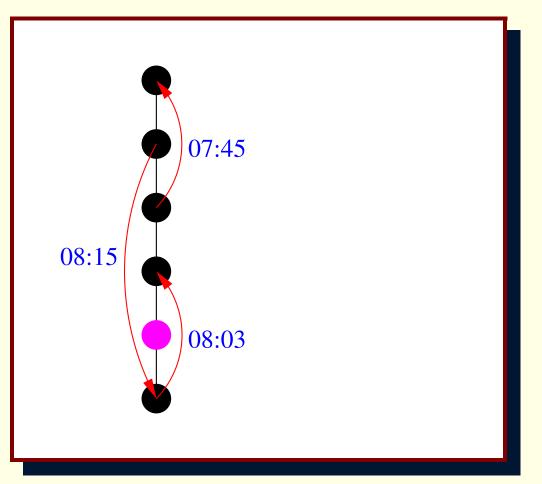
Some requests.

The ILP Reoptimization Model for Elevator Groups



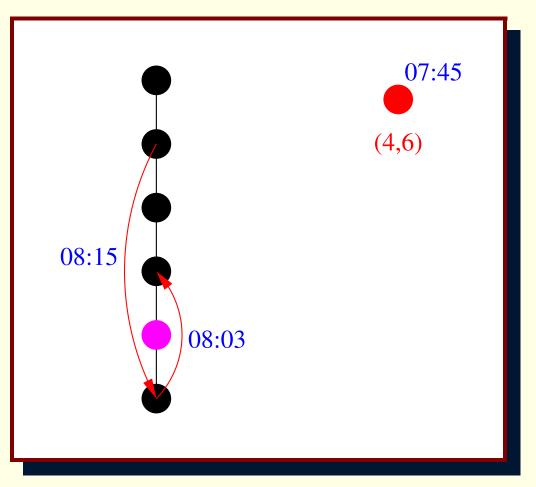
Their time stamps.

The ILP Reoptimization Model for Elevator Groups



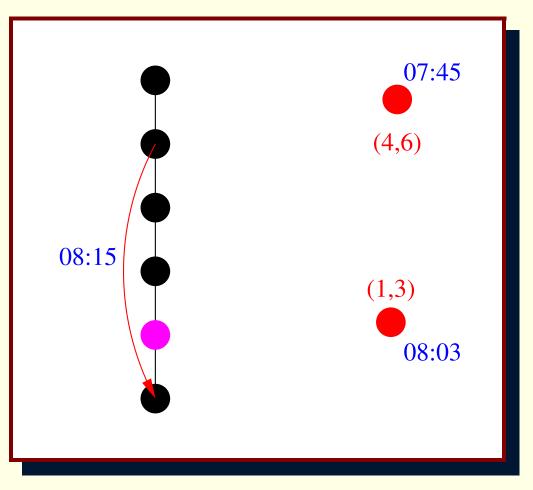
The position of the elevator.

The ILP Reoptimization Model for Elevator Groups



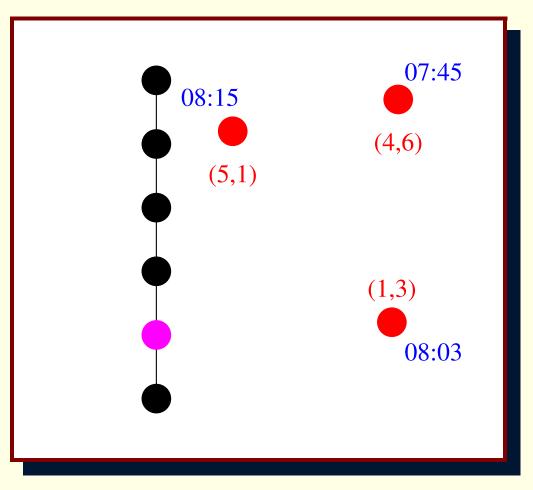
Each request can be seen as a node.

The ILP Reoptimization Model for Elevator Groups



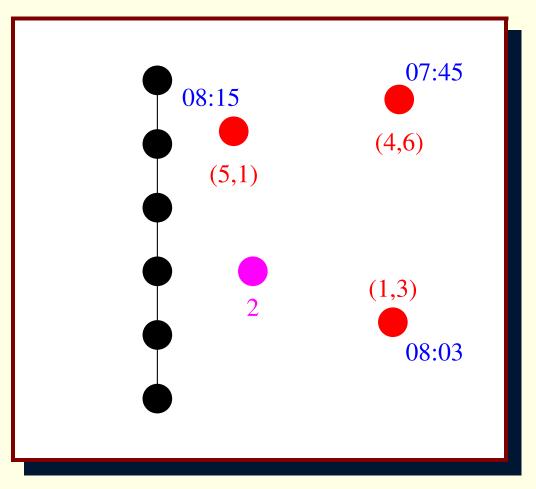
Each request can be seen as a node.

