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JÖRG RAMBAU

TWO REAL-WORLD DYNAMIC OPTIMIZATION PROBLEMS

VEHICLE DISPATCHING FOR ADAC

Team: Sven O. Krumke,
Benjamin Hiller
Luis Miguel Torres

System: ∼1,700 service units of ADAC
∼5,000 service contractors
5 help centers

Task: requests→ units/contractors
units→ tours

Goals: productivity & service quality

Before Project: geographic clustering
manual dispatching

Project Goal: automatic decision support
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TWO REAL-WORLD DYNAMIC OPTIMIZATION PROBLEMS

YELLOW ANGELS CONTROL CYCLE

Yellow−Angles Control

Next Request

Unit Idle

Choose Next Request

Serve Request

Unit En−Route

Move Idle Unit to
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TWO REAL-WORLD DYNAMIC OPTIMIZATION PROBLEMS

ELEVATOR GROUP CONTROL FOR HERLITZ

Team: Sven O. Krumke,
Philipp Friese

System: pallet transportation Herlitz PBS AG,
Falkensee near Berlin

Task: requests→ elevators
elevators→ schedules

Goals: productivity & service quality

Before Project: choice between:
FIRSTFIT+FIFO or
FIRSTFIT+NEARESTNEIGHBOR

Project Goal: efficient control with manageble
deferment
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TWO REAL-WORLD DYNAMIC OPTIMIZATION PROBLEMS

THE ELEVATOR CONTROL CYCLE

Elevator−Control

Move Elevator

to Next Request

Elevator Empty

Choose Next Request

Serve Request

Elevator Occupied
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE REOPTIMIZATION POLICY FOR THE ADAC PROBLEM

replan

Choose Next Request in Dispatch

Move Unit to

as Next Request

Find Cost−Optimal Dispatch

for all Known Requests

at Each New Request:

Unit Idle

Serve Request

Unit En−Route

Next Request
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

1

ADAC 1

ADAC 2

2

x(1,T)

x(2,T’)

y(1,S)

Model with
tour variables

for units and partners.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

1

ADAC 1

2

ADAC 2

x(1,T)

y(1,S)

x(2,T’)

Vehicle 1 goes along Tour T .
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

1

2

ADAC 1

ADAC 2

x(2,T’)

y(1,S)

x(1,T)

Contractor 1 is assigned
Requests S.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

1

2

ADAC 2

ADAC 1

x(2,T’)

x(1,T)

y(1,S)

Feasible Solution:
partition of requests

into tours.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

1

2

ADAC 2

ADAC 1

x(2,T’)

x(1,T)

y(1,S)

min
∑
T∈T

cTxT s.t.∑
T∈T

avTxT = 1 ∀requests v (Partitioning Requests)∑
T∈Tu

xT = 1 ∀units u (Partitioning Units)

xT ∈ {0, 1} ∀T ∈ T (Binary Variables)
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

1

2

ADAC 2

ADAC 1

x(2,T’)

x(1,T)

y(1,S)

min
∑
T∈T

cTxT s.t.∑
T∈T

avTxT = 1 ∀requests v (Partitioning Requests)∑
T∈Tu

xT = 1 ∀units u (Partitioning Units)

xT ∈ {0, 1} ∀T ∈ T (Binary Variables)

(No) Problem:
In practice ∼100.000.000.000 variables⇒ Dynamic Column Generation
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THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

The transport graph for one elevator.
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THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

Some requests.
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THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

08:15

08:03

07:45

Their time stamps.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

08:15

08:03

07:45

The position of the elevator.
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THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

(4,6)

08:03

08:15

07:45

Each request can be seen as a node.



JÖRG RAMBAU

ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

(1,3)

08:15

07:45

(4,6)

08:03

Each request can be seen as a node.
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THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

07:45

(4,6)

08:03

(1,3)

08:15

(5,1)

Each request can be seen as a node.
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THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

(1,3)

(4,6)

08:03

07:45

2

08:15

(5,1)

The elevator is a special node.
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THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

08:15

(5,1)

2

07:45

(4,6)

08:03

(1,3)

The connecting moves between requests . . .
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

(1,3)

(4,6)

08:03

07:45
08:15

(5,1)

2

. . . are arcs . . .
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THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

(1,3)

(4,6)

08:03

07:45
08:15

(5,1)

