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Closed-loop System

A discrete-time LTI system

Xt+1 = AXt + Ut +Wt

• The initial state X0 has an arbitrary pdf with a given
covariance Λ0 (Tr[Λ0] < ∞, h(X0) < ∞)

• The process noise Wt is zero-mean i.i.d. Gaussian with
covariance KW (Tr[KW ] < ∞)

• The system matrix A has eigenvalues {λ1, λ2, · · · , λn}, with
1 ≤ |λi| < ∞; i.e., the open loop system is unstable

• No constraint on the control signal Ut, in the general case
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Stabilization over a Gaussian Relay Network
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• Decoder/Controller policy

Ut = πt(R[0,t]), with R[0,t] , {R0, R1, . . . , Rt}

• Observer/Encoder policy

Se,t = ft(X[0,t]), E[S2
e,t] ≤ PS

• Links are modeled as white Gaussian channels.
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Closed-loop System

Objective: Find conditions on the matrix A such that the system
can be mean-square stabilized.

Definition: Mean-square Stability

A system is said to be mean-square stable if there exists a constant
M < ∞ such that E[‖Xt‖2] < M for all t.
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A Necessary Condition for Stabilization
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Theorem
If the linear system can be mean-square stabilized over the

Gaussian relay network, then

log (|A|) ≤ lim inf
T→∞

1

T
I
(

Se,[0,T−1] → R[0,T−1]

)
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Proof

From the definition of directed information, and using properties of
the system

I
(

Se,[0,T -1] → R[0,T -1]

)

=
T−1
∑

t=0

I
(

Se,[0,t];Rt|R[0,t-1]

)

≥ { standard tricks } ≥
T−1
∑

t=0

I
(

Xt;Rt|R[0,t-1]

)

= I (X0;R0) +

T−1
∑

t=1

(h(AXt−1 + Ut−1 +Wt−1|R[0,t−1])−h(Xt|R[0,t]))

≥ I (X0;R0) +
T−1
∑

t=1

(log(|A|) + h(Xt−1|R[0,t−1])− h(Xt|R[0,t]))

= h (X0) + (T − 1) log (|A|)− h
(

XT -1|R[0,T -1]

)
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Hence, since h(X0) < ∞,

lim inf
T→∞

1

T
I
(

Se,[0,T -1] → R[0,T -1]

)

≥ lim inf
T→∞

1

T

(

h (X0) + (T − 1) log (|A|)− h
(

XT -1|R[0,T -1]

))

= log (|A|)− lim sup
T→∞

1

T
h
(

XT -1|R[0,T -1]

)

When the system is stable h
(

XT -1|R[0,T -1]

)

≤ h(XT -1) < ∞, thus

lim inf
T→∞

1

T
I
(

Se,[0,T -1] → R[0,T -1]

)

≥ log(|A|)
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Example: Gaussian two-hop

R DE YtXt X̂tSe,t Sr,t Rt

ZtZr,t

E[S2
e,t] ≤ PS , E[Z2

r,t] = Nr, E[S2
r,t] ≤ PR, E[Z2

t ] = N

I
(

Se,[0,T−1] → R[0,T−1]

)

≤ min
{

I
(

Se,[0,T−1] → Y[0,T−1]

)

, I
(

Sr,[0,T−1] → R[0,T−1]

)}

≤ min

{

T−1
∑

t=0

I(Se,t;Yt),

T−1
∑

t=0

I(Sr,t;Rt)

}

≤ T

2
min

{

log

(

1 +
PS

Nr

)

, log

(

1 +
PR

N

)}

Hence, if the system can be stabilized

log(|A|) ≤ 1

2
min

{

log

(

1 +
PS

Nr

)

, log

(

1 +
PR

N

)}
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Sufficient Conditions, Different Topologies

We have derived a set of sufficient conditions for several different
configurations:

Non-orthogonal, half/full-duplex

E D

RL

R1

R2
noise

noise

noise

noise

h1

h2

hL

h

10/27



Orthogonal, half-duplex
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Cascade/Multi-hop
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noise noise noise