The ILP Reoptimization Model for Elevator Groups



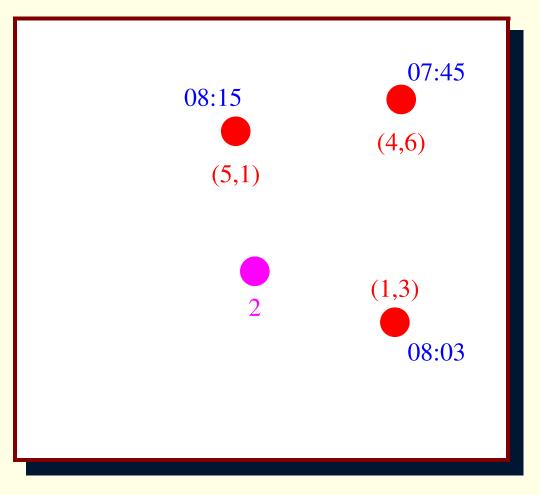
Each request can be seen as a node.

The ILP Reoptimization Model for Elevator Groups



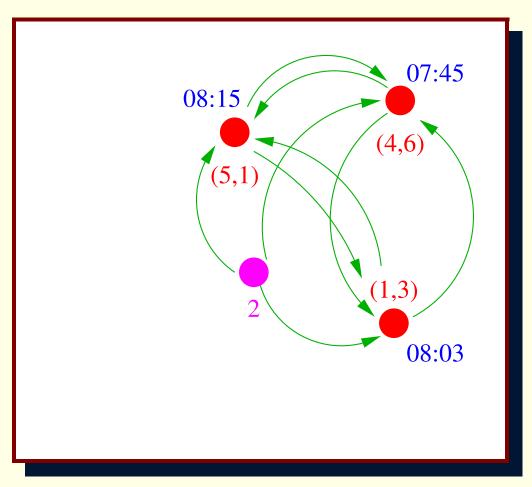
The elevator is a special node.

The ILP Reoptimization Model for Elevator Groups



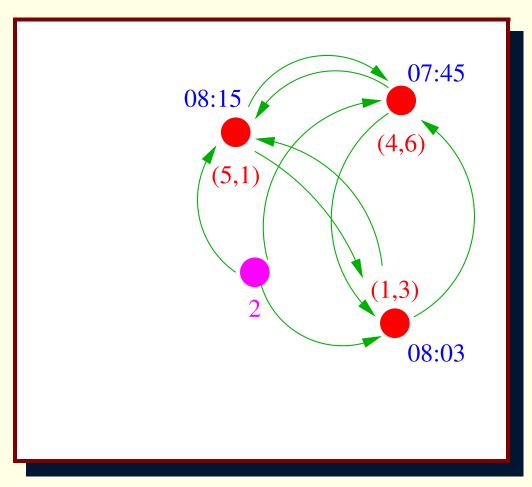
The connecting moves between requests ...

The ILP Reoptimization Model for Elevator Groups



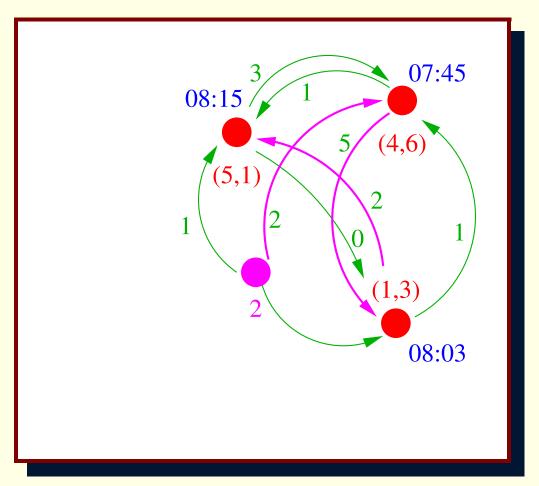
... are arcs ...

The ILP Reoptimization Model for Elevator Groups



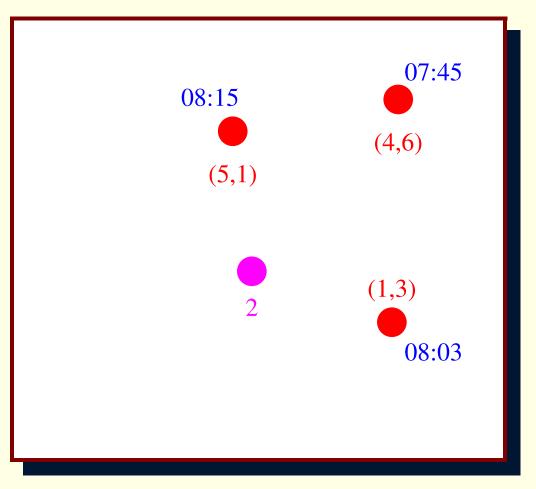
... whose weights are empty moves.

