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OPTEC - Optimization in Engineering Center

Center of Excellence of K.U. Leuven, since 2005, until 2017

About 15 professors, 15 postdocs, and 40 PhD students involved in
OPTEC research

Founded by five Departments:
® Electrical Engineering

® Mechanical Engineering

® Chemical Engineering

® Computer Science

® Civil Engineering
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Integrated Real-World Application Projects
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European project HD-MPC

HD-MPC

HD-MPC: Hierarchical and distributed model predictive control
for large-scale systems

@ European STREP Project 2008 - 2011

@ 10 research teams: Delft (co-ordinator), EDF*, Leuven®,
Milano™, Aachen, Sevilla, UN Columbia, Supelec, Inocsa,
Madison (* involved in hydro power valley problem)



Overview

® Large Decomposable Systems: the Hydro Power Valley
® Multidimensional Multiple Shooting
® Dual decomposition and online active set strategy

® Optimizing MPC of mechatronic systems



Motivation

| arge-scale systems in engineering
@ composed of multiple subsystems
@ complex nonlinear dynamics and
@ mutual influences

E.g. river networks, chemical production sites, airflow in buildings.

How to compute optimal controls e.g. for transients? J




Assumption: simulators for individual subsystems exist J

@ use their own adaptive numerical integration schemes
@ based on possibly different modelling languages

@ can provide derivatives in forward and reverse mode (not yet
standard, but provided e.g. by SUNDIALS, DASPK,

DAESOL-IlI, ACADO Integrators, ...)



(ACADO Toolkit)

® A Toolkit for ,Automatic Control and Dynamic Optimization®
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® C++ code along with user-friendly Matlab interfaces
® Open-source software (LGPL 3)

® Since mid 2008 developed at OPTEC by
Boris Houska and Hans Joachim Ferreau

Available since September 2009, on www acado.org (= google: "acado")



Hydro Power Valley (HPV)

River reaches connected by dams and
hydro power units.
NMPC control aims:

@ strictly respect level constraints

@ match total power demand

@ keep levels as constant as possible

Model system composed of 4 reaches.

Dam 1 Dam 2 Dam 3 Dam 4

Reach 1 ¥ Reach 2 ¥ Reach 3 7 Reach 4 .
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Hydro Power Valley (HPV)

Water flow in reaches modeled by Saint Venant PDE:

o

([ 0Q(z, 1) N OH(z, t)
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nsform PDE into ODE by spatial discretization.

Output discharge given by:

e turbine discharge Q!

Reach | @ weir discharge Qf:v
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Coupling between subsystems

Dynamics of subsystems are coupled via in-/output profiles of
“coupling variables”. Infinite dimensional coupling.




Coupling between subsystems

Dynamics of subsystems are coupled via in-/output profiles of
“coupling variables”. Infinite dimensional coupling.

Can approximate coupling profile by orthogonal polynomials:

'/a:ij(t)Pj(f)dt { 0 fit]

1 otherwise

/0O

Approximation of typical
output water discharge
profile (black) by
polynomials of degree 1, 4
and 7.
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The "Simulation Box"

For ONE reach on ONE time interval:

coupling input

control input l

G =

initial state =—— oi( X,

)

» end state

\/
coupling output

input X; € R12: 10 initial states 4+ 2 water inflow coefficients
control input ©/; € R: constant turbine discharge

output x; € R'?: 10 end states + 2 outflow coefficients
about 2000 hidden variables (steps of ACADO Integrator)



All Simulation Boxes for Optimal Control Problem

The overall system consists of N =288 coupled simulation boxes
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Coupling inputs  X; are outputs x; of other boxes

Total system state: x' = (x/ .... _._X;J_). Box input X; is shorthand
notation for outputs from parents P;, i.e. Xij = (Xj)jep,.

Parents are neighbours in space (upper reach) or in time (previous interval).
Simulation box solves initial value problem with given boundary conditions.



Large Scale Nonlinear Program (NLP)

Each simulation box x; = ¢;(Xi, u;) also evaluates an objective
f;(X;, u;) and inequality constraints g;( X, u;).

N
minimizey Z fi(X;. u;)
=1
subject to oi( Xi, ui) — x; = 0,
gi(Xi,ui)<0, i=1,...,N.

Note: coupling constraints only feasible in solutio n!
Simultaneous method for simulation and optimization.



