Distributed Control in Transportation and Supply Networks

Marco Laumanns, Institute for Operations Research, ETH Zurich

Joint work with Harold Tiemessen, Stefan Wörner (IBM Research Zurich) Apostolos Fertis, Martin Fuchsberger, Rico Zenklusen (ETH Zurich) Gabrio Caimi (BLS AG, Bern), Marco Lüthi (systransis Ltd, Zug)

Workshop on Distributed Model Predictive Control and Supply Chains, Lund, May 19-21, 2010

1 Stochastic Control in Inventory Networks

- Problem and Model
- Basetock Policies as Local Heuristics
- Model with Replenishment Lead Times

2 Online Train Control in Railway Networks

- Multi-level approach
- Online control of a station area

1 Stochastic Control in Inventory Networks

Problem and Model

- Basetock Policies as Local Heuristics
- Model with Replenishment Lead Times

2 Online Train Control in Railway Networks

- Multi-level approach
- Online control of a station area

3 / 26

A spare parts supply network

Stochastic control model

stocking points i

customer locations j

Stochastic control model

Model with linear dynamics and constraints

$$\begin{aligned} x_i(t+1) &= x_i(t) + u_i(t) - \sum_{j \in \mathcal{C}_i} u_{ij}(t) \quad \text{and} \quad d_j(t+1) = D_j(t) \\ \text{where} \quad v_j(t) + \sum_{i \in \mathcal{S}_j} u_{ij}(t) = d_j(t) \quad \text{and} \quad \sum_{j \in \mathcal{C}_i} u_{ij}(t) \le x_i(t) \end{aligned}$$

Stochastic control model

Simplified model

central warehouse

stocking points

customer locations

Simplified model

central warehouse

stocking points

customer locations

Simplified model

Simplified dynamics, constraints, and costs

$$x_1(t+1) = x_1(t) + u_1(t) - D_1(t) + u_{21}(t) + v_1(t)$$

where
$$u_{21}(t) + v_1(t) \ge -x_1(t)$$

and cost $g_1(\mathbf{x}, \mathbf{u}, \mathbf{v}) = h_1(x_1 + u_{21} + v_1) + c_{21}u_{21} + m_1v_1$

1 Stochastic Control in Inventory Networks

- Problem and Model
- Basetock Policies as Local Heuristics
- Model with Replenishment Lead Times

2 Online Train Control in Railway Networks

- Multi-level approach
- Online control of a station area

Basestock policies

Basestock policy

$$u_i(t) = egin{cases} S_i - x_i(t) & ext{if } x_i \leq S_i \ 0 & ext{else} \end{cases}$$

 S_i : basestock level

Basestock policies

Basestock policy

$$u_i(t) = egin{cases} S_i - x_i(t) & ext{if } x_i \leq S_i \ 0 & ext{else} \end{cases}$$

 S_i : basestock level

Case I: independent stocks without transshipment Equivalent to single warehouse with lost sales.

Average cost per time step is

$$\lambda(S_i) = \mathbb{E}[m_i(D_i - S_i)^+] + \mathbb{E}[h_i(S_i - D_i)^+]$$

which is convex in S_i .

Marco Laumanns

Basestock policies

Basestock policy

$$u_i(t) = egin{cases} S_i - x_i(t) & ext{if } x_i \leq S_i \ 0 & ext{else} \end{cases}$$

 S_i : basestock level

Case II: with transshipment

$$\begin{split} \lambda(S_1,S_2) &= \min \mathbb{E}[h_1 x_1^{(s)} + h_2 x_2^{(s)} + m_1 v_1^{(s)} + m_2 v_2^{(s)} + c_{12} u_{12}^{(s)} + c_{21} u_{21}^{(s)}] \\ \text{s.t. } x_1^{(s)} &= S_1 - d_1^{(s)} + v_1^{(s)} + u_{21}^{(s)} - u_{12}^{(s)} \quad \forall s \quad (\text{``scenarios''}) \\ x_2^{(s)} &= S_2 - d_2^{(s)} + v_2^{(s)} + u_{12}^{(s)} - u_{21}^{(s)} \quad \forall s \\ x_1^{(s)}, x_2^{(s)}, v_1^{(s)}, v_2^{(s)}, u_{12}^{(s)}, u_{21}^{(s)} \ge 0 \quad \forall s \end{split}$$

Marco Laumanns

Some numerical results

Data		Ex	ampl	e 1		Example 2					
domand d	0	1	2	3	4	0	1	2	3	4	
$\left \mathbb{P}[D_i = d] \right $	0.2	0.2	0.2	0.2	0.2	0.3	0.25	0.2	0.15	0.1	
	h = 1					h = 1					
costs	<i>c</i> = 2					c=2					
m = 10				0		<i>m</i> = 8					
Solution											
no transshipment	$S_1 = S_2 = 4$					$S_1 = S_2 = 3$					
	$\lambda^*=4$					$\lambda^*=$ 4.8					
with transshipm.	$S_1 = 4, S_2 = 3$					$S_1 = S_2 = 3$					
	$\lambda^*=$ 3.76					$\lambda^*=$ 3.75					

Basestock policies - general case

Case II: with transshipment, general case

- Problem is a two-stage stochastic LP
- Recourse function is min-cost flow problem
 - with S_1, S_2 as parameter

• Average cost $\lambda(S_1, \ldots, S_n)$ is convex.