The ILP Reoptimization Model for Elevator Groups



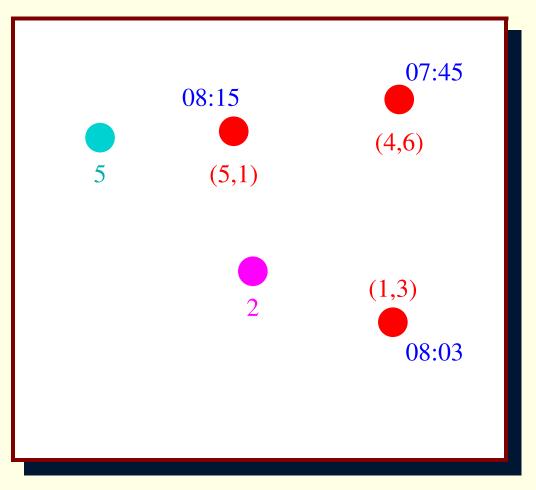
A feasible dispatch is a tour through all nodes starting at the elevator's node with precedence conditions on each floor.

The ILP Reoptimization Model for Elevator Groups



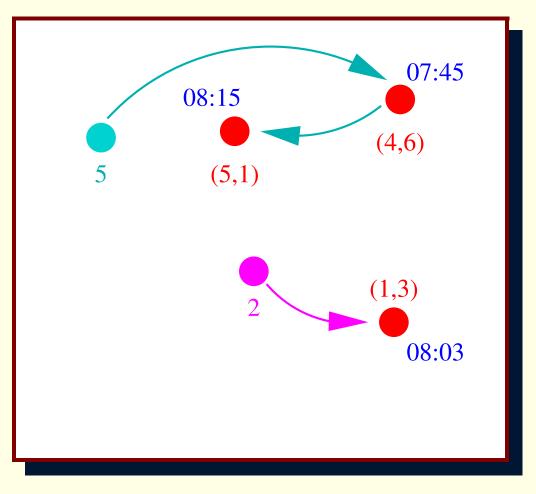
We do not show the arcs anymore since they are implicitly given.

The ILP Reoptimization Model for Elevator Groups



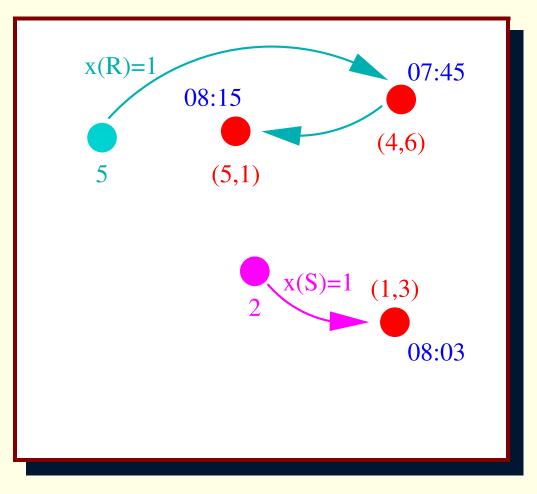
If there is another elevator ...

The ILP Reoptimization Model for Elevator Groups



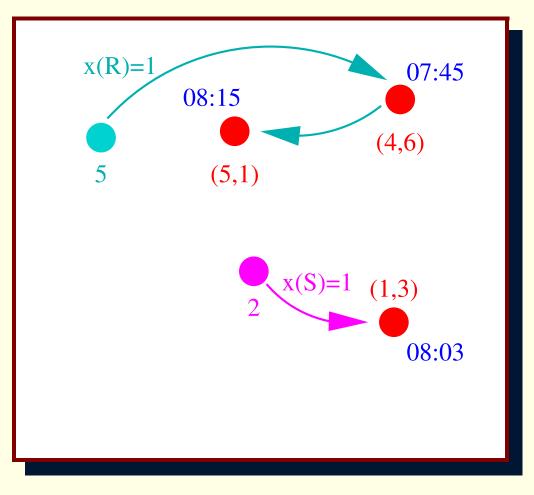
... then a feasible solution is a partitioning of requests into tours with precedence constraints on each floor.

The ILP Reoptimization Model for Elevator Groups



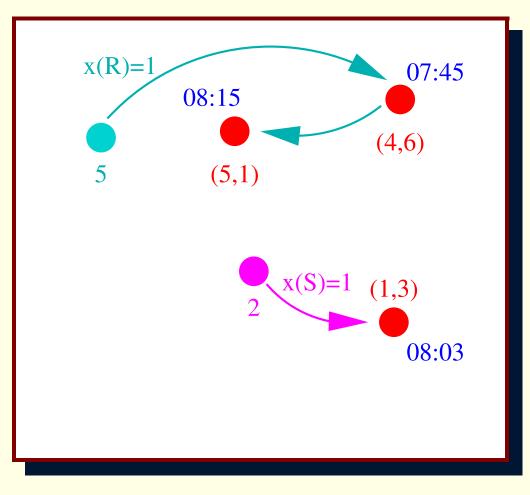
A tour-variable model contains a variable for each feasible tour of a server.