11/27



Half-duplex Gaussian Relay Channel

For simplicity, we illustrate the technique for a scalar system over a
special case of the general non-orthogonal network:

Zt

Zr,t

Se,t Rt

Yt

E D

R

(a) First transmission phase

Zt

Se,t

Sr,t

RtE D

R

(b) Second transmission phase
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• Scalar system
Xt+1 = λXt + Ut +Wt

(E[X2
0 ] = Λ0, E[W 2

t ] = KW )

• First (’odd’) phase: E transmits with power 2βPS , where
0 < β ≤ 1

• Second (’even’) phase: E and R transmit with powers
2(1− β)PS and Pr, with Pr ≤ PR

• The destination receives

Rt = hSe,t + Zt t = 1, 3, 5, . . .

Rt = hSe,t + Sr,t + Zt t = 2, 4, 6, . . .
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Proposition (sufficient condition)

The scalar system can be mean-square stabilized over the
half-duplex Guassian relay channel if

log (λ) <
1

4
max
0<β≤1

0≤Pr≤PR

(

log

(

1 +
2h2βPS

N

)

+ log

(

1 +
M̃(β, Pr)

Ñ(β, Pr)

))

where Ñ(β, Pr) =
PrNR

2βPS+NR
+N and

M̃(β, Pr) =

(

√

2h2(1− β)PS +

√

2βPSPrN

(2βPS +NR)(2h2βPS +N)

)2

Remarks:

• RHS turns out to be the directed information rate, given that

the system runs the protocol described in the proof

• The condition does not depend on the process noise {Wt}
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Proof Outline

1 Linear communication and control strategy

• Initialization to obtain a Gaussian state

• Odd and even phase transmission, inspired by
Schalkwijk–Kailath coding

• Amplify-and-forward relaying

• Control based on MMSE estimation ⇒ Gaussian state

• Both signaling and control are linear operations

2 Derivation of the sufficient condition

• Find a useful recursive representation for the second moment
of the state process

• Construct a majorizing sequence with a convergence criterion
that provides a sufficient condition
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Proof: Initialization

Initial time step, t = 0:

• E transmits Se,0 =
√

PS

Λ0
X0

• R neither receives nor transmits.

• D observes R0 = hSe,0 + Z0, and estimates

X̂0 =
1

h

√

Λ0

PS

R0 = X0 +
1

h

√

Λ0

PS

Z0

• C takes an action U1 = −λX̂0 ⇒

X1 = λ(X0 − X̂0) +W0 = −λ

h

√

Λ0

PS

Z0 +W0

⇒ new state is zero-mean Gaussian
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Proof: ’Odd’ Transmission Phase

Zt

Zr,t

Se,t RtE D

R

t = 1, 3, 5, ...

• E transmits Se,t =
√

2βPS

αt
Xt (αt = E[X2

t ])

• R receives but does not transmit

• D observes Rt = hSe,t + Zt, and computes

X̂t = E[Xt|R1, R2, ..., Rt] = E[Xt|Rt] =
E[XtRt]

E[R2
t ]

Rt

• C takes action Ut = −λX̂t ⇒ Xt+1 = λ(Xt − X̂t) +Wt

⇒ new state is zero-mean Gaussian (& uncorrelated with R[0,t])
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Proof: ’Even’ Transmission Phase

Zt

Se,t

Sr,t

RtE D

R

t = 2, 4, 6, . . .

• E transmits Se,t =
√

2(1−β)PS

αt
Xt

• R transmits Sr,t =
√

Pr

(2βPS+NR) (Se,t−1 + Zr,t−1)

• D receives

Rt = hSe,t + Sr,t + Zt = const1Xt + const2Xt−1 + Z̃t,

computes X̂t = E[Xt|R1, ..., Rt] and takes action Ut = −λX̂t

⇒ Xt+1 = λ(Xt − X̂t) +Wt

⇒ new state is zero-mean Gaussian & uncorrelated with R[0,t]
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Proof: Second Moment of State Process

With αt = E[X2
t ] and after some work we get

αt = λ2
(

N
2h2βPS+N

)

αt−1 +KW , t = 2, 4, 6, ...

