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Mathematical modelling
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ẋ1 = f1(x1, . . . , xn, u1)
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Mathematical modelling

Approaches

I continuous (ODE, PDE)

I discrete

I hybrid

I time delays

I . . .

Problems

I nonlinear behavior

I large number of nodes

I lack of information,

I permanent disturbances
(internal, external)

⇒ decentralized control

Does it work (optimality, stability, robustness, ...)?
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Comparison functions

Definition
I γ : R+ → R+ is called K-function, if γ is

continuous and strictly monotone
increasing with γ(0) = 0
γ is a K∞-function, if it unbounded and
γ ∈ K.

I β : R≥0 × R+ → R+ is called
KL-function, if

I β is continuous
I β(·, t) ∈ K ∀t ≥ 0 and
I β(s, t) ↓ 0 for t →∞ and all s ≥ 0.
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Input-to-State Stability (ISS)

Definition (Sontag, 1989)

The system

ẋ(t) = f (x(t), u(t))

is called ISS, if there are β ∈ KL and
γ ∈ K such that

||x(t)|| ≤ β(||x(0)||, t) + γ(||u||∞),

for all x(0) ∈ Rn, t ≥ 0, u ∈ L∞.

-

6
β(||x(0)||, t) + γ(||u||∞)

||x(t)||
γ(||u||∞)
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Intuitive example

|x(t)| < β(|x(0)|, t) + γ(||u||∞)

Σ --u x

Σ : ẋ = f (x , u)
u : input
x : state
input-to-state stability ∼
the level of x is proportional
to the level of u

?

?

u

?

6

fluid level = x

stability ⇐ diameter d = g(x)
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ISS-Lyapunov function

Definition

V : Rn → R≥0 is an ISS-Lyapunov function

if there are ψ1, ψ2 ∈ K∞, χ ∈ K and a pos. def. function α such
that

ψ1(|x |) ≤ V (x) ≤ ψ2(|x |), x ∈ Rn,

V (x) ≥ χ(|u|)⇒ ∇V (x)f (x , u) ≤ −α(V (x)).

The function χ in then called Lyapunov-gain.

Theorem (Sontag & Wang (1995))

The system ẋ(t) = f (x(t), u(t)) is ISS
⇐⇒ it has an ISS-Lyapunov function.

10/29
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The system ẋ(t) = f (x(t), u(t)) is ISS
⇐⇒ it has an ISS-Lyapunov function. 10/29



Logistics networks Introduction to ISS Network of n systems Interpretations Examples Conclusions

Network of n systems

Consider

ẋ1 = f1(x1, . . . , xn, u)
...

ẋn = fn(x1, . . . , xn, u)

fi : R
∑

j Nj+Nu → RNi
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such that

||xi (t)|| ≤ βi (||xi (0)||, t) +
n∑

j=1

γij(||xj [0,t]||∞) + η(||u[0,t]||∞)

where γij ≡ 0 or γij ∈ K, and γii := 0.
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ẋ1 = f1(x1, . . . , xn, u)
...
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The gain-matrix

Γ := (γij) =


0 γ12 . . . . . . γ1n

γ21 0 γ23 . . . γ2n
...

...
γn−1,1 . . . γn−1,n−2 0 γn−1,n

γn1 . . . . . . γn,n−1 0



Γ : Rn
+ → Rn

+ Γ(s) =


∑n

j=1 γ1j(sj)
...∑n

j=1 γnj(sj)
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Small-gain condition for networks

Notation: x = (xT
1 , . . . , x

T
n )T and f = (f T

1 , . . . , f T
n )T ,

for αi ∈ K∞ let

D =

(Id + α1)
. . .

(Id + αn)

 . (∗)

Theorem (D., Rüffer, Wirth’ 2007)

If there exists D as in (*) such that

Γ ◦ D(s) 6≥ s, ∀ s ∈ Rn
+, s 6= 0,

then the system ẋ = f (x , u) is ISS from u to x.
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Small-gain condition Γ ◦ D(s) 6≥ s

I n = 2;
The condition ∃D with Γ ◦ D(s) 6≥ s ∀s 6= 0 is equivalent to
∃α1, α2 ∈ K∞ with (Id + α1) ◦ γ1 ◦ (Id + α2) ◦ γ2 ≤ Id.
(Jiang–Teel–Praly-condition)

I In case γij are linear, i.e., Γ is a nonnegative Matrix, then the
condition ∃D with Γ ◦ D(s) 6≥ s ∀s 6= 0 is equivalentto
r(Γ) < 1, where r is spectral radius.

Corollary

Let Γ be linear. If
r(Γ) < 1,

then the interconnected system ẋ = f (x , u) is input-to-state stable.

See also [Bailey 1966], [Rouche, Habets, Laloy 1977], [Hinrichsen,
Karow, Pritchard 2005]
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Associate discrete time system

Let Γ be a nonlinear operator as above. Consider
sk+1 := Γ(sk), s0 ∈ Rn

≥0 , k = 0, 1, 2, . . . , (**)

Theorem (D., Rüffer, Wirth’ 2007)

If ∃D with Γ ◦ D(s) 6≥ s for all s ∈ Rn
≥0 \ {0}

then the system (**) is globally asymptotically stabile at 0.
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Geometric interpretation for n = 2

Γ :=

[
0 γ12

γ21 0

]
6≥ Id ⇐⇒ either γ12(s2) < s1 or γ21(s1) < s2

γ12 ◦ γ21 < id

γ−1
12

γ21

s1

s2

Ω1 Ω2
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Geometric interpretation
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Geometric interpretation

Ωi =

{
x ∈ RN : |xi | >

∑
j 6=i

γij(|xj |)

}
.