The ILP Reoptimization Model for Elevator Groups



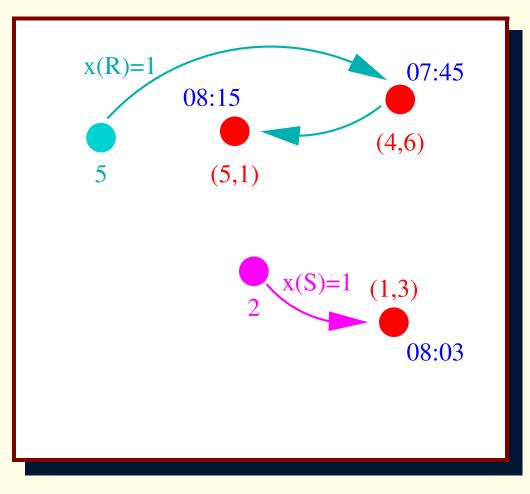
A tour-variable model contains a variable for each feasible tour of a server. (No) Problem: astronomic number of variables

The ILP Reoptimization Model for Elevator Groups



A tour-variable model contains a variable for each feasible tour of a server. (No) Problem: astronomic number of variables Solution: dynamic column generation

The ILP Reoptimization Model for Elevator Groups



A tour-variable model contains a variable for each feasible tour of a server. (No) Problem: astronomic number of variables Solution: dynamic column generation Precedence Constraints: Good for us!

The Infinite Deferment Problem

The Infinite Deferment Problem

- Depending on the objective, individual requests maybe deferred arbitrarily.
- Infinite deferment unwanted even if original objective does not penalize this.
- Example: Minimize empty moves, minimize total flow time, ...

THE INFINITE DEFERMENT PROBLEM

- Depending on the objective, individual requests maybe deferred arbitrarily.
- Infinite deferment unwanted even if original objective does not penalize this.
- Example: Minimize empty moves, minimize total flow time, ...

Goal:

Minimize (expected) objective function value so that the maximal flow time of each request is bounded by a constant (constant may depend on the system load but not on the instance)

ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

INSECURE INFORMATION ASPECT

Observation:

A currently good-looking decision – i.p. when applied repeatedly – may prove bad in the long run because of insecure or even no information about future requests.

Classical approaches to cope with insecure information about future requests:

With Stochastic Info:Stochastic (Dynamic) Programming (Expected Performance)Without Stochastic Info:Competitive Analysis (Worst-Case Performance)

STOCHASTIC DYNAMIC PROGRAMMING/MARKOV DECISON PROCESSES

Classical computational methods rely on computing the optimal cost function for all states.

Problem:

- Stochastic information about future requests required.
- > $(m-1)^{mk}m^e$ states for *e* elevators, *m* floors, and *k* slots.

e = 1, m = 8, k = 2: > 265, 863, 444, 556, 808 states. e = 5, m = 8, k = 1: > 188, 900, 999, 168 states

Why Classical Evaluation Methods Fail Here

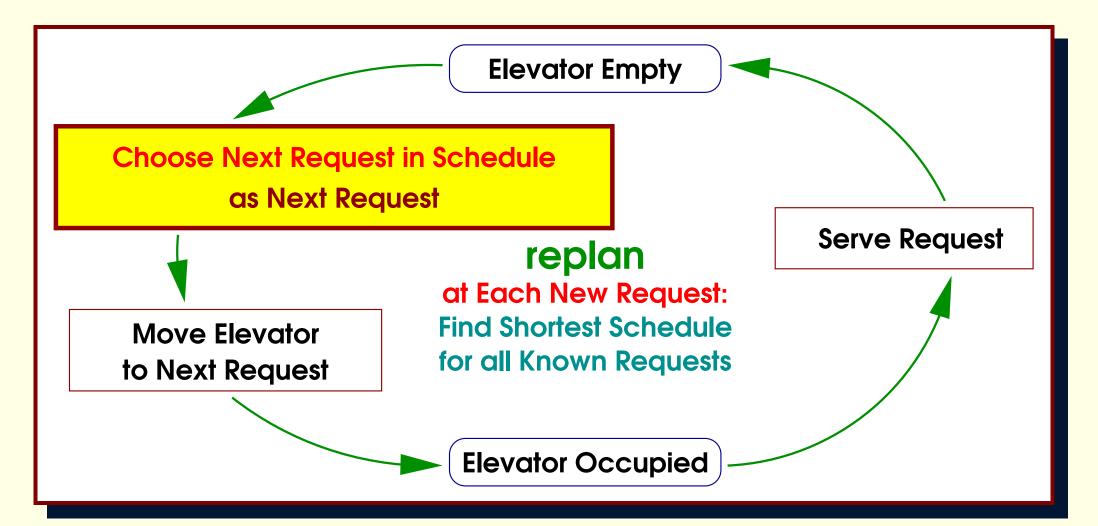
Competitive Analysis: Good News For A Single Elevator

COMPETITIVE ANALYSIS: GOOD NEWS FOR A SINGLE ELEVATOR

Theorem [Ascheuer, Krumke, R. 2000]:

- **REPLAN** is 2.5-competitive for makespan minimization.
- There is a 2-competitive online-algorithm for makespan minimization.