We do "Multidimensional Multiple Shooting"

Generalization of direct multiple shooting [Bock and Plitt,
1984], widespread tool for dynamic optimization. People use
multiple shooting because it

allows us to use adaptive integrators
leads to favourably structured NLPs
Is easy to parallelize

allows to initialize all states

can treat unstable systems well

often shows faster convergence than single shooting, cf. the

analysis of lifted Newton methods in [Albersmeyer and D.,
SIAM Opt, 2010]

In addition, our spatio-temporal NLP decomposition

solves the problem of co-simulation of different subsystems.



Sequential Convex Programming (SCP)

Assuming f;. g; convex and known to central optimizer, can
linearize simulation boxes at linearization points X;. u;.

N
minimizey Zf} (Xi, up)
i=1
- 00;(X;, U
subject to [o,-(X;, uj) + O((X L)j ) [)j _ff B x; =0
g;(X;,_ U,') <0,75¢€ [1,_ N].

lteratively solving linearized convex problems for obtaining the next
linearization point yields a generalization of SQP, Sequential
Convex Programming (SCP). Can prove linear convergence
towards local minima [Necoara et al, CDC, 2009], [T. D. Quoc and

MD, BFG, 2010].



NMPC Simulation of Hydro Power Valley

[C. Savorgnan]

® Aim: track a sinusoidal power profile (two turbines, two reaches)
® use SCP algorithm with real-time iteration [D. 2001]

Water level in one of the reaches after an NMPC simulation:
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Inexact SCP Method

a‘gj((xjt’gf) by cheaper A;. Add gradient correction to

Approximate

objective.

N S o =T

(X, 0;) -

minimizey Z; fi(Xi, uj) + [X;T\U,:T]( :))!((X .! UL;}) A

=
subject to Oi(Xi, ;) + A [Xf - 5’] —x; =0,

u; — u
gf(Xf: U,’) <0,/¢€ [1 NJ.

Solution x™, u™ and equality multipliers 6™ yield next linearization
point Xt. T and multiplier guess, A\t = \ + §*.

Linear convergence proven [D., Walther, Bock, Kostina, OMS,
2009], [Quoc et al. 2010].



Overview

® Large Decomposable Systems: the Hydro Power Valley
® Multidimensional Multiple Shooting
® Dual decomposition and online active set strategy

® Optimizing MPC of mechatronic systems



How to solve a decomposable convex QP ?

. Z 1 7 T
min X Q’Er +£; X;
El: :EN 2
=1
s.t. Hix;, <d. i=1,..., n
N

Only equality constraints interconnect subsystems
—> dual decomposition might be beneficial



Distributed QP Solution with DQP  [Attila Kozma]

® DQP: MPI / C++ Framework for Distributed QP solution
® Treats Lagrange dual of QP

1
! min (-ﬁ,-TQiﬁ,- + (Q,T -|-ATA;) X; — AT
max E X; 2
i=1 \ s.t. Hix; < d,

~

Pi(A)

)

® Local problems P;(\) solved in parallel, with qpOASES (= next slide)
® Use Nesterov's optimal gradient scheme

2|l

® step depends on Hessians' smallest eigenvalue, complexity is O(ﬁ)



gpOASES: online QP solver

Only gradient in QP changes.
Solve p-QP via ,Online Active Set Strategy*:

new

® (o on straight line in parameter space
from old to new problem data

® solve each QP on path exactly (keep
primal-dual feasibility) g

® Update matrix factorization at boundaries
of critical regions

® Up to 10 x faster than standard QP

gpOASES: open source C++ code by Hans Joachim Ferreau



Static QP Test Example: Connected Hammocks

® Large QP arising from minimizing potential energy of
"hammocks" that can touch the ground and are connected at
their four corners (coupling variables)




Comparison of Usual Gradient and Nesterov's Scheme
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® Nesterov's optimal scheme is hot monotonously decreasing the

dual gradient, but converges much faster than pure gradient
method ( A(Jﬂ<) _ A(;ﬂ<—1) B tVf(A_(k_l)) )



Hammocks Optimized with DQP




Runtime Comparison

Larger instance of test QP:

® 10 x 10 hammocks of each 10 x 10 mass points = 30 000 variables
® run on 101 cores of cluster from Flemish supercomputing center

Wall clock: ) Nesterov  Gradient
10~° 0:55 02:58
104 1:55 03:59
10~ 2:52 04:56
10~ ° 3:29 05:52




Runtime Comparison

Larger instance of test QP:
® 10 x 10 hammocks of each 10 x 10 mass points = 30 000 variables
® run on 101 cores of cluster from Flemish supercomputing center

Wall clock: ) Nesterov  Gradient
10~° 0:55 02:58
104 1:55 03:59
10~ 2:52 04:56
10~ ° 3:29 05:52

Attention: same problem takes 0:03 seconds on a single CPU
when solved with a sparse IP method (OOQP from S. Wright).