αt = λ2
(

λ2k αt−2 +KW

)

f(αt−2) +KW , t = 3, 5, 7, ...

where f(αt−2) is of the form

f(x) =
a+ b

x
(

c+
√

d+ b
x

)2

+ a+ b
x

⇒ sufficient to look at odd time-instances; try to construct a
convergent sequence {α′

k} which majorizes {αt}t=2k+1

• . . . possible, and α′
k is bounded if

(

λ4kÑ(β, Pr)

(k2 +
√
k1k)2 + Ñ(β, Pr)

)

< 1

⇒ solving RHS for λ provides the stated sufficient condition
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Special Case: Two-hop Relay Channel

R DE YtXt X̂tSe,t Sr,t Rt

ZtZr,t

(corresponds to h = 0 and β = 1)

Corollary

The scalar system can be mean-square stabilized over the two-hop
relay channel if

log (λ)<
1

4
log

(

1 +
2PSPR

PRNR +N (2PS +NR)

)
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• The corresponding necessary condition is

log (λ)<
1

4
min

{

log

(

1 +
2PS

NR

)

, log

(

1 +
PR

N

)}

⇒ Necessary and sufficient coincide if

PS/NR

PR/N
→ ∞ or → 0
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Linear
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⇒ Linear policies can be optimal, however not in general, e.g.,

A. Zaidi, S. Yüksel, T. Oechtering and M. Skoglund,
On optimal policies for control and estimation over Gaussian relay
channels, Automatica (submitted 2011, revised 2012)
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Effect of Process Noise
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• The stability condition does not change when the plant is noiseless,
KW = 0; however E[X2

t ] is bounded away from zero if KW > 0

• Stabilization at finite cost, limT→∞ T−1
∑T−1

t=0 E[U2
t ] < ∞; also

KW = 0 ⇒ E[U2
t ] → 0
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Connection to Achievable Rates. . .

• As mentioned, the RHS in the criterion is equal to the
directed information rate, when running the described protocol

• Consider instead the relay channel in isolation:
• perfect feedback from D to E
• communication of a message in {1, 2, · · · ,Kn}
• selected message W , decoded message Ŵ
• transmission over n uses of the channel

• Then, R = the RHS is also an achievable rate, that is, there
exists a coding scheme s.t.

lim inf
n→∞

1

n
logKn ≥ R, lim

n→∞
Pr(Ŵ 6= W ) = 0

S. Bross and M. Wigger

On the relay channel with receiver–transmitter feedback.

IEEE Trans. Inform. Theory, 2009.
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Multi-dimensional Systems. . .

Approach: Convey one component of the n-dimensional Xt at
each time t

• For m = 1, . . . , n, let

γm =
log(|λm|)

∑n
i=1 log(|λi|)

• Transmit the m-th component for a fraction γm of time

• Let ρ be the information rate corresponding to a scalar
stabilization scheme (the RHS of the bound), then the m-th
component can be stabilized if log(|λm|) < γmρ

⇒ the system will be stabilized if
∑

m log(|λm|) < ρ

A. Zaidi, T. Oechtering, S. Yüksel and M. Skoglund

Stabilization of linear systems over Gaussian networks.

IEEE Trans. on Aut. Control, Submitted June 2012.
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Further Extensions. . .

Gaussian multiple-access, broadcast, and interference channels:

A. Zaidi, T. Oechtering, and M. Skoglund.

Sufficient conditions for closed-Loop control over multiple-access and
broadcast channels.

IEEE Int. Conf. on Decision and Control (CDC), 2010

A. Zaidi, T. Oechtering, and M. Skoglund.

Closed-loop stabilization over Gaussian interference channels.

IFAC World Congress, 2011
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Summary

Problem: Mean-square stabilization of a discrete-time system over
a Gaussian relay network

• Signal-to-noise ratio requirements for stabilization

• Necessary conditions using information theoretic arguments

• Sufficient conditions based on linear delay-free policies
• linear can be optimal, but not in general

• Connection to achievable rates
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