SINGLE ELEVATOR CONTROL: REPLAN



Why Classical Evaluation Methods Fail Here

COMPETITIVE ANALYSIS: BAD NEWS

COMPETITIVE ANALYSIS: BAD NEWS

Observations:

Minimizing the long-term makespan for an elevator group/the ADAC fleet is absolutely useless.

COMPETITIVE ANALYSIS: BAD NEWS

Observations:

Minimizing the long-term makespan for an elevator group/the ADAC fleet is absolutely useless.

There is **no** competitive online-algorithm for max./avg. flow/waiting time minimization

COMPETITIVE ANALYSIS: BAD NEWS

Observations:

Minimizing the long-term makespan for an elevator group/the ADAC fleet is absolutely useless.

There is **no** competitive online-algorithm for max./avg. flow/waiting time minimization

Problem: The task doesn't go away!

Why Classical Evaluation Methods Fail Here

ALTERNATIVE PERFORMANCE MEASURE: GOOD NEWS

Alternative Performance Measure: Good News

requests Δ -reasonable

 $: \Longleftrightarrow$

requests presented in time δ can be served in time at most δ whenever $\delta \geq \Delta$.

ALTERNATIVE PERFORMANCE MEASURE: GOOD NEWS

requests Δ -reasonable

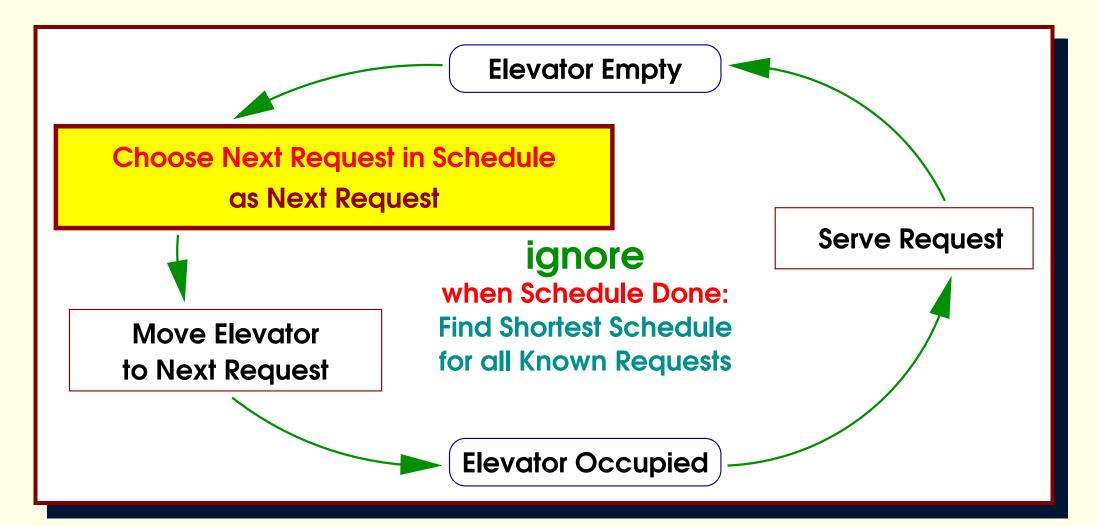
 $: \iff$

requests presented in time δ can be served in time at most δ whenever $\delta \geq \Delta$.

Theorem [Hauptmeier, Krumke, R. 2000]:

Under Δ -reasonable load, the max./avg. flow time of IGNORE is at most 2Δ ; for REPLAN it is unbounded.

SINGLE ELEVATOR CONTROL: IGNORE



Why Classical Evaluation Methods Fail Here

ALTERNATIVE PERFORMANCE MEASURE: BAD NEWS

ALTERNATIVE PERFORMANCE MEASURE: BAD NEWS

Simulation Experiments:

For the more **complicated objectives** from practice, IGNORE does **not** produce **good** objective function values **on average**.

ALTERNATIVE PERFORMANCE MEASURE: BAD NEWS

Simulation Experiments:

For the more **complicated objectives** from practice, IGNORE does **not** produce **good** objective function values **on average**.

In practice: Reoptimization w.r.t. a tweaked objective functionE.g.: Adding weighted quadratic waiting time penalties works wellHowever: No theoretical guarantees.