Theorem (D., Rüffer, Wirth’ 2007)

Γ(s) 6≥ s ∀s 6= 0, s ≥ 0⇒

I
n⋃

i=1
Ωi = RN \ {0}

I Ω :=
n⋂

i=1
Ωi 6= ∅

I Ω connected and unbounded

I Γ(Ω) ⊂ Ω

Ω3

Ω2

Ω1

In Ωi exists an
ISS-Lyapunov function Vi

with
V̇i (x) = ∇Vi (x) · fi (x) < 0
for x ∈ Ωi .

19/29
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Important consequence from the small gain condition

Theorem (D., Rüffer, Wirth’ 2010)

Let Γ be irreducible. Let D = diag(Id + K∞) be such that

Γ ◦ D(s) 6≥ s, ∀ s ∈ Rn
+, s 6= 0.

Then there exist K∞-functions σ1, . . . , σn with
σ′i > 0, i = 1, . . . , n and

Γ ◦ D(σ(t)) < σ(t), ∀t > 0, σ(t) = (σ1(t), . . . , σn(t))T

σ(t) ∈ Ω :=
n⋂

i=1

Ωi ∀t > 0

20/29
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ISS-Lyapunov function for a network

Theorem (D., Rüffer, Wirth’ 2010)

Let Vi be an ISS-Lyapunov function for the i-th system

ψi1(|xi |) ≤ Vi (xi ) ≤ ψi2(|xi |), xi ∈ RNi ,

Vi (xi ) ≥
n∑

j=1

χij(Vj(xj))+γi (|ui |)⇒ ∇Vi (x)fi (x , ui ) ≤ −αi (Vi (xi )),

with Lyapunov-gains χij and Γ = (χij)i ,j=1,...n.

Let D be as above such that

Γ ◦ D(s) 6≥ s, ∀ s ∈ Rn
+, s 6= 0,

then V (x) = maxi{σ−1
i (Vi (xi ))} is an ISS-Lyapunov function for
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An example with two nodes

Passport control Customs-- -

x2x1

ẋ1 = u − b1

ẋ2 = b1 − b2

b1 =
ax1 + b

√
x1

1 + x2

b2 = cx2
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Two nodes

Passport control Customs-- -
?

x2x1

ẋ1 = u − ax1+b
√

x1

1+x2

ẋ2 =
ax1+b

√
x1

1+x2
− cx2

γu(u) = b2

4 u2

γ12(x2) = a2

b2 x
2
2

γ21(x1) =
(

min
{

c
2a ,

c2

b2

}) 1
2√

x1

γ12 ◦ γ21(s) = a2

b2 min
{

c
2a ,

c2

b2

}
s ≤ a2c2

b4 s < s

if ac
b2 < 1.
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Simulation

u(t) = 1.5 + sin(t) + sin(5t)/2
x1(0) = 10, x2(0) = 10.

ẋ1(t) = u(t)− x1(t)+
√

x1(t)

1+x2(t)

ẋ2(t) =
x1(t)+

√
x1(t)

1+x2(t)
− x2(t)
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Figure: Input u and the queues x1, x2
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ẋ2(t) =
x1(t)+

√
x1(t)

1+x2(t)
− x2(t)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50
1

2

3

4

5

6

7

8

9

10

11

u

x1

x2

Figure: Input u and the queues x1, x2

24/29



Logistics networks Introduction to ISS Network of n systems Interpretations Examples Conclusions

Simulation

u(t) = 1.5 + sin(t) + sin(5t)/2
x1(0) = 10, x2(0) = 10.
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Car production network
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ẋ = f (x , u)

25/29



Logistics networks Introduction to ISS Network of n systems Interpretations Examples Conclusions

Car production network
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State equations

ẋ1 = u − ax1+b
√

x1

1+x2+x3

ẋ2 = 1
3

ax1+b
√

x1

1+x2+x3
+ 1

2 min{b3, c3x3} −min{b2, c2x2}

ẋ3 = 1
3

ax1+b
√

x1

1+x2+x3
+ 1

2 min{b2, c2x2} −min{b3, c3x3}

ẋ4 = 1
3

ax1+b
√

x1

1+x2+x3
+ 1

2 min{b2, c2x2}+ min{b3, c3x3} −min{b4, c4x4}

ẋ5 = 1
2 min{b4, c4x4} − c5x5

ẋ6 = 1
2 min{b4, c4x4} − c6x6
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Gain-Matrix

Γ := (γij) =



0 a12x
2 a13x

2 0 0 0
a21
√

x 0 a23x 0 0 0
a31
√

x a32x 0 0 0 0
a41
√

x a42x a43x 0 0 0
0 0 0 a54x 0 0
0 0 0 a64x 0 0



small-gain condition:

Γ(s) =



a12s
2
2 + a13s

2
3

a21
√

s1 + a23s3
a31
√

s1 + a32s2
a41
√

s1 + a42s2 + a43s3
a54s4
a64s4

 6≥


s1
s2
s3
s4
s5
s6
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Conclusions

I Logistics networks can be modelled by dynamical systems with
inputs

I Stability is a fundamental property for such networks

I A stability condition for such networks is

∃D : Γ ◦ D(s) 6≥ s ∀s ≥ 0, s 6= 0

and can be used
I to verify stability
I for stabilization (in particular in MPC)

I Under the small gain condition there is a method of
construction of an ISS-Lyapunov function for networks

I These results are available for other types of systems
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