1 Stochastic Control in Inventory Networks

- Problem and Model
- Basetock Policies as Local Heuristics
- Model with Replenishment Lead Times

2 Online Train Control in Railway Networks

- Multi-level approach
- Online control of a station area

Lead times via state augmentation

Lead times via state augmentation

Lead times via state augmentation

Augmented dynamics, constraints, and costs

$$x_1(t+1) = x_1(t) + \tilde{x}_1(t) - D_1(t) + u_{21}(t) + v_1(t)$$

$$\tilde{x}_1(t+1) = u_1(t)$$

where $u_{21}(t) + v_1(t) \ge -x_1(t)$

and cost $g_1(\mathbf{x}, \mathbf{u}, \mathbf{v}) = h_1(x_1 + u_{21} + v_1) + c_{21}u_{21} + m_1v_1$

Lead times via state augmentation

What is the marginal value of an additional stock unit?

Augmented dynamics, constraints, and costs

$$x_1(t+1) = x_1(t) + \tilde{x}_1(t) - D_1(t) + u_{21}(t) + v_1(t)$$

$$\tilde{x}_1(t+1) = u_1(t)$$

where $u_{21}(t) + v_1(t) \ge -x_1(t)$

and cost $g_1(\mathbf{x}, \mathbf{u}, \mathbf{v}) = h_1(x_1 + u_{21} + v_1) + c_{21}u_{21} + m_1v_1$

Parametric dynamic programming

Goal

We would like to find the differential cost function $d^*(x)$, which fulfills

$$\lambda^* + d^*(\mathbf{x}) = (Td^*)(\mathbf{x}) := \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \mathbb{E}\left[g(\mathbf{x}, \mathbf{u}, D) + d^*(f(\mathbf{x}, \mathbf{u}, D))\right]$$

for all \mathbf{x} .

Parametric dynamic programming

Goal

We would like to find the differential cost function $d^*(x)$, which fulfills

$$\lambda^* + d^*(\mathbf{x}) = (Td^*)(\mathbf{x}) := \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \mathbb{E}\left[g(\mathbf{x}, \mathbf{u}, D) + d^*(f(\mathbf{x}, \mathbf{u}, D))\right]$$

for all **x**.

If d* is piecewise linear and convex, this property is preserved under the Bellman operator T in our case.

Parametric dynamic programming

Goal

We would like to find the differential cost function $d^*(x)$, which fulfills

$$\lambda^* + d^*(\mathbf{x}) = (Td^*)(\mathbf{x}) := \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \mathbb{E}\left[g(\mathbf{x}, \mathbf{u}, D) + d^*(f(\mathbf{x}, \mathbf{u}, D))\right]$$

for all **x**.

If d* is piecewise linear and convex, this property is preserved under the Bellman operator T in our case.

- → Jones, Baric, Morari: Multiparametric Linear Programming with Applications to Control, 2007.
- → Diehl, Björnberg: Robust Dynamic Programming for Min-Max Model Predictive Control of Contrained Uncertain Systems, 2004.
- → de la Pena, Bemporad, Filippi: Robust Explicit MPC Based on Approximate Multiparametric Convex Programming, 2006.
- → Lincoln, Rantzer: Relaxing Dynamic Programming, 2006.

Randomized relative value iteration

RRVI

1 Initialize k := 0, set $d_0(x) :\equiv 0$ and choose some \hat{x}

2 Evaluate $Td_k(\hat{x})$ and add plane to set of planes \mathcal{V}_{k+1}

- **3** Sample N points x, for each x
 - Evaluate $Td_k(x)$ and determine corresponding plane
 - Add plane to \mathcal{V}_{k+1} if not redundant
- 4 Set $\tilde{d}_{k+1}(x)$ to maximum over planes

5 Set
$$d_{k+1}(x) := \tilde{d}_{k+1}(x) - \tilde{d}_{k+1}(\hat{x})$$

6 Set k := k + 1 and repeat from 2.

Randomized relative value iteration

RRVI

1 Initialize k := 0, set $d_0(x) :\equiv 0$ and choose some \hat{x}

2 Evaluate $Td_k(\hat{x})$ and add plane to set of planes \mathcal{V}_{k+1}

- **3** Sample N points x, for each x
 - Evaluate $Td_k(x)$ and determine corresponding plane
 - Add plane to \mathcal{V}_{k+1} if not redundant
- 4 Set $\tilde{d}_{k+1}(x)$ to maximum over planes