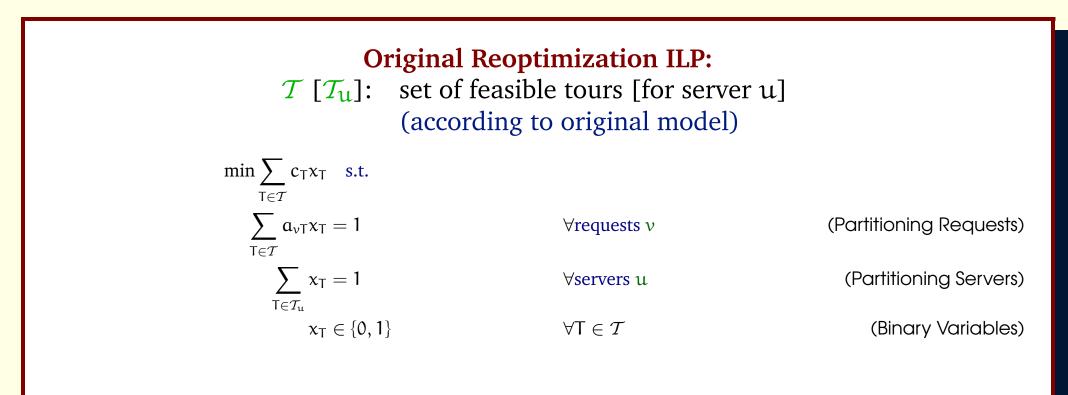
How to Obtain Performance Guarantees

FC-REOPTIMIZATION (FLOW-TIME CONSTRAINED)

Assumption: achievable worst-case maximal flow time $\Theta > 0$ known.

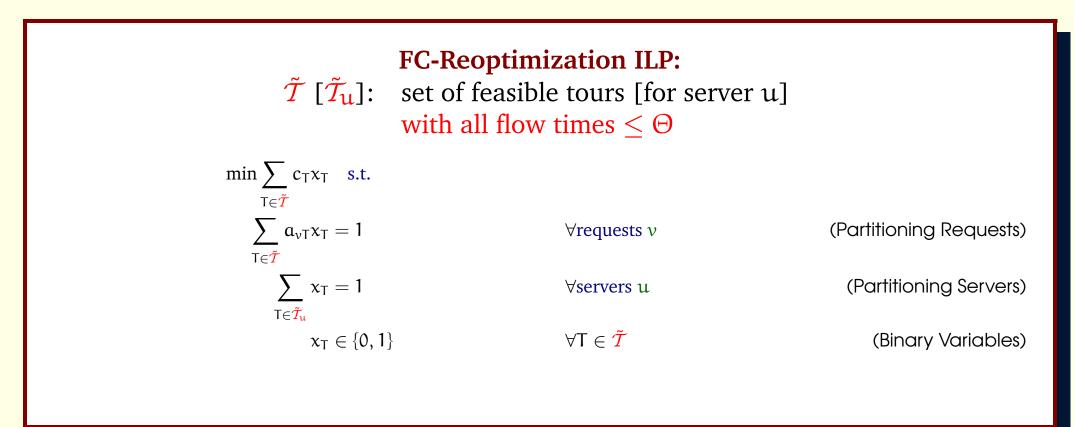
FC-REOPTIMIZATION (FLOW-TIME CONSTRAINED)

Assumption: achievable worst-case maximal flow time $\Theta > 0$ known.



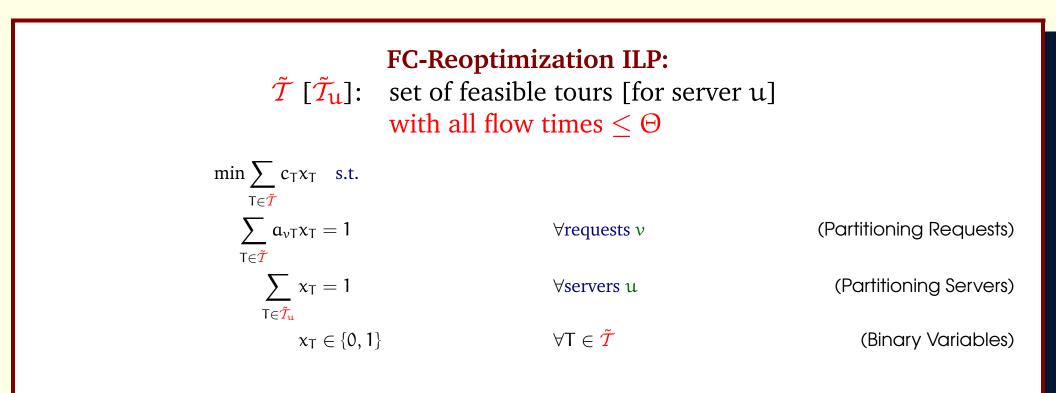
FC-REOPTIMIZATION (FLOW-TIME CONSTRAINED)

Assumption: achievable worst-case maximal flow time $\Theta > 0$ known.