Problem of all gradient methods: no second order information,
slow linear convergence. Better parallelize IP solver! (= C. Laird)



Workshop Invitation

OPTEC Workshop on
Large Scale Convex Quadratic Programming
November 25-26, 2010,
Leuven

@ Invited Keynote Speakers:

o Y. Nesterov (fast gradient methods)
o M. Saunders (sparse active set strategies)
o S. Wright (sparse interior point methods)

e Topics:
e decomposition algorithms
e hierarchical and distributed QP solutions

fast gradient methods
structure exploiting interior-point and active set methods

parallel linear algebra
engineering applications
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® Multidimensional Multiple Shooting
® Dual decomposition and online active set strategy

® Optimizing MPC of mechatronic systems



OPTEC Fast MPC Group
(Electrical and Mechanical Engineering)
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Time Optimal MPC: a 60 Hz Application

® Overhead crane
® MPC Aim: settle at any new
setpoint in in minimal time
¢ e Two level algorithm: MIQP
® 6 online data
® 40 variables + one integer
n ® 242 constraints (in-&output)
® use gpOASES on dSPACE
® CPU time: <10 ms

Lieboud Van den Broeck in mechanical
engineering department




Overhead crane: feedback response




Overhead crane: multiple set point changes




Time Optimal MPC: gpOASES Optimizer Contents
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gpPOASES running on Industrial Control Hardware (20 m

Project manager (Dec 2008) e WE
Wwith the quASES code. Y Softw
whole project she reI| ”




® Interconnected nonlinear systems allow "simulation box" decomposition:
multidimensional multiple shooting  , with exact or inexact SCP

® Dual decomposition often suffers from slow (sub)linear convergence

® OPTEC develops open source software for embedded optimization
(ACADO, gpOASES, DQP, ..)

® Lots of exciting applications in engineering that need ultra-fast real-time
optimization algorithms (convex and non-convex)



Open Positions at Optimization in Engineering Cente r OPTEC, Leuven

® OPTEC successfully secured funding until 2017
® Three open positions in MD's group:
 Embedded Optimization for Control (EMBOCON)
» Distributed Optimization (HD-MPC)
* Modelling and Optimal Control of Kite Energy Systems



Indoors Test Flights, Leuven, April 2010




Software and Hardware Environment of DQP

® Software used within DQP:
C/C++
MPI (OpenMPI): Middleware framework for message passing
between processes (distributed memory)
BLAS: C4++ matrix arithmetics using templates
gpOASES: Implementation of online active set strategy in
CH++

® Computations on Flemish Supercomputer Center:

112 nodes with two quad-core Xeon 5420 2.5GHz CPUs
80 nodes with two quad-core Xeon 5560 2.8GHz CPUs

SUSE Linux Enterprise Server 10 SP2 (x86_64)



Why are inexact derivatives interesting ?

L 0bi(XT) . .
o derivative 221Xl 4o 4 large dense matrix, expensive to
A(X,u)

compute (cf. Schur-complements in C. Laird’s talk)

e often, only few strongly coupling variables XiA In
X = (Xf‘,_XI-B), so can cheaply approximate derivative:

b | Do D] [0 | g | 9] . g
aX F, X ;’E du; | ™ a—X;BT du; | =+ A
I (X;, ;) I

@ evaluate gradient correction Ssem \; by reverse
differentiation, only 4 times more expensive than simulation
¢i(Xi, u;). One single extended simulation box call.

@ Less communication: variables xZ and multipliers AZ only
passed between child and parent nodes. Central optimizer
works with aggregate model in x” and v only.



Slight improvement without guarantee: L-BFGS

Limited Memory BFGS on parallel cluster:

) CPU-time Runtime Ilterations
103 00:01:16 00:00:04 10
10~* 00:01:24 00:00:05 13
107° 00:01:24 00:00:09 14
10°° 00:01:26 00:00:05 15

As fast as sparse QP, but with 101 CPUSs!
Surely better to parallelize the sparse QP solver (cf. C. Laird's talk)



Solution of Hydro Power Valley Problem

® Two control variables: turbine discharges
® Aim was to track a sinusoidal power profile
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