5 Set
$$d_{k+1}(x) := \tilde{d}_{k+1}(x) - \tilde{d}_{k+1}(\hat{x})$$

6 Set k := k + 1 and repeat from 2.

Lower bound

Every differential cost function d(x) yields a lower bound

$$\underline{\lambda} = \min_{x} Td(x) - d(x)$$

Some more numerical results

Data		Ex	ample			
demand d	0	1	2	3	4	
$\mathbb{P}[D_i = d]$	0.3	0.25	0.2	0.15	0.1	
costs			c = 2			
		I	m = 8			
Solution		lea	d tim	lead time 2		
no transshipment		$S_1 =$	$= S_2$	$S_1 = S_2 = 5$		
		λ^{3}	* = 4	$\lambda^*=$ 6.745		
with transshipm.		$S_1 =$	$= S_2$	$S_1 = 4, S_2 = 5$		
basestock		λ^*	= 3.	$\lambda^*=$ 4.98		
with transshipm.				$\lambda = 5.066$		
RRVI		$\underline{\lambda}=$ 4.95				

Conclusions

- Considered inventory-distribution problem (no lead time) is easy for any number of stocking points and customers
 - Basestock-policies are optimal
 - Basestock levels easy to determinine
- Lead time (time delays) can make problem hard
 - Value function dependent on augmented state
- Approximation of differential cost function yields
 - a policy (MPC by value function approximation)
 - a lower bound (to evaluate the quality of heuristics)

16 / 26

1 Stochastic Control in Inventory Networks

- Problem and Model
- Basetock Policies as Local Heuristics
- Model with Replenishment Lead Times

2 Online Train Control in Railway Networks

- Multi-level approach
- Online control of a station area

1 Stochastic Control in Inventory Networks

- Problem and Model
- Basetock Policies as Local Heuristics
- Model with Replenishment Lead Times

Online Train Control in Railway Networks

- Multi-level approach
- Online control of a station area

18 / 26

Problem

Marco Laumanns

Distributed Control in Transportation Networks

19 May 2010

19 / 26

Problem and geographical subdivision

Marco Laumanns

Distributed Control in Transportation Networks

19 May 2010

Macroscopic model

Marco Laumanns

Distributed Control in Transportation Networks

Microscopic model

inbound train path
 shifted (inbound) train path u
 shifted (outbound) train path v
 r
 inbound entrance time window
 f
 f
 Outbound departure time window

1 Stochastic Control in Inventory Networks

- Problem and Model
- Basetock Policies as Local Heuristics
- Model with Replenishment Lead Times

2 Online Train Control in Railway Networks

- Multi-level approach
- Online control of a station area

Receding horizon "control" - current practise

Marco Laumanns

Distributed Control in Transportation Networks

MPC concept for station region

MPC – **IP** formulation

Maximize
$$-\sum_{\substack{p \in \stackrel{\rightarrow}{P}(z) \\ z \in Z}} x_{p} \cdot \widehat{f(A^{*z} - A(p))} + \sum_{\substack{p \in \stackrel{\rightarrow}{P}(z) \\ z \in Z}} x_{p} \cdot \underbrace{g(\mathcal{D}^{*z} - D(p))}_{g(\mathcal{D}^{*z} - D(p))}$$
$$+ \sum_{\substack{(z_{i}, z_{j}) \text{ weakly connected}}} \sum_{\substack{p \in \stackrel{\rightarrow}{P}(z) \\ (z_{i}, z_{j}) \text{ weakly sequenced}}} l_{z_{i}, z_{j}}^{s} \cdot y_{z_{i}, z_{j}}^{s} \qquad \text{(connections kept)}$$
$$+ \sum_{\substack{(z_{i}, z_{j}) \text{ weakly sequenced}}} l_{z_{i}, z_{j}}^{s} \cdot y_{z_{i}, z_{j}}^{s} \qquad \text{(sequences kept)}$$
$$- \sum_{\substack{p \in P \stackrel{\rightarrow}{m}, \forall z \in Z}} h(\mathcal{F}^{*z}, F(p)) \cdot x_{p} \qquad \text{(platform changes)}$$
subject to
$$\sum_{p \in P \stackrel{\rightarrow}{m}, \forall z \in M} x_{p} = 1, \quad \forall z \in Z$$

Conclusions

- Offline train scheduling problem already intractable
 - $\rightarrow\,$ decomposition and simplification necessary
- MPC approach for online train control of a single station area
- Coordination an open problem, options:
 - local coordination beween neighboring nodes
 - global coordination via macroscopic layer