FC-REOPTIMIZATION (FLOW-TIME CONSTRAINED)

Assumption: achievable worst-case maximal flow time $\Theta > 0$ known.



Is there a feasible solution at all times?

How to Obtain Performance Guarantees

Doubling for FC-Reoptimization

- If at any time there is no feasible solution: $\Theta \leftarrow 2\Theta$.
- Always feasible (whenever the original model is)

HOW TO OBTAIN PERFORMANCE GUARANTEES

Doubling for FC-Reoptimization

- If at any time there is no feasible solution: $\Theta \leftarrow 2\Theta$.
- Always feasible (whenever the original model is)

Open Questions:

Is there a guarantee for the maximal flow time obtained? Is there a guarantee for the original objective function value?

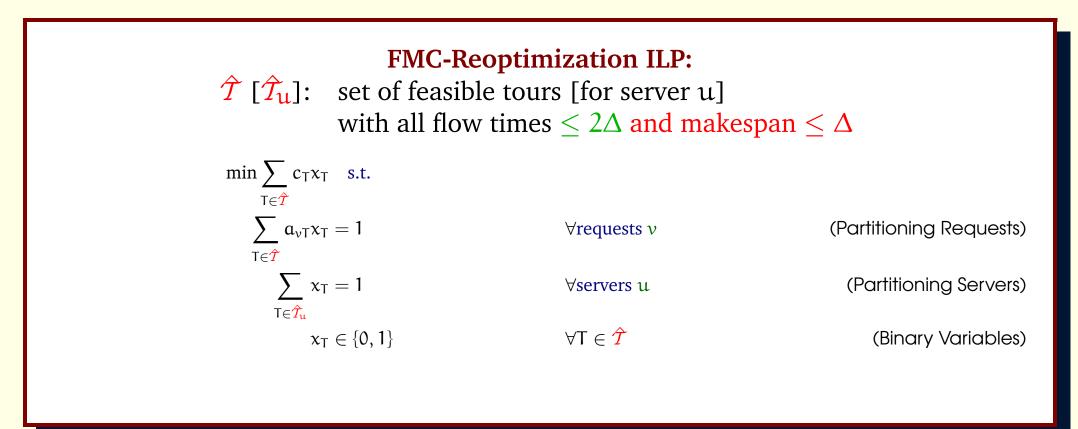
How to Obtain Performance Guarantees

FMC-REOPTIMIZATION (FLOW-TIME AND MAKESPAN CONSTRAINED)

Stronger assumption: the request set is Δ -reasonable.

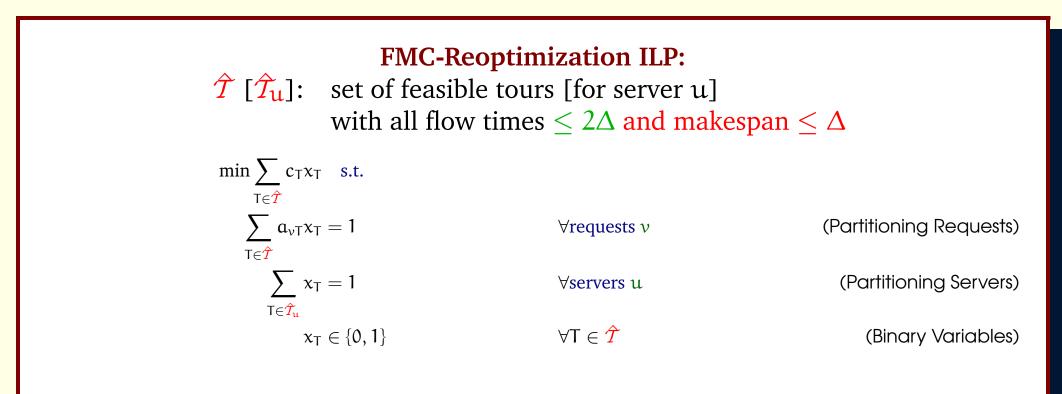
FMC-REOPTIMIZATION (FLOW-TIME AND MAKESPAN CONSTRAINED)

Stronger assumption: the request set is Δ -reasonable.



FMC-REOPTIMIZATION (FLOW-TIME AND MAKESPAN CONSTRAINED)

Stronger assumption: the request set is Δ -reasonable.



Is there a feasible solution at all times?

HOW TO OBTAIN PERFORMANCE GUARANTEES

REOPTIMIZATION ADMISSION CONTROL (RAC)

Whenever there is no feasible new solution, ...

How to Obtain Performance Guarantees

REOPTIMIZATION ADMISSION CONTROL (RAC)

Whenever there is no feasible new solution, ...

• ... continue with old dispatch

How to Obtain Performance Guarantees

REOPTIMIZATION ADMISSION CONTROL (RAC)

Whenever there is no feasible new solution, ...