2

. . . whose weights are empty moves.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

1

3

1
2

2

0

1

5 (4,6)

08:03

08:15

(1,3)

(5,1)

2

07:45

A feasible dispatch
is a tour through all nodes

starting at the elevator’s node
with precedence conditions on each floor.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

08:15

(5,1)

2

07:45

(4,6)

08:03

(1,3)

We do not show the arcs anymore
since they are implicitly given.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

5

08:15

08:03

(1,3)

(4,6)

(5,1)

2

07:45

If there is another elevator . . .
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

5

08:15

08:03

(1,3)

(4,6)

(5,1)

2

07:45

. . . then a feasible solution is a
partitioning

of requests into tours
with precedence constraints

on each floor.
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5

x(R)=1

x(S)=1
2

08:15

(5,1)

(1,3)

07:45

(4,6)
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A tour-variable model contains a variable for
each feasible tour of a server.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

5

x(R)=1

x(S)=1
2

08:15

(5,1)

(1,3)

07:45

(4,6)

08:03

A tour-variable model contains a variable for
each feasible tour of a server.

(No) Problem:
astronomic number of variables

Solution:
dynamic column generation

Precedence Constraints:
Good for us!
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE INFINITE DEFERMENT PROBLEM

• Depending on the objective, individual requests maybe deferred arbitrarily.
• Infinite deferment unwanted even if original objective does not penalize this.
• Example: Minimize empty moves, minimize total flow time, . . .

Goal:
Minimize (expected) objective function value so that

the maximal flow time of each request is bounded by a constant
(constant may depend on the system load but not on the instance)
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

INSECURE INFORMATION ASPECT

Observation:
A currently good-looking decision
– i.p. when applied repeatedly –

may prove bad in the long run because of
insecure or even no information about future requests.

Classical approaches to cope with insecure information about future requests:

With Stochastic Info: Stochastic (Dynamic) Programming (Expected Performance)
Without Stochastic Info: Competitive Analysis (Worst-Case Performance)
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

STOCHASTIC DYNAMIC PROGRAMMING/MARKOV DECISON PROCESSES

Classical computational methods rely on computing
the optimal cost function for all states.

Problem:

• Stochastic information about future requests required.
• > (m− 1)mkme states for e elevators, m floors, and k slots.

e = 1, m = 8, k = 2: > 265, 863, 444, 556, 808 states.

e = 5, m = 8, k = 1: > 188, 900, 999, 168 states
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

COMPETITIVE ANALYSIS: GOOD NEWS FOR A SINGLE ELEVATOR

Theorem [Ascheuer, Krumke, R. 2000]:

• REPLAN is 2.5-competitive for makespan minimization.
• There is a 2-competitive online-algorithm for makespan minimization.



JÖRG RAMBAU

WHY CLASSICAL EVALUATION METHODS FAIL HERE

SINGLE ELEVATOR CONTROL: REPLAN

replan

Move Elevator

to Next Request

Choose Next Request in Schedule

as Next Request

Find Shortest Schedule

for all Known Requests

at Each New Request:

Elevator Occupied

Serve Request

Elevator Empty
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

COMPETITIVE ANALYSIS: BAD NEWS

Observations:
Minimizing the long-term makespan for an elevator group/the ADAC fleet is

absolutely useless.

There is no competitive online-algorithm
for max./avg. flow/waiting time minimization

Problem: The task doesn’t go away!
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JÖRG RAMBAU

WHY CLASSICAL EVALUATION METHODS FAIL HERE

ALTERNATIVE PERFORMANCE MEASURE: GOOD NEWS

requests ∆-reasonable
:⇐⇒

requests presented in time δ
can be served in time at most δ whenever δ ≥ ∆.

Theorem [Hauptmeier, Krumke, R. 2000]:
Under ∆-reasonable load, the

max./avg. flow time of IGNORE is at most 2∆;
for REPLAN it is unbounded.
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

SINGLE ELEVATOR CONTROL: IGNORE

ignore

Move Elevator

to Next Request

Choose Next Request in Schedule

as Next Request

Find Shortest Schedule

for all Known Requests

when Schedule Done:

Elevator Occupied

Serve Request

Elevator Empty
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

ALTERNATIVE PERFORMANCE MEASURE: BAD NEWS

Simulation Experiments:
For the more complicated objectives from practice,

IGNORE does not produce good objective function values on average.