- ... continue with old dispatch
- ... buffer the new requests

REOPTIMIZATION ADMISSION CONTROL (RAC)

Whenever there is no feasible new solution, ...

- ... continue with old dispatch
- ... buffer the new requests
- ... when the current dispatch is finished, compute new dispatch (now feasible!)

HOW TO OBTAIN PERFORMANCE GUARANTEES

REOPTIMIZATION ADMISSION CONTROL (RAC)

Whenever there is no feasible new solution, ...

- ... continue with old dispatch
- ... buffer the new requests
- ... when the current dispatch is finished, compute new dispatch (now feasible!)

Theorem:

Under Δ -reasonable load, FMC-Reoptimization with RAC achieves a maximal flow time of 2Δ , no matter what the original reoptimization problem is (and this is best possible).

HOW TO OBTAIN PERFORMANCE GUARANTEES

HOW ABOUT THE EXPECTED ORIGINAL OBJECTIVE FUNCTION VALUE?

How to Obtain Performance Guarantees

How about the Expected Original Objective Function Value?

Simulation Experiments for Elevator Group Control:

• Unconstrained reoptimization is best w.r.t. original objective.

- Unconstrained reoptimization is best w.r.t. original objective.
- Flow time constrained reoptimization is next.

- Unconstrained reoptimization is best w.r.t. original objective.
- Flow time constrained reoptimization is next.
- Only slightly worse: FMC-Reoptimization with RAC

- Unconstrained reoptimization is best w.r.t. original objective.
- Flow time constrained reoptimization is next.
- Only slightly worse: FMC-Reoptimization with RAC
- Everything else we tested: much worse.

Simulation Experiments for Elevator Group Control:

- Unconstrained reoptimization is best w.r.t. original objective.
- Flow time constrained reoptimization is next.
- Only slightly worse: FMC-Reoptimization with RAC
- Everything else we tested: much worse.

Work in Progress:

Theoretical guarantees or computational bounds for original objective (at least for special cases).

When Δ is unknown

- Δ can be estimated by makespan computations (under-estimation)
 - \rightarrow better flow time guarantee
- Δ can be estimated by doubling (over-estimation)
 - \rightarrow better original objective on average

Summary:

Reoptimization \rightarrow best observed long-term objective on average

Summary:

 $\begin{array}{l} \text{Reoptimization} \rightarrow \textbf{best} \text{ observed long-term objective on average} \\ \text{Infinite deferment} \rightarrow \textbf{bounded flow time required} \end{array}$

Summary:

 $\begin{array}{l} \mbox{Reoptimization} \rightarrow \mbox{best} \mbox{ observed long-term objective on average} \\ \mbox{Infinite deferment} \rightarrow \mbox{bounded flow time required} \\ \mbox{No guarantees for FC-Reoptimization} \rightarrow \mbox{FMC-Reoptimization} \ \mbox{with RAC} \end{array}$

• Dynamic column generation models \rightarrow FMC easy to implement

 $\begin{array}{l} \mbox{Reoptimization} \rightarrow \mbox{best} \mbox{ observed long-term objective on average} \\ \mbox{Infinite deferment} \rightarrow \mbox{bounded flow time required} \\ \mbox{No guarantees for FC-Reoptimization} \rightarrow \mbox{FMC-Reoptimization} \ \mbox{with RAC} \end{array}$

- Dynamic column generation models \rightarrow FMC easy to implement
- FMC can be relaxed with $\alpha > 1$:

flow time $\leq 2\alpha\Delta$ & makespan $\leq \alpha\Delta \Rightarrow$ maximal flow time $\leq 2\alpha\Delta$

- Dynamic column generation models \rightarrow FMC easy to implement
- FMC can be relaxed with $\alpha > 1$: flow time $\leq 2\alpha\Delta$ & makespan $\leq \alpha\Delta \Rightarrow$ maximal flow time $\leq 2\alpha\Delta$
- $\Delta \rightarrow$ capacity planning

- Dynamic column generation models \rightarrow FMC easy to implement
- FMC can be relaxed with $\alpha > 1$: flow time $\leq 2\alpha\Delta$ & makespan $\leq \alpha\Delta \Rightarrow$ maximal flow time $\leq 2\alpha\Delta$
- $\Delta \rightarrow$ capacity planning
- $\Delta \rightarrow$ system admission control

- Dynamic column generation models \rightarrow FMC easy to implement
- FMC can be relaxed with $\alpha > 1$: flow time $\leq 2\alpha\Delta$ & makespan $\leq \alpha\Delta \Rightarrow$ maximal flow time $\leq 2\alpha\Delta$
- $\Delta \rightarrow$ capacity planning
- $\Delta \rightarrow$ system admission control
- New sparse LP methods for MDP \rightarrow computational guarantees

Thank you!