In practice: Reoptimization w.r.t. a tweaked objective function
E.g.: Adding weighted quadratic waiting time penalties works well

However: No theoretical guarantees.
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FC-REOPTIMIZATION (FLOW-TIME CONSTRAINED)

Assumption: achievable worst-case maximal flow time Θ > 0 known.

Original Reoptimization ILP:
T [Tu]: set of feasible tours [for server u]

(according to original model)

min
∑
T∈T

cTxT s.t.

∑
T∈T

avTxT = 1 ∀requests v (Partitioning Requests)

∑
T∈Tu

xT = 1 ∀servers u (Partitioning Servers)

xT ∈ {0, 1} ∀T ∈ T (Binary Variables)
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HOW TO OBTAIN PERFORMANCE GUARANTEES

DOUBLING FOR FC-REOPTIMIZATION

• If at any time there is no feasible solution: Θ← 2Θ.
• Always feasible (whenever the original model is)

Open Questions:
Is there a guarantee for the maximal flow time obtained?

Is there a guarantee for the original objective function value?
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FMC-REOPTIMIZATION (FLOW-TIME AND MAKESPAN CONSTRAINED)

Stronger assumption: the request set is ∆-reasonable.

FMC-Reoptimization ILP:
T̂ [T̂u]: set of feasible tours [for server u]

with all flow times ≤ 2∆ and makespan ≤ ∆

min
∑
T∈T̂

cTxT s.t.

∑
T∈T̂

avTxT = 1 ∀requests v (Partitioning Requests)

∑
T∈T̂u

xT = 1 ∀servers u (Partitioning Servers)

xT ∈ {0, 1} ∀T ∈ T̂ (Binary Variables)
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FMC-REOPTIMIZATION (FLOW-TIME AND MAKESPAN CONSTRAINED)

Stronger assumption: the request set is ∆-reasonable.

FMC-Reoptimization ILP:
T̂ [T̂u]: set of feasible tours [for server u]

with all flow times ≤ 2∆ and makespan ≤ ∆

min
∑
T∈T̂

cTxT s.t.

∑
T∈T̂

avTxT = 1 ∀requests v (Partitioning Requests)

∑
T∈T̂u

xT = 1 ∀servers u (Partitioning Servers)

xT ∈ {0, 1} ∀T ∈ T̂ (Binary Variables)

Is there a feasible solution at all times?
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HOW TO OBTAIN PERFORMANCE GUARANTEES

REOPTIMIZATION ADMISSION CONTROL (RAC)

Whenever there is no feasible new solution, . . .

• . . . continue with old dispatch
• . . . buffer the new requests
• . . . when the current dispatch is finished, compute new dispatch (now feasible!)

Theorem:
Under ∆-reasonable load, FMC-Reoptimization with RAC achieves a

maximal flow time of 2∆,
no matter what the original reoptimization problem is

(and this is best possible).
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HOW TO OBTAIN PERFORMANCE GUARANTEES

HOW ABOUT THE EXPECTED ORIGINAL OBJECTIVE FUNCTION VALUE?

Simulation Experiments for Elevator Group Control:

• Unconstrained reoptimization is best w.r.t. original objective.
• Flow time constrained reoptimization is next.
• Only slightly worse: FMC-Reoptimization with RAC
• Everything else we tested: much worse.

Work in Progress:
Theoretical guarantees or computational bounds for original objective

(at least for special cases).
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HOW TO OBTAIN PERFORMANCE GUARANTEES

WHEN ∆ IS UNKNOWN

• ∆ can be estimated by makespan computations (under-estimation)→ better flow time guarantee
• ∆ can be estimated by doubling (over-estimation)→ better original objective on average
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SUMMARY AND REMARKS

Summary:
Reoptimization→ best observed long-term objective on average

Infinite deferment→ bounded flow time required
No guarantees for FC-Reoptimization→ FMC-Reoptimization with RAC

• Dynamic column generation models→ FMC easy to implement
• FMC can be relaxed with α > 1:

flow time ≤ 2α∆ & makespan ≤ α∆⇒ maximal flow time ≤ 2α∆
• ∆→ capacity planning
• ∆→ system admission control
• New sparse LP methods for MDP→ computational guarantees
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THE END

Thank you!


